| /** |
| * AMCC SoC PPC4xx Crypto Driver |
| * |
| * Copyright (c) 2008 Applied Micro Circuits Corporation. |
| * All rights reserved. James Hsiao <jhsiao@amcc.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * This file implements AMCC crypto offload Linux device driver for use with |
| * Linux CryptoAPI. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/spinlock_types.h> |
| #include <linux/random.h> |
| #include <linux/scatterlist.h> |
| #include <linux/crypto.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/platform_device.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/of_address.h> |
| #include <linux/of_irq.h> |
| #include <linux/of_platform.h> |
| #include <linux/slab.h> |
| #include <asm/dcr.h> |
| #include <asm/dcr-regs.h> |
| #include <asm/cacheflush.h> |
| #include <crypto/aead.h> |
| #include <crypto/aes.h> |
| #include <crypto/ctr.h> |
| #include <crypto/gcm.h> |
| #include <crypto/sha.h> |
| #include <crypto/rng.h> |
| #include <crypto/scatterwalk.h> |
| #include <crypto/skcipher.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/rng.h> |
| #include <crypto/internal/skcipher.h> |
| #include "crypto4xx_reg_def.h" |
| #include "crypto4xx_core.h" |
| #include "crypto4xx_sa.h" |
| #include "crypto4xx_trng.h" |
| |
| #define PPC4XX_SEC_VERSION_STR "0.5" |
| |
| /** |
| * PPC4xx Crypto Engine Initialization Routine |
| */ |
| static void crypto4xx_hw_init(struct crypto4xx_device *dev) |
| { |
| union ce_ring_size ring_size; |
| union ce_ring_control ring_ctrl; |
| union ce_part_ring_size part_ring_size; |
| union ce_io_threshold io_threshold; |
| u32 rand_num; |
| union ce_pe_dma_cfg pe_dma_cfg; |
| u32 device_ctrl; |
| |
| writel(PPC4XX_BYTE_ORDER, dev->ce_base + CRYPTO4XX_BYTE_ORDER_CFG); |
| /* setup pe dma, include reset sg, pdr and pe, then release reset */ |
| pe_dma_cfg.w = 0; |
| pe_dma_cfg.bf.bo_sgpd_en = 1; |
| pe_dma_cfg.bf.bo_data_en = 0; |
| pe_dma_cfg.bf.bo_sa_en = 1; |
| pe_dma_cfg.bf.bo_pd_en = 1; |
| pe_dma_cfg.bf.dynamic_sa_en = 1; |
| pe_dma_cfg.bf.reset_sg = 1; |
| pe_dma_cfg.bf.reset_pdr = 1; |
| pe_dma_cfg.bf.reset_pe = 1; |
| writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); |
| /* un reset pe,sg and pdr */ |
| pe_dma_cfg.bf.pe_mode = 0; |
| pe_dma_cfg.bf.reset_sg = 0; |
| pe_dma_cfg.bf.reset_pdr = 0; |
| pe_dma_cfg.bf.reset_pe = 0; |
| pe_dma_cfg.bf.bo_td_en = 0; |
| writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); |
| writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_PDR_BASE); |
| writel(dev->pdr_pa, dev->ce_base + CRYPTO4XX_RDR_BASE); |
| writel(PPC4XX_PRNG_CTRL_AUTO_EN, dev->ce_base + CRYPTO4XX_PRNG_CTRL); |
| get_random_bytes(&rand_num, sizeof(rand_num)); |
| writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_L); |
| get_random_bytes(&rand_num, sizeof(rand_num)); |
| writel(rand_num, dev->ce_base + CRYPTO4XX_PRNG_SEED_H); |
| ring_size.w = 0; |
| ring_size.bf.ring_offset = PPC4XX_PD_SIZE; |
| ring_size.bf.ring_size = PPC4XX_NUM_PD; |
| writel(ring_size.w, dev->ce_base + CRYPTO4XX_RING_SIZE); |
| ring_ctrl.w = 0; |
| writel(ring_ctrl.w, dev->ce_base + CRYPTO4XX_RING_CTRL); |
| device_ctrl = readl(dev->ce_base + CRYPTO4XX_DEVICE_CTRL); |
| device_ctrl |= PPC4XX_DC_3DES_EN; |
| writel(device_ctrl, dev->ce_base + CRYPTO4XX_DEVICE_CTRL); |
| writel(dev->gdr_pa, dev->ce_base + CRYPTO4XX_GATH_RING_BASE); |
| writel(dev->sdr_pa, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE); |
| part_ring_size.w = 0; |
| part_ring_size.bf.sdr_size = PPC4XX_SDR_SIZE; |
| part_ring_size.bf.gdr_size = PPC4XX_GDR_SIZE; |
| writel(part_ring_size.w, dev->ce_base + CRYPTO4XX_PART_RING_SIZE); |
| writel(PPC4XX_SD_BUFFER_SIZE, dev->ce_base + CRYPTO4XX_PART_RING_CFG); |
| io_threshold.w = 0; |
| io_threshold.bf.output_threshold = PPC4XX_OUTPUT_THRESHOLD; |
| io_threshold.bf.input_threshold = PPC4XX_INPUT_THRESHOLD; |
| writel(io_threshold.w, dev->ce_base + CRYPTO4XX_IO_THRESHOLD); |
| writel(0, dev->ce_base + CRYPTO4XX_PDR_BASE_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_RDR_BASE_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_PKT_SRC_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_PKT_DEST_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_SA_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_GATH_RING_BASE_UADDR); |
| writel(0, dev->ce_base + CRYPTO4XX_SCAT_RING_BASE_UADDR); |
| /* un reset pe,sg and pdr */ |
| pe_dma_cfg.bf.pe_mode = 1; |
| pe_dma_cfg.bf.reset_sg = 0; |
| pe_dma_cfg.bf.reset_pdr = 0; |
| pe_dma_cfg.bf.reset_pe = 0; |
| pe_dma_cfg.bf.bo_td_en = 0; |
| writel(pe_dma_cfg.w, dev->ce_base + CRYPTO4XX_PE_DMA_CFG); |
| /*clear all pending interrupt*/ |
| writel(PPC4XX_INTERRUPT_CLR, dev->ce_base + CRYPTO4XX_INT_CLR); |
| writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); |
| writel(PPC4XX_INT_DESCR_CNT, dev->ce_base + CRYPTO4XX_INT_DESCR_CNT); |
| writel(PPC4XX_INT_CFG, dev->ce_base + CRYPTO4XX_INT_CFG); |
| if (dev->is_revb) { |
| writel(PPC4XX_INT_TIMEOUT_CNT_REVB << 10, |
| dev->ce_base + CRYPTO4XX_INT_TIMEOUT_CNT); |
| writel(PPC4XX_PD_DONE_INT | PPC4XX_TMO_ERR_INT, |
| dev->ce_base + CRYPTO4XX_INT_EN); |
| } else { |
| writel(PPC4XX_PD_DONE_INT, dev->ce_base + CRYPTO4XX_INT_EN); |
| } |
| } |
| |
| int crypto4xx_alloc_sa(struct crypto4xx_ctx *ctx, u32 size) |
| { |
| ctx->sa_in = kcalloc(size, 4, GFP_ATOMIC); |
| if (ctx->sa_in == NULL) |
| return -ENOMEM; |
| |
| ctx->sa_out = kcalloc(size, 4, GFP_ATOMIC); |
| if (ctx->sa_out == NULL) { |
| kfree(ctx->sa_in); |
| ctx->sa_in = NULL; |
| return -ENOMEM; |
| } |
| |
| ctx->sa_len = size; |
| |
| return 0; |
| } |
| |
| void crypto4xx_free_sa(struct crypto4xx_ctx *ctx) |
| { |
| kfree(ctx->sa_in); |
| ctx->sa_in = NULL; |
| kfree(ctx->sa_out); |
| ctx->sa_out = NULL; |
| ctx->sa_len = 0; |
| } |
| |
| /** |
| * alloc memory for the gather ring |
| * no need to alloc buf for the ring |
| * gdr_tail, gdr_head and gdr_count are initialized by this function |
| */ |
| static u32 crypto4xx_build_pdr(struct crypto4xx_device *dev) |
| { |
| int i; |
| dev->pdr = dma_alloc_coherent(dev->core_dev->device, |
| sizeof(struct ce_pd) * PPC4XX_NUM_PD, |
| &dev->pdr_pa, GFP_ATOMIC); |
| if (!dev->pdr) |
| return -ENOMEM; |
| |
| dev->pdr_uinfo = kcalloc(PPC4XX_NUM_PD, sizeof(struct pd_uinfo), |
| GFP_KERNEL); |
| if (!dev->pdr_uinfo) { |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct ce_pd) * PPC4XX_NUM_PD, |
| dev->pdr, |
| dev->pdr_pa); |
| return -ENOMEM; |
| } |
| memset(dev->pdr, 0, sizeof(struct ce_pd) * PPC4XX_NUM_PD); |
| dev->shadow_sa_pool = dma_alloc_coherent(dev->core_dev->device, |
| sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, |
| &dev->shadow_sa_pool_pa, |
| GFP_ATOMIC); |
| if (!dev->shadow_sa_pool) |
| return -ENOMEM; |
| |
| dev->shadow_sr_pool = dma_alloc_coherent(dev->core_dev->device, |
| sizeof(struct sa_state_record) * PPC4XX_NUM_PD, |
| &dev->shadow_sr_pool_pa, GFP_ATOMIC); |
| if (!dev->shadow_sr_pool) |
| return -ENOMEM; |
| for (i = 0; i < PPC4XX_NUM_PD; i++) { |
| struct ce_pd *pd = &dev->pdr[i]; |
| struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[i]; |
| |
| pd->sa = dev->shadow_sa_pool_pa + |
| sizeof(union shadow_sa_buf) * i; |
| |
| /* alloc 256 bytes which is enough for any kind of dynamic sa */ |
| pd_uinfo->sa_va = &dev->shadow_sa_pool[i].sa; |
| |
| /* alloc state record */ |
| pd_uinfo->sr_va = &dev->shadow_sr_pool[i]; |
| pd_uinfo->sr_pa = dev->shadow_sr_pool_pa + |
| sizeof(struct sa_state_record) * i; |
| } |
| |
| return 0; |
| } |
| |
| static void crypto4xx_destroy_pdr(struct crypto4xx_device *dev) |
| { |
| if (dev->pdr) |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct ce_pd) * PPC4XX_NUM_PD, |
| dev->pdr, dev->pdr_pa); |
| |
| if (dev->shadow_sa_pool) |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(union shadow_sa_buf) * PPC4XX_NUM_PD, |
| dev->shadow_sa_pool, dev->shadow_sa_pool_pa); |
| |
| if (dev->shadow_sr_pool) |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct sa_state_record) * PPC4XX_NUM_PD, |
| dev->shadow_sr_pool, dev->shadow_sr_pool_pa); |
| |
| kfree(dev->pdr_uinfo); |
| } |
| |
| static u32 crypto4xx_get_pd_from_pdr_nolock(struct crypto4xx_device *dev) |
| { |
| u32 retval; |
| u32 tmp; |
| |
| retval = dev->pdr_head; |
| tmp = (dev->pdr_head + 1) % PPC4XX_NUM_PD; |
| |
| if (tmp == dev->pdr_tail) |
| return ERING_WAS_FULL; |
| |
| dev->pdr_head = tmp; |
| |
| return retval; |
| } |
| |
| static u32 crypto4xx_put_pd_to_pdr(struct crypto4xx_device *dev, u32 idx) |
| { |
| struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; |
| u32 tail; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->core_dev->lock, flags); |
| pd_uinfo->state = PD_ENTRY_FREE; |
| |
| if (dev->pdr_tail != PPC4XX_LAST_PD) |
| dev->pdr_tail++; |
| else |
| dev->pdr_tail = 0; |
| tail = dev->pdr_tail; |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| |
| return tail; |
| } |
| |
| /** |
| * alloc memory for the gather ring |
| * no need to alloc buf for the ring |
| * gdr_tail, gdr_head and gdr_count are initialized by this function |
| */ |
| static u32 crypto4xx_build_gdr(struct crypto4xx_device *dev) |
| { |
| dev->gdr = dma_alloc_coherent(dev->core_dev->device, |
| sizeof(struct ce_gd) * PPC4XX_NUM_GD, |
| &dev->gdr_pa, GFP_ATOMIC); |
| if (!dev->gdr) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static inline void crypto4xx_destroy_gdr(struct crypto4xx_device *dev) |
| { |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct ce_gd) * PPC4XX_NUM_GD, |
| dev->gdr, dev->gdr_pa); |
| } |
| |
| /* |
| * when this function is called. |
| * preemption or interrupt must be disabled |
| */ |
| static u32 crypto4xx_get_n_gd(struct crypto4xx_device *dev, int n) |
| { |
| u32 retval; |
| u32 tmp; |
| |
| if (n >= PPC4XX_NUM_GD) |
| return ERING_WAS_FULL; |
| |
| retval = dev->gdr_head; |
| tmp = (dev->gdr_head + n) % PPC4XX_NUM_GD; |
| if (dev->gdr_head > dev->gdr_tail) { |
| if (tmp < dev->gdr_head && tmp >= dev->gdr_tail) |
| return ERING_WAS_FULL; |
| } else if (dev->gdr_head < dev->gdr_tail) { |
| if (tmp < dev->gdr_head || tmp >= dev->gdr_tail) |
| return ERING_WAS_FULL; |
| } |
| dev->gdr_head = tmp; |
| |
| return retval; |
| } |
| |
| static u32 crypto4xx_put_gd_to_gdr(struct crypto4xx_device *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->core_dev->lock, flags); |
| if (dev->gdr_tail == dev->gdr_head) { |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return 0; |
| } |
| |
| if (dev->gdr_tail != PPC4XX_LAST_GD) |
| dev->gdr_tail++; |
| else |
| dev->gdr_tail = 0; |
| |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| |
| return 0; |
| } |
| |
| static inline struct ce_gd *crypto4xx_get_gdp(struct crypto4xx_device *dev, |
| dma_addr_t *gd_dma, u32 idx) |
| { |
| *gd_dma = dev->gdr_pa + sizeof(struct ce_gd) * idx; |
| |
| return &dev->gdr[idx]; |
| } |
| |
| /** |
| * alloc memory for the scatter ring |
| * need to alloc buf for the ring |
| * sdr_tail, sdr_head and sdr_count are initialized by this function |
| */ |
| static u32 crypto4xx_build_sdr(struct crypto4xx_device *dev) |
| { |
| int i; |
| |
| /* alloc memory for scatter descriptor ring */ |
| dev->sdr = dma_alloc_coherent(dev->core_dev->device, |
| sizeof(struct ce_sd) * PPC4XX_NUM_SD, |
| &dev->sdr_pa, GFP_ATOMIC); |
| if (!dev->sdr) |
| return -ENOMEM; |
| |
| dev->scatter_buffer_va = |
| dma_alloc_coherent(dev->core_dev->device, |
| PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, |
| &dev->scatter_buffer_pa, GFP_ATOMIC); |
| if (!dev->scatter_buffer_va) { |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct ce_sd) * PPC4XX_NUM_SD, |
| dev->sdr, dev->sdr_pa); |
| return -ENOMEM; |
| } |
| |
| for (i = 0; i < PPC4XX_NUM_SD; i++) { |
| dev->sdr[i].ptr = dev->scatter_buffer_pa + |
| PPC4XX_SD_BUFFER_SIZE * i; |
| } |
| |
| return 0; |
| } |
| |
| static void crypto4xx_destroy_sdr(struct crypto4xx_device *dev) |
| { |
| if (dev->sdr) |
| dma_free_coherent(dev->core_dev->device, |
| sizeof(struct ce_sd) * PPC4XX_NUM_SD, |
| dev->sdr, dev->sdr_pa); |
| |
| if (dev->scatter_buffer_va) |
| dma_free_coherent(dev->core_dev->device, |
| PPC4XX_SD_BUFFER_SIZE * PPC4XX_NUM_SD, |
| dev->scatter_buffer_va, |
| dev->scatter_buffer_pa); |
| } |
| |
| /* |
| * when this function is called. |
| * preemption or interrupt must be disabled |
| */ |
| static u32 crypto4xx_get_n_sd(struct crypto4xx_device *dev, int n) |
| { |
| u32 retval; |
| u32 tmp; |
| |
| if (n >= PPC4XX_NUM_SD) |
| return ERING_WAS_FULL; |
| |
| retval = dev->sdr_head; |
| tmp = (dev->sdr_head + n) % PPC4XX_NUM_SD; |
| if (dev->sdr_head > dev->gdr_tail) { |
| if (tmp < dev->sdr_head && tmp >= dev->sdr_tail) |
| return ERING_WAS_FULL; |
| } else if (dev->sdr_head < dev->sdr_tail) { |
| if (tmp < dev->sdr_head || tmp >= dev->sdr_tail) |
| return ERING_WAS_FULL; |
| } /* the head = tail, or empty case is already take cared */ |
| dev->sdr_head = tmp; |
| |
| return retval; |
| } |
| |
| static u32 crypto4xx_put_sd_to_sdr(struct crypto4xx_device *dev) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->core_dev->lock, flags); |
| if (dev->sdr_tail == dev->sdr_head) { |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return 0; |
| } |
| if (dev->sdr_tail != PPC4XX_LAST_SD) |
| dev->sdr_tail++; |
| else |
| dev->sdr_tail = 0; |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| |
| return 0; |
| } |
| |
| static inline struct ce_sd *crypto4xx_get_sdp(struct crypto4xx_device *dev, |
| dma_addr_t *sd_dma, u32 idx) |
| { |
| *sd_dma = dev->sdr_pa + sizeof(struct ce_sd) * idx; |
| |
| return &dev->sdr[idx]; |
| } |
| |
| static void crypto4xx_copy_pkt_to_dst(struct crypto4xx_device *dev, |
| struct ce_pd *pd, |
| struct pd_uinfo *pd_uinfo, |
| u32 nbytes, |
| struct scatterlist *dst) |
| { |
| unsigned int first_sd = pd_uinfo->first_sd; |
| unsigned int last_sd; |
| unsigned int overflow = 0; |
| unsigned int to_copy; |
| unsigned int dst_start = 0; |
| |
| /* |
| * Because the scatter buffers are all neatly organized in one |
| * big continuous ringbuffer; scatterwalk_map_and_copy() can |
| * be instructed to copy a range of buffers in one go. |
| */ |
| |
| last_sd = (first_sd + pd_uinfo->num_sd); |
| if (last_sd > PPC4XX_LAST_SD) { |
| last_sd = PPC4XX_LAST_SD; |
| overflow = last_sd % PPC4XX_NUM_SD; |
| } |
| |
| while (nbytes) { |
| void *buf = dev->scatter_buffer_va + |
| first_sd * PPC4XX_SD_BUFFER_SIZE; |
| |
| to_copy = min(nbytes, PPC4XX_SD_BUFFER_SIZE * |
| (1 + last_sd - first_sd)); |
| scatterwalk_map_and_copy(buf, dst, dst_start, to_copy, 1); |
| nbytes -= to_copy; |
| |
| if (overflow) { |
| first_sd = 0; |
| last_sd = overflow; |
| dst_start += to_copy; |
| overflow = 0; |
| } |
| } |
| } |
| |
| static void crypto4xx_copy_digest_to_dst(void *dst, |
| struct pd_uinfo *pd_uinfo, |
| struct crypto4xx_ctx *ctx) |
| { |
| struct dynamic_sa_ctl *sa = (struct dynamic_sa_ctl *) ctx->sa_in; |
| |
| if (sa->sa_command_0.bf.hash_alg == SA_HASH_ALG_SHA1) { |
| memcpy(dst, pd_uinfo->sr_va->save_digest, |
| SA_HASH_ALG_SHA1_DIGEST_SIZE); |
| } |
| } |
| |
| static void crypto4xx_ret_sg_desc(struct crypto4xx_device *dev, |
| struct pd_uinfo *pd_uinfo) |
| { |
| int i; |
| if (pd_uinfo->num_gd) { |
| for (i = 0; i < pd_uinfo->num_gd; i++) |
| crypto4xx_put_gd_to_gdr(dev); |
| pd_uinfo->first_gd = 0xffffffff; |
| pd_uinfo->num_gd = 0; |
| } |
| if (pd_uinfo->num_sd) { |
| for (i = 0; i < pd_uinfo->num_sd; i++) |
| crypto4xx_put_sd_to_sdr(dev); |
| |
| pd_uinfo->first_sd = 0xffffffff; |
| pd_uinfo->num_sd = 0; |
| } |
| } |
| |
| static void crypto4xx_cipher_done(struct crypto4xx_device *dev, |
| struct pd_uinfo *pd_uinfo, |
| struct ce_pd *pd) |
| { |
| struct skcipher_request *req; |
| struct scatterlist *dst; |
| dma_addr_t addr; |
| |
| req = skcipher_request_cast(pd_uinfo->async_req); |
| |
| if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { |
| crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, |
| req->cryptlen, req->dst); |
| } else { |
| dst = pd_uinfo->dest_va; |
| addr = dma_map_page(dev->core_dev->device, sg_page(dst), |
| dst->offset, dst->length, DMA_FROM_DEVICE); |
| } |
| |
| if (pd_uinfo->sa_va->sa_command_0.bf.save_iv == SA_SAVE_IV) { |
| struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); |
| |
| crypto4xx_memcpy_from_le32((u32 *)req->iv, |
| pd_uinfo->sr_va->save_iv, |
| crypto_skcipher_ivsize(skcipher)); |
| } |
| |
| crypto4xx_ret_sg_desc(dev, pd_uinfo); |
| |
| if (pd_uinfo->state & PD_ENTRY_BUSY) |
| skcipher_request_complete(req, -EINPROGRESS); |
| skcipher_request_complete(req, 0); |
| } |
| |
| static void crypto4xx_ahash_done(struct crypto4xx_device *dev, |
| struct pd_uinfo *pd_uinfo) |
| { |
| struct crypto4xx_ctx *ctx; |
| struct ahash_request *ahash_req; |
| |
| ahash_req = ahash_request_cast(pd_uinfo->async_req); |
| ctx = crypto_tfm_ctx(ahash_req->base.tfm); |
| |
| crypto4xx_copy_digest_to_dst(ahash_req->result, pd_uinfo, |
| crypto_tfm_ctx(ahash_req->base.tfm)); |
| crypto4xx_ret_sg_desc(dev, pd_uinfo); |
| |
| if (pd_uinfo->state & PD_ENTRY_BUSY) |
| ahash_request_complete(ahash_req, -EINPROGRESS); |
| ahash_request_complete(ahash_req, 0); |
| } |
| |
| static void crypto4xx_aead_done(struct crypto4xx_device *dev, |
| struct pd_uinfo *pd_uinfo, |
| struct ce_pd *pd) |
| { |
| struct aead_request *aead_req = container_of(pd_uinfo->async_req, |
| struct aead_request, base); |
| struct scatterlist *dst = pd_uinfo->dest_va; |
| size_t cp_len = crypto_aead_authsize( |
| crypto_aead_reqtfm(aead_req)); |
| u32 icv[AES_BLOCK_SIZE]; |
| int err = 0; |
| |
| if (pd_uinfo->sa_va->sa_command_0.bf.scatter) { |
| crypto4xx_copy_pkt_to_dst(dev, pd, pd_uinfo, |
| pd->pd_ctl_len.bf.pkt_len, |
| dst); |
| } else { |
| dma_unmap_page(dev->core_dev->device, pd->dest, dst->length, |
| DMA_FROM_DEVICE); |
| } |
| |
| if (pd_uinfo->sa_va->sa_command_0.bf.dir == DIR_OUTBOUND) { |
| /* append icv at the end */ |
| crypto4xx_memcpy_from_le32(icv, pd_uinfo->sr_va->save_digest, |
| sizeof(icv)); |
| |
| scatterwalk_map_and_copy(icv, dst, aead_req->cryptlen, |
| cp_len, 1); |
| } else { |
| /* check icv at the end */ |
| scatterwalk_map_and_copy(icv, aead_req->src, |
| aead_req->assoclen + aead_req->cryptlen - |
| cp_len, cp_len, 0); |
| |
| crypto4xx_memcpy_from_le32(icv, icv, sizeof(icv)); |
| |
| if (crypto_memneq(icv, pd_uinfo->sr_va->save_digest, cp_len)) |
| err = -EBADMSG; |
| } |
| |
| crypto4xx_ret_sg_desc(dev, pd_uinfo); |
| |
| if (pd->pd_ctl.bf.status & 0xff) { |
| if (!__ratelimit(&dev->aead_ratelimit)) { |
| if (pd->pd_ctl.bf.status & 2) |
| pr_err("pad fail error\n"); |
| if (pd->pd_ctl.bf.status & 4) |
| pr_err("seqnum fail\n"); |
| if (pd->pd_ctl.bf.status & 8) |
| pr_err("error _notify\n"); |
| pr_err("aead return err status = 0x%02x\n", |
| pd->pd_ctl.bf.status & 0xff); |
| pr_err("pd pad_ctl = 0x%08x\n", |
| pd->pd_ctl.bf.pd_pad_ctl); |
| } |
| err = -EINVAL; |
| } |
| |
| if (pd_uinfo->state & PD_ENTRY_BUSY) |
| aead_request_complete(aead_req, -EINPROGRESS); |
| |
| aead_request_complete(aead_req, err); |
| } |
| |
| static void crypto4xx_pd_done(struct crypto4xx_device *dev, u32 idx) |
| { |
| struct ce_pd *pd = &dev->pdr[idx]; |
| struct pd_uinfo *pd_uinfo = &dev->pdr_uinfo[idx]; |
| |
| switch (crypto_tfm_alg_type(pd_uinfo->async_req->tfm)) { |
| case CRYPTO_ALG_TYPE_SKCIPHER: |
| crypto4xx_cipher_done(dev, pd_uinfo, pd); |
| break; |
| case CRYPTO_ALG_TYPE_AEAD: |
| crypto4xx_aead_done(dev, pd_uinfo, pd); |
| break; |
| case CRYPTO_ALG_TYPE_AHASH: |
| crypto4xx_ahash_done(dev, pd_uinfo); |
| break; |
| } |
| } |
| |
| static void crypto4xx_stop_all(struct crypto4xx_core_device *core_dev) |
| { |
| crypto4xx_destroy_pdr(core_dev->dev); |
| crypto4xx_destroy_gdr(core_dev->dev); |
| crypto4xx_destroy_sdr(core_dev->dev); |
| iounmap(core_dev->dev->ce_base); |
| kfree(core_dev->dev); |
| kfree(core_dev); |
| } |
| |
| static u32 get_next_gd(u32 current) |
| { |
| if (current != PPC4XX_LAST_GD) |
| return current + 1; |
| else |
| return 0; |
| } |
| |
| static u32 get_next_sd(u32 current) |
| { |
| if (current != PPC4XX_LAST_SD) |
| return current + 1; |
| else |
| return 0; |
| } |
| |
| int crypto4xx_build_pd(struct crypto_async_request *req, |
| struct crypto4xx_ctx *ctx, |
| struct scatterlist *src, |
| struct scatterlist *dst, |
| const unsigned int datalen, |
| const __le32 *iv, const u32 iv_len, |
| const struct dynamic_sa_ctl *req_sa, |
| const unsigned int sa_len, |
| const unsigned int assoclen, |
| struct scatterlist *_dst) |
| { |
| struct crypto4xx_device *dev = ctx->dev; |
| struct dynamic_sa_ctl *sa; |
| struct ce_gd *gd; |
| struct ce_pd *pd; |
| u32 num_gd, num_sd; |
| u32 fst_gd = 0xffffffff; |
| u32 fst_sd = 0xffffffff; |
| u32 pd_entry; |
| unsigned long flags; |
| struct pd_uinfo *pd_uinfo; |
| unsigned int nbytes = datalen; |
| size_t offset_to_sr_ptr; |
| u32 gd_idx = 0; |
| int tmp; |
| bool is_busy, force_sd; |
| |
| /* |
| * There's a very subtile/disguised "bug" in the hardware that |
| * gets indirectly mentioned in 18.1.3.5 Encryption/Decryption |
| * of the hardware spec: |
| * *drum roll* the AES/(T)DES OFB and CFB modes are listed as |
| * operation modes for >>> "Block ciphers" <<<. |
| * |
| * To workaround this issue and stop the hardware from causing |
| * "overran dst buffer" on crypttexts that are not a multiple |
| * of 16 (AES_BLOCK_SIZE), we force the driver to use the |
| * scatter buffers. |
| */ |
| force_sd = (req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_CFB |
| || req_sa->sa_command_1.bf.crypto_mode9_8 == CRYPTO_MODE_OFB) |
| && (datalen % AES_BLOCK_SIZE); |
| |
| /* figure how many gd are needed */ |
| tmp = sg_nents_for_len(src, assoclen + datalen); |
| if (tmp < 0) { |
| dev_err(dev->core_dev->device, "Invalid number of src SG.\n"); |
| return tmp; |
| } |
| if (tmp == 1) |
| tmp = 0; |
| num_gd = tmp; |
| |
| if (assoclen) { |
| nbytes += assoclen; |
| dst = scatterwalk_ffwd(_dst, dst, assoclen); |
| } |
| |
| /* figure how many sd are needed */ |
| if (sg_is_last(dst) && force_sd == false) { |
| num_sd = 0; |
| } else { |
| if (datalen > PPC4XX_SD_BUFFER_SIZE) { |
| num_sd = datalen / PPC4XX_SD_BUFFER_SIZE; |
| if (datalen % PPC4XX_SD_BUFFER_SIZE) |
| num_sd++; |
| } else { |
| num_sd = 1; |
| } |
| } |
| |
| /* |
| * The follow section of code needs to be protected |
| * The gather ring and scatter ring needs to be consecutive |
| * In case of run out of any kind of descriptor, the descriptor |
| * already got must be return the original place. |
| */ |
| spin_lock_irqsave(&dev->core_dev->lock, flags); |
| /* |
| * Let the caller know to slow down, once more than 13/16ths = 81% |
| * of the available data contexts are being used simultaneously. |
| * |
| * With PPC4XX_NUM_PD = 256, this will leave a "backlog queue" for |
| * 31 more contexts. Before new requests have to be rejected. |
| */ |
| if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG) { |
| is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= |
| ((PPC4XX_NUM_PD * 13) / 16); |
| } else { |
| /* |
| * To fix contention issues between ipsec (no blacklog) and |
| * dm-crypto (backlog) reserve 32 entries for "no backlog" |
| * data contexts. |
| */ |
| is_busy = ((dev->pdr_head - dev->pdr_tail) % PPC4XX_NUM_PD) >= |
| ((PPC4XX_NUM_PD * 15) / 16); |
| |
| if (is_busy) { |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return -EBUSY; |
| } |
| } |
| |
| if (num_gd) { |
| fst_gd = crypto4xx_get_n_gd(dev, num_gd); |
| if (fst_gd == ERING_WAS_FULL) { |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return -EAGAIN; |
| } |
| } |
| if (num_sd) { |
| fst_sd = crypto4xx_get_n_sd(dev, num_sd); |
| if (fst_sd == ERING_WAS_FULL) { |
| if (num_gd) |
| dev->gdr_head = fst_gd; |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return -EAGAIN; |
| } |
| } |
| pd_entry = crypto4xx_get_pd_from_pdr_nolock(dev); |
| if (pd_entry == ERING_WAS_FULL) { |
| if (num_gd) |
| dev->gdr_head = fst_gd; |
| if (num_sd) |
| dev->sdr_head = fst_sd; |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| return -EAGAIN; |
| } |
| spin_unlock_irqrestore(&dev->core_dev->lock, flags); |
| |
| pd = &dev->pdr[pd_entry]; |
| pd->sa_len = sa_len; |
| |
| pd_uinfo = &dev->pdr_uinfo[pd_entry]; |
| pd_uinfo->num_gd = num_gd; |
| pd_uinfo->num_sd = num_sd; |
| pd_uinfo->dest_va = dst; |
| pd_uinfo->async_req = req; |
| |
| if (iv_len) |
| memcpy(pd_uinfo->sr_va->save_iv, iv, iv_len); |
| |
| sa = pd_uinfo->sa_va; |
| memcpy(sa, req_sa, sa_len * 4); |
| |
| sa->sa_command_1.bf.hash_crypto_offset = (assoclen >> 2); |
| offset_to_sr_ptr = get_dynamic_sa_offset_state_ptr_field(sa); |
| *(u32 *)((unsigned long)sa + offset_to_sr_ptr) = pd_uinfo->sr_pa; |
| |
| if (num_gd) { |
| dma_addr_t gd_dma; |
| struct scatterlist *sg; |
| |
| /* get first gd we are going to use */ |
| gd_idx = fst_gd; |
| pd_uinfo->first_gd = fst_gd; |
| gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); |
| pd->src = gd_dma; |
| /* enable gather */ |
| sa->sa_command_0.bf.gather = 1; |
| /* walk the sg, and setup gather array */ |
| |
| sg = src; |
| while (nbytes) { |
| size_t len; |
| |
| len = min(sg->length, nbytes); |
| gd->ptr = dma_map_page(dev->core_dev->device, |
| sg_page(sg), sg->offset, len, DMA_TO_DEVICE); |
| gd->ctl_len.len = len; |
| gd->ctl_len.done = 0; |
| gd->ctl_len.ready = 1; |
| if (len >= nbytes) |
| break; |
| |
| nbytes -= sg->length; |
| gd_idx = get_next_gd(gd_idx); |
| gd = crypto4xx_get_gdp(dev, &gd_dma, gd_idx); |
| sg = sg_next(sg); |
| } |
| } else { |
| pd->src = (u32)dma_map_page(dev->core_dev->device, sg_page(src), |
| src->offset, min(nbytes, src->length), |
| DMA_TO_DEVICE); |
| /* |
| * Disable gather in sa command |
| */ |
| sa->sa_command_0.bf.gather = 0; |
| /* |
| * Indicate gather array is not used |
| */ |
| pd_uinfo->first_gd = 0xffffffff; |
| } |
| if (!num_sd) { |
| /* |
| * we know application give us dst a whole piece of memory |
| * no need to use scatter ring. |
| */ |
| pd_uinfo->first_sd = 0xffffffff; |
| sa->sa_command_0.bf.scatter = 0; |
| pd->dest = (u32)dma_map_page(dev->core_dev->device, |
| sg_page(dst), dst->offset, |
| min(datalen, dst->length), |
| DMA_TO_DEVICE); |
| } else { |
| dma_addr_t sd_dma; |
| struct ce_sd *sd = NULL; |
| |
| u32 sd_idx = fst_sd; |
| nbytes = datalen; |
| sa->sa_command_0.bf.scatter = 1; |
| pd_uinfo->first_sd = fst_sd; |
| sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); |
| pd->dest = sd_dma; |
| /* setup scatter descriptor */ |
| sd->ctl.done = 0; |
| sd->ctl.rdy = 1; |
| /* sd->ptr should be setup by sd_init routine*/ |
| if (nbytes >= PPC4XX_SD_BUFFER_SIZE) |
| nbytes -= PPC4XX_SD_BUFFER_SIZE; |
| else |
| nbytes = 0; |
| while (nbytes) { |
| sd_idx = get_next_sd(sd_idx); |
| sd = crypto4xx_get_sdp(dev, &sd_dma, sd_idx); |
| /* setup scatter descriptor */ |
| sd->ctl.done = 0; |
| sd->ctl.rdy = 1; |
| if (nbytes >= PPC4XX_SD_BUFFER_SIZE) { |
| nbytes -= PPC4XX_SD_BUFFER_SIZE; |
| } else { |
| /* |
| * SD entry can hold PPC4XX_SD_BUFFER_SIZE, |
| * which is more than nbytes, so done. |
| */ |
| nbytes = 0; |
| } |
| } |
| } |
| |
| pd->pd_ctl.w = PD_CTL_HOST_READY | |
| ((crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AHASH) | |
| (crypto_tfm_alg_type(req->tfm) == CRYPTO_ALG_TYPE_AEAD) ? |
| PD_CTL_HASH_FINAL : 0); |
| pd->pd_ctl_len.w = 0x00400000 | (assoclen + datalen); |
| pd_uinfo->state = PD_ENTRY_INUSE | (is_busy ? PD_ENTRY_BUSY : 0); |
| |
| wmb(); |
| /* write any value to push engine to read a pd */ |
| writel(0, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); |
| writel(1, dev->ce_base + CRYPTO4XX_INT_DESCR_RD); |
| return is_busy ? -EBUSY : -EINPROGRESS; |
| } |
| |
| /** |
| * Algorithm Registration Functions |
| */ |
| static void crypto4xx_ctx_init(struct crypto4xx_alg *amcc_alg, |
| struct crypto4xx_ctx *ctx) |
| { |
| ctx->dev = amcc_alg->dev; |
| ctx->sa_in = NULL; |
| ctx->sa_out = NULL; |
| ctx->sa_len = 0; |
| } |
| |
| static int crypto4xx_sk_init(struct crypto_skcipher *sk) |
| { |
| struct skcipher_alg *alg = crypto_skcipher_alg(sk); |
| struct crypto4xx_alg *amcc_alg; |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); |
| |
| if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) { |
| ctx->sw_cipher.cipher = |
| crypto_alloc_sync_skcipher(alg->base.cra_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK); |
| if (IS_ERR(ctx->sw_cipher.cipher)) |
| return PTR_ERR(ctx->sw_cipher.cipher); |
| } |
| |
| amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.cipher); |
| crypto4xx_ctx_init(amcc_alg, ctx); |
| return 0; |
| } |
| |
| static void crypto4xx_common_exit(struct crypto4xx_ctx *ctx) |
| { |
| crypto4xx_free_sa(ctx); |
| } |
| |
| static void crypto4xx_sk_exit(struct crypto_skcipher *sk) |
| { |
| struct crypto4xx_ctx *ctx = crypto_skcipher_ctx(sk); |
| |
| crypto4xx_common_exit(ctx); |
| if (ctx->sw_cipher.cipher) |
| crypto_free_sync_skcipher(ctx->sw_cipher.cipher); |
| } |
| |
| static int crypto4xx_aead_init(struct crypto_aead *tfm) |
| { |
| struct aead_alg *alg = crypto_aead_alg(tfm); |
| struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); |
| struct crypto4xx_alg *amcc_alg; |
| |
| ctx->sw_cipher.aead = crypto_alloc_aead(alg->base.cra_name, 0, |
| CRYPTO_ALG_NEED_FALLBACK | |
| CRYPTO_ALG_ASYNC); |
| if (IS_ERR(ctx->sw_cipher.aead)) |
| return PTR_ERR(ctx->sw_cipher.aead); |
| |
| amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.aead); |
| crypto4xx_ctx_init(amcc_alg, ctx); |
| crypto_aead_set_reqsize(tfm, max(sizeof(struct aead_request) + 32 + |
| crypto_aead_reqsize(ctx->sw_cipher.aead), |
| sizeof(struct crypto4xx_aead_reqctx))); |
| return 0; |
| } |
| |
| static void crypto4xx_aead_exit(struct crypto_aead *tfm) |
| { |
| struct crypto4xx_ctx *ctx = crypto_aead_ctx(tfm); |
| |
| crypto4xx_common_exit(ctx); |
| crypto_free_aead(ctx->sw_cipher.aead); |
| } |
| |
| static int crypto4xx_register_alg(struct crypto4xx_device *sec_dev, |
| struct crypto4xx_alg_common *crypto_alg, |
| int array_size) |
| { |
| struct crypto4xx_alg *alg; |
| int i; |
| int rc = 0; |
| |
| for (i = 0; i < array_size; i++) { |
| alg = kzalloc(sizeof(struct crypto4xx_alg), GFP_KERNEL); |
| if (!alg) |
| return -ENOMEM; |
| |
| alg->alg = crypto_alg[i]; |
| alg->dev = sec_dev; |
| |
| switch (alg->alg.type) { |
| case CRYPTO_ALG_TYPE_AEAD: |
| rc = crypto_register_aead(&alg->alg.u.aead); |
| break; |
| |
| case CRYPTO_ALG_TYPE_AHASH: |
| rc = crypto_register_ahash(&alg->alg.u.hash); |
| break; |
| |
| case CRYPTO_ALG_TYPE_RNG: |
| rc = crypto_register_rng(&alg->alg.u.rng); |
| break; |
| |
| default: |
| rc = crypto_register_skcipher(&alg->alg.u.cipher); |
| break; |
| } |
| |
| if (rc) |
| kfree(alg); |
| else |
| list_add_tail(&alg->entry, &sec_dev->alg_list); |
| } |
| |
| return 0; |
| } |
| |
| static void crypto4xx_unregister_alg(struct crypto4xx_device *sec_dev) |
| { |
| struct crypto4xx_alg *alg, *tmp; |
| |
| list_for_each_entry_safe(alg, tmp, &sec_dev->alg_list, entry) { |
| list_del(&alg->entry); |
| switch (alg->alg.type) { |
| case CRYPTO_ALG_TYPE_AHASH: |
| crypto_unregister_ahash(&alg->alg.u.hash); |
| break; |
| |
| case CRYPTO_ALG_TYPE_AEAD: |
| crypto_unregister_aead(&alg->alg.u.aead); |
| break; |
| |
| case CRYPTO_ALG_TYPE_RNG: |
| crypto_unregister_rng(&alg->alg.u.rng); |
| break; |
| |
| default: |
| crypto_unregister_skcipher(&alg->alg.u.cipher); |
| } |
| kfree(alg); |
| } |
| } |
| |
| static void crypto4xx_bh_tasklet_cb(unsigned long data) |
| { |
| struct device *dev = (struct device *)data; |
| struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); |
| struct pd_uinfo *pd_uinfo; |
| struct ce_pd *pd; |
| u32 tail = core_dev->dev->pdr_tail; |
| u32 head = core_dev->dev->pdr_head; |
| |
| do { |
| pd_uinfo = &core_dev->dev->pdr_uinfo[tail]; |
| pd = &core_dev->dev->pdr[tail]; |
| if ((pd_uinfo->state & PD_ENTRY_INUSE) && |
| ((READ_ONCE(pd->pd_ctl.w) & |
| (PD_CTL_PE_DONE | PD_CTL_HOST_READY)) == |
| PD_CTL_PE_DONE)) { |
| crypto4xx_pd_done(core_dev->dev, tail); |
| tail = crypto4xx_put_pd_to_pdr(core_dev->dev, tail); |
| } else { |
| /* if tail not done, break */ |
| break; |
| } |
| } while (head != tail); |
| } |
| |
| /** |
| * Top Half of isr. |
| */ |
| static inline irqreturn_t crypto4xx_interrupt_handler(int irq, void *data, |
| u32 clr_val) |
| { |
| struct device *dev = (struct device *)data; |
| struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); |
| |
| writel(clr_val, core_dev->dev->ce_base + CRYPTO4XX_INT_CLR); |
| tasklet_schedule(&core_dev->tasklet); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t crypto4xx_ce_interrupt_handler(int irq, void *data) |
| { |
| return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR); |
| } |
| |
| static irqreturn_t crypto4xx_ce_interrupt_handler_revb(int irq, void *data) |
| { |
| return crypto4xx_interrupt_handler(irq, data, PPC4XX_INTERRUPT_CLR | |
| PPC4XX_TMO_ERR_INT); |
| } |
| |
| static int ppc4xx_prng_data_read(struct crypto4xx_device *dev, |
| u8 *data, unsigned int max) |
| { |
| unsigned int i, curr = 0; |
| u32 val[2]; |
| |
| do { |
| /* trigger PRN generation */ |
| writel(PPC4XX_PRNG_CTRL_AUTO_EN, |
| dev->ce_base + CRYPTO4XX_PRNG_CTRL); |
| |
| for (i = 0; i < 1024; i++) { |
| /* usually 19 iterations are enough */ |
| if ((readl(dev->ce_base + CRYPTO4XX_PRNG_STAT) & |
| CRYPTO4XX_PRNG_STAT_BUSY)) |
| continue; |
| |
| val[0] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_0); |
| val[1] = readl_be(dev->ce_base + CRYPTO4XX_PRNG_RES_1); |
| break; |
| } |
| if (i == 1024) |
| return -ETIMEDOUT; |
| |
| if ((max - curr) >= 8) { |
| memcpy(data, &val, 8); |
| data += 8; |
| curr += 8; |
| } else { |
| /* copy only remaining bytes */ |
| memcpy(data, &val, max - curr); |
| break; |
| } |
| } while (curr < max); |
| |
| return curr; |
| } |
| |
| static int crypto4xx_prng_generate(struct crypto_rng *tfm, |
| const u8 *src, unsigned int slen, |
| u8 *dstn, unsigned int dlen) |
| { |
| struct rng_alg *alg = crypto_rng_alg(tfm); |
| struct crypto4xx_alg *amcc_alg; |
| struct crypto4xx_device *dev; |
| int ret; |
| |
| amcc_alg = container_of(alg, struct crypto4xx_alg, alg.u.rng); |
| dev = amcc_alg->dev; |
| |
| mutex_lock(&dev->core_dev->rng_lock); |
| ret = ppc4xx_prng_data_read(dev, dstn, dlen); |
| mutex_unlock(&dev->core_dev->rng_lock); |
| return ret; |
| } |
| |
| |
| static int crypto4xx_prng_seed(struct crypto_rng *tfm, const u8 *seed, |
| unsigned int slen) |
| { |
| return 0; |
| } |
| |
| /** |
| * Supported Crypto Algorithms |
| */ |
| static struct crypto4xx_alg_common crypto4xx_alg[] = { |
| /* Crypto AES modes */ |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_IV_SIZE, |
| .setkey = crypto4xx_setkey_aes_cbc, |
| .encrypt = crypto4xx_encrypt_iv, |
| .decrypt = crypto4xx_decrypt_iv, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "cfb(aes)", |
| .cra_driver_name = "cfb-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_IV_SIZE, |
| .setkey = crypto4xx_setkey_aes_cfb, |
| .encrypt = crypto4xx_encrypt_iv, |
| .decrypt = crypto4xx_decrypt_iv, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "ctr(aes)", |
| .cra_driver_name = "ctr-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_NEED_FALLBACK | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_IV_SIZE, |
| .setkey = crypto4xx_setkey_aes_ctr, |
| .encrypt = crypto4xx_encrypt_ctr, |
| .decrypt = crypto4xx_decrypt_ctr, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "rfc3686(ctr(aes))", |
| .cra_driver_name = "rfc3686-ctr-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, |
| .ivsize = CTR_RFC3686_IV_SIZE, |
| .setkey = crypto4xx_setkey_rfc3686, |
| .encrypt = crypto4xx_rfc3686_encrypt, |
| .decrypt = crypto4xx_rfc3686_decrypt, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = crypto4xx_setkey_aes_ecb, |
| .encrypt = crypto4xx_encrypt_noiv, |
| .decrypt = crypto4xx_decrypt_noiv, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_SKCIPHER, .u.cipher = { |
| .base = { |
| .cra_name = "ofb(aes)", |
| .cra_driver_name = "ofb-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_IV_SIZE, |
| .setkey = crypto4xx_setkey_aes_ofb, |
| .encrypt = crypto4xx_encrypt_iv, |
| .decrypt = crypto4xx_decrypt_iv, |
| .init = crypto4xx_sk_init, |
| .exit = crypto4xx_sk_exit, |
| } }, |
| |
| /* AEAD */ |
| { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { |
| .setkey = crypto4xx_setkey_aes_ccm, |
| .setauthsize = crypto4xx_setauthsize_aead, |
| .encrypt = crypto4xx_encrypt_aes_ccm, |
| .decrypt = crypto4xx_decrypt_aes_ccm, |
| .init = crypto4xx_aead_init, |
| .exit = crypto4xx_aead_exit, |
| .ivsize = AES_BLOCK_SIZE, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "ccm(aes)", |
| .cra_driver_name = "ccm-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_AEAD, .u.aead = { |
| .setkey = crypto4xx_setkey_aes_gcm, |
| .setauthsize = crypto4xx_setauthsize_aead, |
| .encrypt = crypto4xx_encrypt_aes_gcm, |
| .decrypt = crypto4xx_decrypt_aes_gcm, |
| .init = crypto4xx_aead_init, |
| .exit = crypto4xx_aead_exit, |
| .ivsize = GCM_AES_IV_SIZE, |
| .maxauthsize = 16, |
| .base = { |
| .cra_name = "gcm(aes)", |
| .cra_driver_name = "gcm-aes-ppc4xx", |
| .cra_priority = CRYPTO4XX_CRYPTO_PRIORITY, |
| .cra_flags = CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK | |
| CRYPTO_ALG_KERN_DRIVER_ONLY, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct crypto4xx_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| } }, |
| { .type = CRYPTO_ALG_TYPE_RNG, .u.rng = { |
| .base = { |
| .cra_name = "stdrng", |
| .cra_driver_name = "crypto4xx_rng", |
| .cra_priority = 300, |
| .cra_ctxsize = 0, |
| .cra_module = THIS_MODULE, |
| }, |
| .generate = crypto4xx_prng_generate, |
| .seed = crypto4xx_prng_seed, |
| .seedsize = 0, |
| } }, |
| }; |
| |
| /** |
| * Module Initialization Routine |
| */ |
| static int crypto4xx_probe(struct platform_device *ofdev) |
| { |
| int rc; |
| struct resource res; |
| struct device *dev = &ofdev->dev; |
| struct crypto4xx_core_device *core_dev; |
| u32 pvr; |
| bool is_revb = true; |
| |
| rc = of_address_to_resource(ofdev->dev.of_node, 0, &res); |
| if (rc) |
| return -ENODEV; |
| |
| if (of_find_compatible_node(NULL, NULL, "amcc,ppc460ex-crypto")) { |
| mtdcri(SDR0, PPC460EX_SDR0_SRST, |
| mfdcri(SDR0, PPC460EX_SDR0_SRST) | PPC460EX_CE_RESET); |
| mtdcri(SDR0, PPC460EX_SDR0_SRST, |
| mfdcri(SDR0, PPC460EX_SDR0_SRST) & ~PPC460EX_CE_RESET); |
| } else if (of_find_compatible_node(NULL, NULL, |
| "amcc,ppc405ex-crypto")) { |
| mtdcri(SDR0, PPC405EX_SDR0_SRST, |
| mfdcri(SDR0, PPC405EX_SDR0_SRST) | PPC405EX_CE_RESET); |
| mtdcri(SDR0, PPC405EX_SDR0_SRST, |
| mfdcri(SDR0, PPC405EX_SDR0_SRST) & ~PPC405EX_CE_RESET); |
| is_revb = false; |
| } else if (of_find_compatible_node(NULL, NULL, |
| "amcc,ppc460sx-crypto")) { |
| mtdcri(SDR0, PPC460SX_SDR0_SRST, |
| mfdcri(SDR0, PPC460SX_SDR0_SRST) | PPC460SX_CE_RESET); |
| mtdcri(SDR0, PPC460SX_SDR0_SRST, |
| mfdcri(SDR0, PPC460SX_SDR0_SRST) & ~PPC460SX_CE_RESET); |
| } else { |
| printk(KERN_ERR "Crypto Function Not supported!\n"); |
| return -EINVAL; |
| } |
| |
| core_dev = kzalloc(sizeof(struct crypto4xx_core_device), GFP_KERNEL); |
| if (!core_dev) |
| return -ENOMEM; |
| |
| dev_set_drvdata(dev, core_dev); |
| core_dev->ofdev = ofdev; |
| core_dev->dev = kzalloc(sizeof(struct crypto4xx_device), GFP_KERNEL); |
| rc = -ENOMEM; |
| if (!core_dev->dev) |
| goto err_alloc_dev; |
| |
| /* |
| * Older version of 460EX/GT have a hardware bug. |
| * Hence they do not support H/W based security intr coalescing |
| */ |
| pvr = mfspr(SPRN_PVR); |
| if (is_revb && ((pvr >> 4) == 0x130218A)) { |
| u32 min = PVR_MIN(pvr); |
| |
| if (min < 4) { |
| dev_info(dev, "RevA detected - disable interrupt coalescing\n"); |
| is_revb = false; |
| } |
| } |
| |
| core_dev->dev->core_dev = core_dev; |
| core_dev->dev->is_revb = is_revb; |
| core_dev->device = dev; |
| mutex_init(&core_dev->rng_lock); |
| spin_lock_init(&core_dev->lock); |
| INIT_LIST_HEAD(&core_dev->dev->alg_list); |
| ratelimit_default_init(&core_dev->dev->aead_ratelimit); |
| rc = crypto4xx_build_pdr(core_dev->dev); |
| if (rc) |
| goto err_build_pdr; |
| |
| rc = crypto4xx_build_gdr(core_dev->dev); |
| if (rc) |
| goto err_build_pdr; |
| |
| rc = crypto4xx_build_sdr(core_dev->dev); |
| if (rc) |
| goto err_build_sdr; |
| |
| /* Init tasklet for bottom half processing */ |
| tasklet_init(&core_dev->tasklet, crypto4xx_bh_tasklet_cb, |
| (unsigned long) dev); |
| |
| core_dev->dev->ce_base = of_iomap(ofdev->dev.of_node, 0); |
| if (!core_dev->dev->ce_base) { |
| dev_err(dev, "failed to of_iomap\n"); |
| rc = -ENOMEM; |
| goto err_iomap; |
| } |
| |
| /* Register for Crypto isr, Crypto Engine IRQ */ |
| core_dev->irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); |
| rc = request_irq(core_dev->irq, is_revb ? |
| crypto4xx_ce_interrupt_handler_revb : |
| crypto4xx_ce_interrupt_handler, 0, |
| KBUILD_MODNAME, dev); |
| if (rc) |
| goto err_request_irq; |
| |
| /* need to setup pdr, rdr, gdr and sdr before this */ |
| crypto4xx_hw_init(core_dev->dev); |
| |
| /* Register security algorithms with Linux CryptoAPI */ |
| rc = crypto4xx_register_alg(core_dev->dev, crypto4xx_alg, |
| ARRAY_SIZE(crypto4xx_alg)); |
| if (rc) |
| goto err_start_dev; |
| |
| ppc4xx_trng_probe(core_dev); |
| return 0; |
| |
| err_start_dev: |
| free_irq(core_dev->irq, dev); |
| err_request_irq: |
| irq_dispose_mapping(core_dev->irq); |
| iounmap(core_dev->dev->ce_base); |
| err_iomap: |
| tasklet_kill(&core_dev->tasklet); |
| err_build_sdr: |
| crypto4xx_destroy_sdr(core_dev->dev); |
| crypto4xx_destroy_gdr(core_dev->dev); |
| err_build_pdr: |
| crypto4xx_destroy_pdr(core_dev->dev); |
| kfree(core_dev->dev); |
| err_alloc_dev: |
| kfree(core_dev); |
| |
| return rc; |
| } |
| |
| static int crypto4xx_remove(struct platform_device *ofdev) |
| { |
| struct device *dev = &ofdev->dev; |
| struct crypto4xx_core_device *core_dev = dev_get_drvdata(dev); |
| |
| ppc4xx_trng_remove(core_dev); |
| |
| free_irq(core_dev->irq, dev); |
| irq_dispose_mapping(core_dev->irq); |
| |
| tasklet_kill(&core_dev->tasklet); |
| /* Un-register with Linux CryptoAPI */ |
| crypto4xx_unregister_alg(core_dev->dev); |
| mutex_destroy(&core_dev->rng_lock); |
| /* Free all allocated memory */ |
| crypto4xx_stop_all(core_dev); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id crypto4xx_match[] = { |
| { .compatible = "amcc,ppc4xx-crypto",}, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, crypto4xx_match); |
| |
| static struct platform_driver crypto4xx_driver = { |
| .driver = { |
| .name = KBUILD_MODNAME, |
| .of_match_table = crypto4xx_match, |
| }, |
| .probe = crypto4xx_probe, |
| .remove = crypto4xx_remove, |
| }; |
| |
| module_platform_driver(crypto4xx_driver); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("James Hsiao <jhsiao@amcc.com>"); |
| MODULE_DESCRIPTION("Driver for AMCC PPC4xx crypto accelerator"); |