| /* |
| * Copyright (C) 2016 IBM Corp. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| */ |
| |
| #ifndef PINCTRL_ASPEED |
| #define PINCTRL_ASPEED |
| |
| #include <linux/pinctrl/pinctrl.h> |
| #include <linux/pinctrl/pinmux.h> |
| #include <linux/pinctrl/pinconf.h> |
| #include <linux/pinctrl/pinconf-generic.h> |
| #include <linux/regmap.h> |
| |
| /* |
| * The ASPEED SoCs provide typically more than 200 pins for GPIO and other |
| * functions. The SoC function enabled on a pin is determined on a priority |
| * basis where a given pin can provide a number of different signal types. |
| * |
| * The signal active on a pin is described by both a priority level and |
| * compound logical expressions involving multiple operators, registers and |
| * bits. Some difficulty arises as the pin's function bit masks for each |
| * priority level are frequently not the same (i.e. cannot just flip a bit to |
| * change from a high to low priority signal), or even in the same register. |
| * Further, not all signals can be unmuxed, as some expressions depend on |
| * values in the hardware strapping register (which is treated as read-only). |
| * |
| * SoC Multi-function Pin Expression Examples |
| * ------------------------------------------ |
| * |
| * Here are some sample mux configurations from the AST2400 and AST2500 |
| * datasheets to illustrate the corner cases, roughly in order of least to most |
| * corner. The signal priorities are in decending order from P0 (highest). |
| * |
| * D6 is a pin with a single function (beside GPIO); a high priority signal |
| * that participates in one function: |
| * |
| * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0 |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * |
| * C5 is a multi-signal pin (high and low priority signals). Here we touch |
| * different registers for the different functions that enable each signal: |
| * |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4 |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * |
| * E19 is a single-signal pin with two functions that influence the active |
| * signal. In this case both bits have the same meaning - enable a dedicated |
| * LPC reset pin. However it's not always the case that the bits in the |
| * OR-relationship have the same meaning. |
| * |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4 |
| * -----+---------+-----------+-----------------------------+-----------+---------------+---------- |
| * |
| * For example, pin B19 has a low-priority signal that's enabled by two |
| * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI |
| * bit in the STRAP register. The ACPI bit configures signals on pins in |
| * addition to B19. Both of the low priority functions as well as the high |
| * priority function must be disabled for GPIOF1 to be used. |
| * |
| * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other |
| * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- |
| * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1 |
| * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- |
| * |
| * For pin E18, the SoC ANDs the expected state of three bits to determine the |
| * pin's active signal: |
| * |
| * * SCU3C[3]: Enable external SOC reset function |
| * * SCU80[15]: Enable SPICS1# or EXTRST# function pin |
| * * SCU90[31]: Select SPI interface CS# output |
| * |
| * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- |
| * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7 |
| * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- |
| * |
| * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for |
| * selecting the signals on pin E18) |
| * |
| * Pin T5 is a multi-signal pin with a more complex configuration: |
| * |
| * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1 |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * |
| * The high priority signal configuration is best thought of in terms of its |
| * exploded form, with reference to the SCU90[5:4] bits: |
| * |
| * * SCU90[5:4]=00: disable |
| * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode. |
| * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode. |
| * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode. |
| * |
| * Re-writing: |
| * |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1 |
| * | (SCU90[5:4]=2 & SCU84[17]=1) |
| * | (SCU90[5:4]=3 & SCU84[17]=1) |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * |
| * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE |
| * function pin", where the signal itself is determined by whether SCU94[5:4] |
| * is disabled or in one of the 18, 24 or 30bit video modes. |
| * |
| * Other video-input-related pins require an explicit state in SCU90[5:4], e.g. |
| * W1 and U5: |
| * |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6 |
| * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7 |
| * -----+---------+-----------+------------------------------+-----------+---------------+---------- |
| * |
| * The examples of T5 and W1 are particularly fertile, as they also demonstrate |
| * that despite operating as part of the video input bus each signal needs to |
| * be enabled individually via it's own SCU84 (in the cases of T5 and W1) |
| * register bit. This is a little crazy if the bus doesn't have optional |
| * signals, but is used to decent effect with some of the UARTs where not all |
| * signals are required. However, this isn't done consistently - UART1 is |
| * enabled on a per-pin basis, and by contrast, all signals for UART6 are |
| * enabled by a single bit. |
| * |
| * Further, the high and low priority signals listed in the table above share |
| * a configuration bit. The VPI signals should operate in concert in a single |
| * function, but the UART signals should retain the ability to be configured |
| * independently. This pushes the implementation down the path of tagging a |
| * signal's expressions with the function they participate in, rather than |
| * defining masks affecting multiple signals per function. The latter approach |
| * fails in this instance where applying the configuration for the UART pin of |
| * interest will stomp on the state of other UART signals when disabling the |
| * VPI functions on the current pin. |
| * |
| * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other |
| * -----+------------+-----------+---------------------------+-----------+---------------+------------ |
| * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK |
| * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL |
| * -----+------------+-----------+---------------------------+-----------+---------------+------------ |
| * |
| * A12 demonstrates that the "Other" signal isn't always GPIO - in this case |
| * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO |
| * should be treated like any other signal type with full function expression |
| * requirements, and not assumed to be the default case. Separately, GPIOT0 and |
| * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all |
| * pins in the function's group to disable the higher-priority signals such |
| * that the signal for the function of interest is correctly enabled. |
| * |
| * Finally, three priority levels aren't always enough; the AST2500 brings with |
| * it 18 pins of five priority levels, however the 18 pins only use three of |
| * the five priority levels. |
| * |
| * Ultimately the requirement to control pins in the examples above drive the |
| * design: |
| * |
| * * Pins provide signals according to functions activated in the mux |
| * configuration |
| * |
| * * Pins provide up to five signal types in a priority order |
| * |
| * * For priorities levels defined on a pin, each priority provides one signal |
| * |
| * * Enabling lower priority signals requires higher priority signals be |
| * disabled |
| * |
| * * A function represents a set of signals; functions are distinct if their |
| * sets of signals are not equal |
| * |
| * * Signals participate in one or more functions |
| * |
| * * A function is described by an expression of one or more signal |
| * descriptors, which compare bit values in a register |
| * |
| * * A signal expression is the smallest set of signal descriptors whose |
| * comparisons must evaluate 'true' for a signal to be enabled on a pin. |
| * |
| * * A function's signal is active on a pin if evaluating all signal |
| * descriptors in the pin's signal expression for the function yields a 'true' |
| * result |
| * |
| * * A signal at a given priority on a given pin is active if any of the |
| * functions in which the signal participates are active, and no higher |
| * priority signal on the pin is active |
| * |
| * * GPIO is configured per-pin |
| * |
| * And so: |
| * |
| * * To disable a signal, any function(s) activating the signal must be |
| * disabled |
| * |
| * * Each pin must know the signal expressions of functions in which it |
| * participates, for the purpose of enabling the Other function. This is done |
| * by deactivating all functions that activate higher priority signals on the |
| * pin. |
| * |
| * As a concrete example: |
| * |
| * * T5 provides three signals types: VPIDE, NDCD1 and GPIO |
| * |
| * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30 |
| * |
| * * The NDCD1 signal participates in just its own NDCD1 function |
| * |
| * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least |
| * prioritised |
| * |
| * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24 |
| * and VPI30 functions all be disabled |
| * |
| * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled |
| * to provide GPIOL6 |
| * |
| * Considerations |
| * -------------- |
| * |
| * If pinctrl allows us to allocate a pin we can configure a function without |
| * concern for the function of already allocated pins, if pin groups are |
| * created with respect to the SoC functions in which they participate. This is |
| * intuitive, but it did not feel obvious from the bit/pin relationships. |
| * |
| * Conversely, failing to allocate all pins in a group indicates some bits (as |
| * well as pins) required for the group's configuration will already be in use, |
| * likely in a way that's inconsistent with the requirements of the failed |
| * group. |
| */ |
| |
| #define ASPEED_IP_SCU 0 |
| #define ASPEED_IP_GFX 1 |
| #define ASPEED_IP_LPC 2 |
| #define ASPEED_NR_PINMUX_IPS 3 |
| |
| /* |
| * The "Multi-function Pins Mapping and Control" table in the SoC datasheet |
| * references registers by the device/offset mnemonic. The register macros |
| * below are named the same way to ease transcription and verification (as |
| * opposed to naming them e.g. PINMUX_CTRL_[0-9]). Further, signal expressions |
| * reference registers beyond those dedicated to pinmux, such as the system |
| * reset control and MAC clock configuration registers. The AST2500 goes a step |
| * further and references registers in the graphics IP block, but that isn't |
| * handled yet. |
| */ |
| #define SCU2C 0x2C /* Misc. Control Register */ |
| #define SCU3C 0x3C /* System Reset Control/Status Register */ |
| #define SCU48 0x48 /* MAC Interface Clock Delay Setting */ |
| #define HW_STRAP1 0x70 /* AST2400 strapping is 33 bits, is split */ |
| #define SCU80 0x80 /* Multi-function Pin Control #1 */ |
| #define SCU84 0x84 /* Multi-function Pin Control #2 */ |
| #define SCU88 0x88 /* Multi-function Pin Control #3 */ |
| #define SCU8C 0x8C /* Multi-function Pin Control #4 */ |
| #define SCU90 0x90 /* Multi-function Pin Control #5 */ |
| #define SCU94 0x94 /* Multi-function Pin Control #6 */ |
| #define SCUA0 0xA0 /* Multi-function Pin Control #7 */ |
| #define SCUA4 0xA4 /* Multi-function Pin Control #8 */ |
| #define SCUA8 0xA8 /* Multi-function Pin Control #9 */ |
| #define SCUAC 0xAC /* Multi-function Pin Control #10 */ |
| #define HW_STRAP2 0xD0 /* Strapping */ |
| |
| /** |
| * A signal descriptor, which describes the register, bits and the |
| * enable/disable values that should be compared or written. |
| * |
| * @ip: The IP block identifier, used as an index into the regmap array in |
| * struct aspeed_pinctrl_data |
| * @reg: The register offset with respect to the base address of the IP block |
| * @mask: The mask to apply to the register. The lowest set bit of the mask is |
| * used to derive the shift value. |
| * @enable: The value that enables the function. Value should be in the LSBs, |
| * not at the position of the mask. |
| * @disable: The value that disables the function. Value should be in the |
| * LSBs, not at the position of the mask. |
| */ |
| struct aspeed_sig_desc { |
| unsigned int ip; |
| unsigned int reg; |
| u32 mask; |
| u32 enable; |
| u32 disable; |
| }; |
| |
| /** |
| * Describes a signal expression. The expression is evaluated by ANDing the |
| * evaluation of the descriptors. |
| * |
| * @signal: The signal name for the priority level on the pin. If the signal |
| * type is GPIO, then the signal name must begin with the string |
| * "GPIO", e.g. GPIOA0, GPIOT4 etc. |
| * @function: The name of the function the signal participates in for the |
| * associated expression |
| * @ndescs: The number of signal descriptors in the expression |
| * @descs: Pointer to an array of signal descriptors that comprise the |
| * function expression |
| */ |
| struct aspeed_sig_expr { |
| const char *signal; |
| const char *function; |
| int ndescs; |
| const struct aspeed_sig_desc *descs; |
| }; |
| |
| /** |
| * A struct capturing the list of expressions enabling signals at each priority |
| * for a given pin. The signal configuration for a priority level is evaluated |
| * by ORing the evaluation of the signal expressions in the respective |
| * priority's list. |
| * |
| * @name: A name for the pin |
| * @prios: A pointer to an array of expression list pointers |
| * |
| */ |
| struct aspeed_pin_desc { |
| const char *name; |
| const struct aspeed_sig_expr ***prios; |
| }; |
| |
| /* Macro hell */ |
| |
| #define SIG_DESC_IP_BIT(ip, reg, idx, val) \ |
| { ip, reg, BIT_MASK(idx), val, (((val) + 1) & 1) } |
| |
| /** |
| * Short-hand macro for describing an SCU descriptor enabled by the state of |
| * one bit. The disable value is derived. |
| * |
| * @reg: The signal's associated register, offset from base |
| * @idx: The signal's bit index in the register |
| * @val: The value (0 or 1) that enables the function |
| */ |
| #define SIG_DESC_BIT(reg, idx, val) \ |
| SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, val) |
| |
| #define SIG_DESC_IP_SET(ip, reg, idx) SIG_DESC_IP_BIT(ip, reg, idx, 1) |
| |
| /** |
| * A further short-hand macro expanding to an SCU descriptor enabled by a set |
| * bit. |
| * |
| * @reg: The register, offset from base |
| * @idx: The bit index in the register |
| */ |
| #define SIG_DESC_SET(reg, idx) SIG_DESC_IP_BIT(ASPEED_IP_SCU, reg, idx, 1) |
| |
| #define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func |
| #define SIG_DESC_LIST_DECL(sig, func, ...) \ |
| static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \ |
| { __VA_ARGS__ } |
| |
| #define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func |
| #define SIG_EXPR_DECL_(sig, func) \ |
| static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \ |
| { \ |
| .signal = #sig, \ |
| .function = #func, \ |
| .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \ |
| .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \ |
| } |
| |
| /** |
| * Declare a signal expression. |
| * |
| * @sig: A macro symbol name for the signal (is subjected to stringification |
| * and token pasting) |
| * @func: The function in which the signal is participating |
| * @...: Signal descriptors that define the signal expression |
| * |
| * For example, the following declares the ROMD8 signal for the ROM16 function: |
| * |
| * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); |
| * |
| * And with multiple signal descriptors: |
| * |
| * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), |
| * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); |
| */ |
| #define SIG_EXPR_DECL(sig, func, ...) \ |
| SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ |
| SIG_EXPR_DECL_(sig, func) |
| |
| /** |
| * Declare a pointer to a signal expression |
| * |
| * @sig: The macro symbol name for the signal (subjected to token pasting) |
| * @func: The macro symbol name for the function (subjected to token pasting) |
| */ |
| #define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func)) |
| |
| #define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig |
| |
| /** |
| * Declare a signal expression list for reference in a struct aspeed_pin_prio. |
| * |
| * @sig: A macro symbol name for the signal (is subjected to token pasting) |
| * @...: Signal expression structure pointers (use SIG_EXPR_PTR()) |
| * |
| * For example, the 16-bit ROM bus can be enabled by one of two possible signal |
| * expressions: |
| * |
| * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); |
| * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), |
| * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); |
| * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), |
| * SIG_EXPR_PTR(ROMD8, ROM16S)); |
| */ |
| #define SIG_EXPR_LIST_DECL(sig, ...) \ |
| static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \ |
| { __VA_ARGS__, NULL } |
| |
| /** |
| * A short-hand macro for declaring a function expression and an expression |
| * list with a single function. |
| * |
| * @func: A macro symbol name for the function (is subjected to token pasting) |
| * @...: Function descriptors that define the function expression |
| * |
| * For example, signal NCTS6 participates in its own function with one group: |
| * |
| * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); |
| */ |
| #define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \ |
| SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ |
| SIG_EXPR_DECL_(sig, func); \ |
| SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func)) |
| |
| #define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \ |
| SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1)) |
| |
| #define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0]) |
| |
| #define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin |
| #define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0]) |
| #define PIN_SYM(pin) pin_ ## pin |
| |
| #define MS_PIN_DECL_(pin, ...) \ |
| static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \ |
| { __VA_ARGS__, NULL }; \ |
| static const struct aspeed_pin_desc PIN_SYM(pin) = \ |
| { #pin, PIN_EXPRS_PTR(pin) } |
| |
| /** |
| * Declare a multi-signal pin |
| * |
| * @pin: The pin number |
| * @other: Macro name for "other" functionality (subjected to stringification) |
| * @high: Macro name for the highest priority signal functions |
| * @low: Macro name for the low signal functions |
| * |
| * For example: |
| * |
| * #define A8 56 |
| * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); |
| * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), |
| * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); |
| * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), |
| * SIG_EXPR_PTR(ROMD8, ROM16S)); |
| * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); |
| * MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6); |
| */ |
| #define MS_PIN_DECL(pin, other, high, low) \ |
| SIG_EXPR_LIST_DECL_SINGLE(other, other); \ |
| MS_PIN_DECL_(pin, \ |
| SIG_EXPR_LIST_PTR(high), \ |
| SIG_EXPR_LIST_PTR(low), \ |
| SIG_EXPR_LIST_PTR(other)) |
| |
| #define PIN_GROUP_SYM(func) pins_ ## func |
| #define FUNC_GROUP_SYM(func) groups_ ## func |
| #define FUNC_GROUP_DECL(func, ...) \ |
| static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \ |
| static const char *FUNC_GROUP_SYM(func)[] = { #func } |
| |
| /** |
| * Declare a single signal pin |
| * |
| * @pin: The pin number |
| * @other: Macro name for "other" functionality (subjected to stringification) |
| * @sig: Macro name for the signal (subjected to stringification) |
| * |
| * For example: |
| * |
| * #define E3 80 |
| * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC); |
| * SS_PIN_DECL(E3, GPIOK0, SCL5); |
| */ |
| #define SS_PIN_DECL(pin, other, sig) \ |
| SIG_EXPR_LIST_DECL_SINGLE(other, other); \ |
| MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)) |
| |
| /** |
| * Single signal, single function pin declaration |
| * |
| * @pin: The pin number |
| * @other: Macro name for "other" functionality (subjected to stringification) |
| * @sig: Macro name for the signal (subjected to stringification) |
| * @...: Signal descriptors that define the function expression |
| * |
| * For example: |
| * |
| * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2)); |
| */ |
| #define SSSF_PIN_DECL(pin, other, sig, ...) \ |
| SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \ |
| SIG_EXPR_LIST_DECL_SINGLE(other, other); \ |
| MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \ |
| FUNC_GROUP_DECL(sig, pin) |
| |
| #define GPIO_PIN_DECL(pin, gpio) \ |
| SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \ |
| MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio)) |
| |
| struct aspeed_pinctrl_data { |
| struct regmap *maps[ASPEED_NR_PINMUX_IPS]; |
| |
| const struct pinctrl_pin_desc *pins; |
| const unsigned int npins; |
| |
| const struct aspeed_pin_group *groups; |
| const unsigned int ngroups; |
| |
| const struct aspeed_pin_function *functions; |
| const unsigned int nfunctions; |
| }; |
| |
| #define ASPEED_PINCTRL_PIN(name_) \ |
| [name_] = { \ |
| .number = name_, \ |
| .name = #name_, \ |
| .drv_data = (void *) &(PIN_SYM(name_)) \ |
| } |
| |
| struct aspeed_pin_group { |
| const char *name; |
| const unsigned int *pins; |
| const unsigned int npins; |
| }; |
| |
| #define ASPEED_PINCTRL_GROUP(name_) { \ |
| .name = #name_, \ |
| .pins = &(PIN_GROUP_SYM(name_))[0], \ |
| .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \ |
| } |
| |
| struct aspeed_pin_function { |
| const char *name; |
| const char *const *groups; |
| unsigned int ngroups; |
| }; |
| |
| #define ASPEED_PINCTRL_FUNC(name_, ...) { \ |
| .name = #name_, \ |
| .groups = &FUNC_GROUP_SYM(name_)[0], \ |
| .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \ |
| } |
| |
| int aspeed_pinctrl_get_groups_count(struct pinctrl_dev *pctldev); |
| const char *aspeed_pinctrl_get_group_name(struct pinctrl_dev *pctldev, |
| unsigned int group); |
| int aspeed_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, |
| unsigned int group, const unsigned int **pins, |
| unsigned int *npins); |
| void aspeed_pinctrl_pin_dbg_show(struct pinctrl_dev *pctldev, |
| struct seq_file *s, unsigned int offset); |
| int aspeed_pinmux_get_fn_count(struct pinctrl_dev *pctldev); |
| const char *aspeed_pinmux_get_fn_name(struct pinctrl_dev *pctldev, |
| unsigned int function); |
| int aspeed_pinmux_get_fn_groups(struct pinctrl_dev *pctldev, |
| unsigned int function, const char * const **groups, |
| unsigned int * const num_groups); |
| int aspeed_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function, |
| unsigned int group); |
| int aspeed_gpio_request_enable(struct pinctrl_dev *pctldev, |
| struct pinctrl_gpio_range *range, |
| unsigned int offset); |
| int aspeed_pinctrl_probe(struct platform_device *pdev, |
| struct pinctrl_desc *pdesc, |
| struct aspeed_pinctrl_data *pdata); |
| |
| #endif /* PINCTRL_ASPEED */ |