| #ifndef IOU_CORE_H |
| #define IOU_CORE_H |
| |
| #include <linux/errno.h> |
| #include <linux/lockdep.h> |
| #include <linux/resume_user_mode.h> |
| #include <linux/kasan.h> |
| #include <linux/poll.h> |
| #include <linux/io_uring_types.h> |
| #include <uapi/linux/eventpoll.h> |
| #include "io-wq.h" |
| #include "slist.h" |
| #include "filetable.h" |
| |
| #ifndef CREATE_TRACE_POINTS |
| #include <trace/events/io_uring.h> |
| #endif |
| |
| enum { |
| IOU_OK = 0, |
| IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED, |
| |
| /* |
| * Requeue the task_work to restart operations on this request. The |
| * actual value isn't important, should just be not an otherwise |
| * valid error code, yet less than -MAX_ERRNO and valid internally. |
| */ |
| IOU_REQUEUE = -3072, |
| |
| /* |
| * Intended only when both IO_URING_F_MULTISHOT is passed |
| * to indicate to the poll runner that multishot should be |
| * removed and the result is set on req->cqe.res. |
| */ |
| IOU_STOP_MULTISHOT = -ECANCELED, |
| }; |
| |
| struct io_wait_queue { |
| struct wait_queue_entry wq; |
| struct io_ring_ctx *ctx; |
| unsigned cq_tail; |
| unsigned cq_min_tail; |
| unsigned nr_timeouts; |
| int hit_timeout; |
| ktime_t min_timeout; |
| ktime_t timeout; |
| struct hrtimer t; |
| |
| #ifdef CONFIG_NET_RX_BUSY_POLL |
| ktime_t napi_busy_poll_dt; |
| bool napi_prefer_busy_poll; |
| #endif |
| }; |
| |
| static inline bool io_should_wake(struct io_wait_queue *iowq) |
| { |
| struct io_ring_ctx *ctx = iowq->ctx; |
| int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail; |
| |
| /* |
| * Wake up if we have enough events, or if a timeout occurred since we |
| * started waiting. For timeouts, we always want to return to userspace, |
| * regardless of event count. |
| */ |
| return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts; |
| } |
| |
| #define IORING_MAX_ENTRIES 32768 |
| #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES) |
| |
| unsigned long rings_size(unsigned int flags, unsigned int sq_entries, |
| unsigned int cq_entries, size_t *sq_offset); |
| int io_uring_fill_params(unsigned entries, struct io_uring_params *p); |
| bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow); |
| int io_run_task_work_sig(struct io_ring_ctx *ctx); |
| void io_req_defer_failed(struct io_kiocb *req, s32 res); |
| bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); |
| void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags); |
| bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags); |
| void __io_commit_cqring_flush(struct io_ring_ctx *ctx); |
| |
| struct file *io_file_get_normal(struct io_kiocb *req, int fd); |
| struct file *io_file_get_fixed(struct io_kiocb *req, int fd, |
| unsigned issue_flags); |
| |
| void __io_req_task_work_add(struct io_kiocb *req, unsigned flags); |
| void io_req_task_work_add_remote(struct io_kiocb *req, struct io_ring_ctx *ctx, |
| unsigned flags); |
| bool io_alloc_async_data(struct io_kiocb *req); |
| void io_req_task_queue(struct io_kiocb *req); |
| void io_req_task_complete(struct io_kiocb *req, struct io_tw_state *ts); |
| void io_req_task_queue_fail(struct io_kiocb *req, int ret); |
| void io_req_task_submit(struct io_kiocb *req, struct io_tw_state *ts); |
| struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries); |
| struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count); |
| void tctx_task_work(struct callback_head *cb); |
| __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd); |
| int io_uring_alloc_task_context(struct task_struct *task, |
| struct io_ring_ctx *ctx); |
| |
| int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file, |
| int start, int end); |
| void io_req_queue_iowq(struct io_kiocb *req); |
| |
| int io_poll_issue(struct io_kiocb *req, struct io_tw_state *ts); |
| int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr); |
| int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin); |
| void __io_submit_flush_completions(struct io_ring_ctx *ctx); |
| |
| struct io_wq_work *io_wq_free_work(struct io_wq_work *work); |
| void io_wq_submit_work(struct io_wq_work *work); |
| |
| void io_free_req(struct io_kiocb *req); |
| void io_queue_next(struct io_kiocb *req); |
| void io_task_refs_refill(struct io_uring_task *tctx); |
| bool __io_alloc_req_refill(struct io_ring_ctx *ctx); |
| |
| bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx, |
| bool cancel_all); |
| |
| void io_activate_pollwq(struct io_ring_ctx *ctx); |
| |
| static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx) |
| { |
| #if defined(CONFIG_PROVE_LOCKING) |
| lockdep_assert(in_task()); |
| |
| if (ctx->flags & IORING_SETUP_IOPOLL) { |
| lockdep_assert_held(&ctx->uring_lock); |
| } else if (!ctx->task_complete) { |
| lockdep_assert_held(&ctx->completion_lock); |
| } else if (ctx->submitter_task) { |
| /* |
| * ->submitter_task may be NULL and we can still post a CQE, |
| * if the ring has been setup with IORING_SETUP_R_DISABLED. |
| * Not from an SQE, as those cannot be submitted, but via |
| * updating tagged resources. |
| */ |
| if (percpu_ref_is_dying(&ctx->refs)) |
| lockdep_assert(current_work()); |
| else |
| lockdep_assert(current == ctx->submitter_task); |
| } |
| #endif |
| } |
| |
| static inline void io_req_task_work_add(struct io_kiocb *req) |
| { |
| __io_req_task_work_add(req, 0); |
| } |
| |
| static inline void io_submit_flush_completions(struct io_ring_ctx *ctx) |
| { |
| if (!wq_list_empty(&ctx->submit_state.compl_reqs) || |
| ctx->submit_state.cq_flush) |
| __io_submit_flush_completions(ctx); |
| } |
| |
| #define io_for_each_link(pos, head) \ |
| for (pos = (head); pos; pos = pos->link) |
| |
| static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx, |
| struct io_uring_cqe **ret, |
| bool overflow) |
| { |
| io_lockdep_assert_cq_locked(ctx); |
| |
| if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) { |
| if (unlikely(!io_cqe_cache_refill(ctx, overflow))) |
| return false; |
| } |
| *ret = ctx->cqe_cached; |
| ctx->cached_cq_tail++; |
| ctx->cqe_cached++; |
| if (ctx->flags & IORING_SETUP_CQE32) |
| ctx->cqe_cached++; |
| return true; |
| } |
| |
| static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret) |
| { |
| return io_get_cqe_overflow(ctx, ret, false); |
| } |
| |
| static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx, |
| struct io_kiocb *req) |
| { |
| struct io_uring_cqe *cqe; |
| |
| /* |
| * If we can't get a cq entry, userspace overflowed the |
| * submission (by quite a lot). Increment the overflow count in |
| * the ring. |
| */ |
| if (unlikely(!io_get_cqe(ctx, &cqe))) |
| return false; |
| |
| |
| memcpy(cqe, &req->cqe, sizeof(*cqe)); |
| if (ctx->flags & IORING_SETUP_CQE32) { |
| memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe)); |
| memset(&req->big_cqe, 0, sizeof(req->big_cqe)); |
| } |
| |
| if (trace_io_uring_complete_enabled()) |
| trace_io_uring_complete(req->ctx, req, cqe); |
| return true; |
| } |
| |
| static inline void req_set_fail(struct io_kiocb *req) |
| { |
| req->flags |= REQ_F_FAIL; |
| if (req->flags & REQ_F_CQE_SKIP) { |
| req->flags &= ~REQ_F_CQE_SKIP; |
| req->flags |= REQ_F_SKIP_LINK_CQES; |
| } |
| } |
| |
| static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags) |
| { |
| req->cqe.res = res; |
| req->cqe.flags = cflags; |
| } |
| |
| static inline bool req_has_async_data(struct io_kiocb *req) |
| { |
| return req->flags & REQ_F_ASYNC_DATA; |
| } |
| |
| static inline void io_put_file(struct io_kiocb *req) |
| { |
| if (!(req->flags & REQ_F_FIXED_FILE) && req->file) |
| fput(req->file); |
| } |
| |
| static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx, |
| unsigned issue_flags) |
| { |
| lockdep_assert_held(&ctx->uring_lock); |
| if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) |
| mutex_unlock(&ctx->uring_lock); |
| } |
| |
| static inline void io_ring_submit_lock(struct io_ring_ctx *ctx, |
| unsigned issue_flags) |
| { |
| /* |
| * "Normal" inline submissions always hold the uring_lock, since we |
| * grab it from the system call. Same is true for the SQPOLL offload. |
| * The only exception is when we've detached the request and issue it |
| * from an async worker thread, grab the lock for that case. |
| */ |
| if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) |
| mutex_lock(&ctx->uring_lock); |
| lockdep_assert_held(&ctx->uring_lock); |
| } |
| |
| static inline void io_commit_cqring(struct io_ring_ctx *ctx) |
| { |
| /* order cqe stores with ring update */ |
| smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail); |
| } |
| |
| static inline void io_poll_wq_wake(struct io_ring_ctx *ctx) |
| { |
| if (wq_has_sleeper(&ctx->poll_wq)) |
| __wake_up(&ctx->poll_wq, TASK_NORMAL, 0, |
| poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); |
| } |
| |
| static inline void io_cqring_wake(struct io_ring_ctx *ctx) |
| { |
| /* |
| * Trigger waitqueue handler on all waiters on our waitqueue. This |
| * won't necessarily wake up all the tasks, io_should_wake() will make |
| * that decision. |
| * |
| * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter |
| * set in the mask so that if we recurse back into our own poll |
| * waitqueue handlers, we know we have a dependency between eventfd or |
| * epoll and should terminate multishot poll at that point. |
| */ |
| if (wq_has_sleeper(&ctx->cq_wait)) |
| __wake_up(&ctx->cq_wait, TASK_NORMAL, 0, |
| poll_to_key(EPOLL_URING_WAKE | EPOLLIN)); |
| } |
| |
| static inline bool io_sqring_full(struct io_ring_ctx *ctx) |
| { |
| struct io_rings *r = ctx->rings; |
| |
| /* |
| * SQPOLL must use the actual sqring head, as using the cached_sq_head |
| * is race prone if the SQPOLL thread has grabbed entries but not yet |
| * committed them to the ring. For !SQPOLL, this doesn't matter, but |
| * since this helper is just used for SQPOLL sqring waits (or POLLOUT), |
| * just read the actual sqring head unconditionally. |
| */ |
| return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries; |
| } |
| |
| static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx) |
| { |
| struct io_rings *rings = ctx->rings; |
| unsigned int entries; |
| |
| /* make sure SQ entry isn't read before tail */ |
| entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head; |
| return min(entries, ctx->sq_entries); |
| } |
| |
| static inline int io_run_task_work(void) |
| { |
| bool ret = false; |
| |
| /* |
| * Always check-and-clear the task_work notification signal. With how |
| * signaling works for task_work, we can find it set with nothing to |
| * run. We need to clear it for that case, like get_signal() does. |
| */ |
| if (test_thread_flag(TIF_NOTIFY_SIGNAL)) |
| clear_notify_signal(); |
| /* |
| * PF_IO_WORKER never returns to userspace, so check here if we have |
| * notify work that needs processing. |
| */ |
| if (current->flags & PF_IO_WORKER) { |
| if (test_thread_flag(TIF_NOTIFY_RESUME)) { |
| __set_current_state(TASK_RUNNING); |
| resume_user_mode_work(NULL); |
| } |
| if (current->io_uring) { |
| unsigned int count = 0; |
| |
| __set_current_state(TASK_RUNNING); |
| tctx_task_work_run(current->io_uring, UINT_MAX, &count); |
| if (count) |
| ret = true; |
| } |
| } |
| if (task_work_pending(current)) { |
| __set_current_state(TASK_RUNNING); |
| task_work_run(); |
| ret = true; |
| } |
| |
| return ret; |
| } |
| |
| static inline bool io_task_work_pending(struct io_ring_ctx *ctx) |
| { |
| return task_work_pending(current) || !llist_empty(&ctx->work_llist); |
| } |
| |
| static inline void io_tw_lock(struct io_ring_ctx *ctx, struct io_tw_state *ts) |
| { |
| lockdep_assert_held(&ctx->uring_lock); |
| } |
| |
| /* |
| * Don't complete immediately but use deferred completion infrastructure. |
| * Protected by ->uring_lock and can only be used either with |
| * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex. |
| */ |
| static inline void io_req_complete_defer(struct io_kiocb *req) |
| __must_hold(&req->ctx->uring_lock) |
| { |
| struct io_submit_state *state = &req->ctx->submit_state; |
| |
| lockdep_assert_held(&req->ctx->uring_lock); |
| |
| wq_list_add_tail(&req->comp_list, &state->compl_reqs); |
| } |
| |
| static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx) |
| { |
| if (unlikely(ctx->off_timeout_used || ctx->drain_active || |
| ctx->has_evfd || ctx->poll_activated)) |
| __io_commit_cqring_flush(ctx); |
| } |
| |
| static inline void io_get_task_refs(int nr) |
| { |
| struct io_uring_task *tctx = current->io_uring; |
| |
| tctx->cached_refs -= nr; |
| if (unlikely(tctx->cached_refs < 0)) |
| io_task_refs_refill(tctx); |
| } |
| |
| static inline bool io_req_cache_empty(struct io_ring_ctx *ctx) |
| { |
| return !ctx->submit_state.free_list.next; |
| } |
| |
| extern struct kmem_cache *req_cachep; |
| extern struct kmem_cache *io_buf_cachep; |
| |
| static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx) |
| { |
| struct io_kiocb *req; |
| |
| req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list); |
| wq_stack_extract(&ctx->submit_state.free_list); |
| return req; |
| } |
| |
| static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req) |
| { |
| if (unlikely(io_req_cache_empty(ctx))) { |
| if (!__io_alloc_req_refill(ctx)) |
| return false; |
| } |
| *req = io_extract_req(ctx); |
| return true; |
| } |
| |
| static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx) |
| { |
| return likely(ctx->submitter_task == current); |
| } |
| |
| static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx) |
| { |
| return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) || |
| ctx->submitter_task == current); |
| } |
| |
| /* |
| * Terminate the request if either of these conditions are true: |
| * |
| * 1) It's being executed by the original task, but that task is marked |
| * with PF_EXITING as it's exiting. |
| * 2) PF_KTHREAD is set, in which case the invoker of the task_work is |
| * our fallback task_work. |
| */ |
| static inline bool io_should_terminate_tw(void) |
| { |
| return current->flags & (PF_KTHREAD | PF_EXITING); |
| } |
| |
| static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res) |
| { |
| io_req_set_res(req, res, 0); |
| req->io_task_work.func = io_req_task_complete; |
| io_req_task_work_add(req); |
| } |
| |
| /* |
| * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each |
| * slot. |
| */ |
| static inline size_t uring_sqe_size(struct io_ring_ctx *ctx) |
| { |
| if (ctx->flags & IORING_SETUP_SQE128) |
| return 2 * sizeof(struct io_uring_sqe); |
| return sizeof(struct io_uring_sqe); |
| } |
| |
| static inline bool io_file_can_poll(struct io_kiocb *req) |
| { |
| if (req->flags & REQ_F_CAN_POLL) |
| return true; |
| if (req->file && file_can_poll(req->file)) { |
| req->flags |= REQ_F_CAN_POLL; |
| return true; |
| } |
| return false; |
| } |
| |
| static inline ktime_t io_get_time(struct io_ring_ctx *ctx) |
| { |
| if (ctx->clockid == CLOCK_MONOTONIC) |
| return ktime_get(); |
| |
| return ktime_get_with_offset(ctx->clock_offset); |
| } |
| |
| enum { |
| IO_CHECK_CQ_OVERFLOW_BIT, |
| IO_CHECK_CQ_DROPPED_BIT, |
| }; |
| |
| static inline bool io_has_work(struct io_ring_ctx *ctx) |
| { |
| return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) || |
| !llist_empty(&ctx->work_llist); |
| } |
| #endif |