| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2001 Sistina Software (UK) Limited. |
| * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved. |
| * |
| * This file is released under the GPL. |
| */ |
| |
| #include "dm-core.h" |
| #include "dm-rq.h" |
| |
| #include <linux/module.h> |
| #include <linux/vmalloc.h> |
| #include <linux/blkdev.h> |
| #include <linux/blk-integrity.h> |
| #include <linux/namei.h> |
| #include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/mutex.h> |
| #include <linux/delay.h> |
| #include <linux/atomic.h> |
| #include <linux/blk-mq.h> |
| #include <linux/mount.h> |
| #include <linux/dax.h> |
| |
| #define DM_MSG_PREFIX "table" |
| |
| #define NODE_SIZE L1_CACHE_BYTES |
| #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t)) |
| #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1) |
| |
| /* |
| * Similar to ceiling(log_size(n)) |
| */ |
| static unsigned int int_log(unsigned int n, unsigned int base) |
| { |
| int result = 0; |
| |
| while (n > 1) { |
| n = dm_div_up(n, base); |
| result++; |
| } |
| |
| return result; |
| } |
| |
| /* |
| * Calculate the index of the child node of the n'th node k'th key. |
| */ |
| static inline unsigned int get_child(unsigned int n, unsigned int k) |
| { |
| return (n * CHILDREN_PER_NODE) + k; |
| } |
| |
| /* |
| * Return the n'th node of level l from table t. |
| */ |
| static inline sector_t *get_node(struct dm_table *t, |
| unsigned int l, unsigned int n) |
| { |
| return t->index[l] + (n * KEYS_PER_NODE); |
| } |
| |
| /* |
| * Return the highest key that you could lookup from the n'th |
| * node on level l of the btree. |
| */ |
| static sector_t high(struct dm_table *t, unsigned int l, unsigned int n) |
| { |
| for (; l < t->depth - 1; l++) |
| n = get_child(n, CHILDREN_PER_NODE - 1); |
| |
| if (n >= t->counts[l]) |
| return (sector_t) -1; |
| |
| return get_node(t, l, n)[KEYS_PER_NODE - 1]; |
| } |
| |
| /* |
| * Fills in a level of the btree based on the highs of the level |
| * below it. |
| */ |
| static int setup_btree_index(unsigned int l, struct dm_table *t) |
| { |
| unsigned int n, k; |
| sector_t *node; |
| |
| for (n = 0U; n < t->counts[l]; n++) { |
| node = get_node(t, l, n); |
| |
| for (k = 0U; k < KEYS_PER_NODE; k++) |
| node[k] = high(t, l + 1, get_child(n, k)); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * highs, and targets are managed as dynamic arrays during a |
| * table load. |
| */ |
| static int alloc_targets(struct dm_table *t, unsigned int num) |
| { |
| sector_t *n_highs; |
| struct dm_target *n_targets; |
| |
| /* |
| * Allocate both the target array and offset array at once. |
| */ |
| n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t), |
| GFP_KERNEL); |
| if (!n_highs) |
| return -ENOMEM; |
| |
| n_targets = (struct dm_target *) (n_highs + num); |
| |
| memset(n_highs, -1, sizeof(*n_highs) * num); |
| kvfree(t->highs); |
| |
| t->num_allocated = num; |
| t->highs = n_highs; |
| t->targets = n_targets; |
| |
| return 0; |
| } |
| |
| int dm_table_create(struct dm_table **result, blk_mode_t mode, |
| unsigned int num_targets, struct mapped_device *md) |
| { |
| struct dm_table *t; |
| |
| if (num_targets > DM_MAX_TARGETS) |
| return -EOVERFLOW; |
| |
| t = kzalloc(sizeof(*t), GFP_KERNEL); |
| |
| if (!t) |
| return -ENOMEM; |
| |
| INIT_LIST_HEAD(&t->devices); |
| init_rwsem(&t->devices_lock); |
| |
| if (!num_targets) |
| num_targets = KEYS_PER_NODE; |
| |
| num_targets = dm_round_up(num_targets, KEYS_PER_NODE); |
| |
| if (!num_targets) { |
| kfree(t); |
| return -EOVERFLOW; |
| } |
| |
| if (alloc_targets(t, num_targets)) { |
| kfree(t); |
| return -ENOMEM; |
| } |
| |
| t->type = DM_TYPE_NONE; |
| t->mode = mode; |
| t->md = md; |
| *result = t; |
| return 0; |
| } |
| |
| static void free_devices(struct list_head *devices, struct mapped_device *md) |
| { |
| struct list_head *tmp, *next; |
| |
| list_for_each_safe(tmp, next, devices) { |
| struct dm_dev_internal *dd = |
| list_entry(tmp, struct dm_dev_internal, list); |
| DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s", |
| dm_device_name(md), dd->dm_dev->name); |
| dm_put_table_device(md, dd->dm_dev); |
| kfree(dd); |
| } |
| } |
| |
| static void dm_table_destroy_crypto_profile(struct dm_table *t); |
| |
| void dm_table_destroy(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| /* free the indexes */ |
| if (t->depth >= 2) |
| kvfree(t->index[t->depth - 2]); |
| |
| /* free the targets */ |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (ti->type->dtr) |
| ti->type->dtr(ti); |
| |
| dm_put_target_type(ti->type); |
| } |
| |
| kvfree(t->highs); |
| |
| /* free the device list */ |
| free_devices(&t->devices, t->md); |
| |
| dm_free_md_mempools(t->mempools); |
| |
| dm_table_destroy_crypto_profile(t); |
| |
| kfree(t); |
| } |
| |
| /* |
| * See if we've already got a device in the list. |
| */ |
| static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev) |
| { |
| struct dm_dev_internal *dd; |
| |
| list_for_each_entry(dd, l, list) |
| if (dd->dm_dev->bdev->bd_dev == dev) |
| return dd; |
| |
| return NULL; |
| } |
| |
| /* |
| * If possible, this checks an area of a destination device is invalid. |
| */ |
| static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct queue_limits *limits = data; |
| struct block_device *bdev = dev->bdev; |
| sector_t dev_size = bdev_nr_sectors(bdev); |
| unsigned short logical_block_size_sectors = |
| limits->logical_block_size >> SECTOR_SHIFT; |
| |
| if (!dev_size) |
| return 0; |
| |
| if ((start >= dev_size) || (start + len > dev_size)) { |
| DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu", |
| dm_device_name(ti->table->md), bdev, |
| (unsigned long long)start, |
| (unsigned long long)len, |
| (unsigned long long)dev_size); |
| return 1; |
| } |
| |
| /* |
| * If the target is mapped to zoned block device(s), check |
| * that the zones are not partially mapped. |
| */ |
| if (bdev_is_zoned(bdev)) { |
| unsigned int zone_sectors = bdev_zone_sectors(bdev); |
| |
| if (start & (zone_sectors - 1)) { |
| DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg", |
| dm_device_name(ti->table->md), |
| (unsigned long long)start, |
| zone_sectors, bdev); |
| return 1; |
| } |
| |
| /* |
| * Note: The last zone of a zoned block device may be smaller |
| * than other zones. So for a target mapping the end of a |
| * zoned block device with such a zone, len would not be zone |
| * aligned. We do not allow such last smaller zone to be part |
| * of the mapping here to ensure that mappings with multiple |
| * devices do not end up with a smaller zone in the middle of |
| * the sector range. |
| */ |
| if (len & (zone_sectors - 1)) { |
| DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg", |
| dm_device_name(ti->table->md), |
| (unsigned long long)len, |
| zone_sectors, bdev); |
| return 1; |
| } |
| } |
| |
| if (logical_block_size_sectors <= 1) |
| return 0; |
| |
| if (start & (logical_block_size_sectors - 1)) { |
| DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg", |
| dm_device_name(ti->table->md), |
| (unsigned long long)start, |
| limits->logical_block_size, bdev); |
| return 1; |
| } |
| |
| if (len & (logical_block_size_sectors - 1)) { |
| DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg", |
| dm_device_name(ti->table->md), |
| (unsigned long long)len, |
| limits->logical_block_size, bdev); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This upgrades the mode on an already open dm_dev, being |
| * careful to leave things as they were if we fail to reopen the |
| * device and not to touch the existing bdev field in case |
| * it is accessed concurrently. |
| */ |
| static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode, |
| struct mapped_device *md) |
| { |
| int r; |
| struct dm_dev *old_dev, *new_dev; |
| |
| old_dev = dd->dm_dev; |
| |
| r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev, |
| dd->dm_dev->mode | new_mode, &new_dev); |
| if (r) |
| return r; |
| |
| dd->dm_dev = new_dev; |
| dm_put_table_device(md, old_dev); |
| |
| return 0; |
| } |
| |
| /* |
| * Add a device to the list, or just increment the usage count if |
| * it's already present. |
| * |
| * Note: the __ref annotation is because this function can call the __init |
| * marked early_lookup_bdev when called during early boot code from dm-init.c. |
| */ |
| int __ref dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode, |
| struct dm_dev **result) |
| { |
| int r; |
| dev_t dev; |
| unsigned int major, minor; |
| char dummy; |
| struct dm_dev_internal *dd; |
| struct dm_table *t = ti->table; |
| |
| BUG_ON(!t); |
| |
| if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) { |
| /* Extract the major/minor numbers */ |
| dev = MKDEV(major, minor); |
| if (MAJOR(dev) != major || MINOR(dev) != minor) |
| return -EOVERFLOW; |
| } else { |
| r = lookup_bdev(path, &dev); |
| #ifndef MODULE |
| if (r && system_state < SYSTEM_RUNNING) |
| r = early_lookup_bdev(path, &dev); |
| #endif |
| if (r) |
| return r; |
| } |
| if (dev == disk_devt(t->md->disk)) |
| return -EINVAL; |
| |
| down_write(&t->devices_lock); |
| |
| dd = find_device(&t->devices, dev); |
| if (!dd) { |
| dd = kmalloc(sizeof(*dd), GFP_KERNEL); |
| if (!dd) { |
| r = -ENOMEM; |
| goto unlock_ret_r; |
| } |
| |
| r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev); |
| if (r) { |
| kfree(dd); |
| goto unlock_ret_r; |
| } |
| |
| refcount_set(&dd->count, 1); |
| list_add(&dd->list, &t->devices); |
| goto out; |
| |
| } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) { |
| r = upgrade_mode(dd, mode, t->md); |
| if (r) |
| goto unlock_ret_r; |
| } |
| refcount_inc(&dd->count); |
| out: |
| up_write(&t->devices_lock); |
| *result = dd->dm_dev; |
| return 0; |
| |
| unlock_ret_r: |
| up_write(&t->devices_lock); |
| return r; |
| } |
| EXPORT_SYMBOL(dm_get_device); |
| |
| static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct queue_limits *limits = data; |
| struct block_device *bdev = dev->bdev; |
| struct request_queue *q = bdev_get_queue(bdev); |
| |
| if (unlikely(!q)) { |
| DMWARN("%s: Cannot set limits for nonexistent device %pg", |
| dm_device_name(ti->table->md), bdev); |
| return 0; |
| } |
| |
| if (blk_stack_limits(limits, &q->limits, |
| get_start_sect(bdev) + start) < 0) |
| DMWARN("%s: adding target device %pg caused an alignment inconsistency: " |
| "physical_block_size=%u, logical_block_size=%u, " |
| "alignment_offset=%u, start=%llu", |
| dm_device_name(ti->table->md), bdev, |
| q->limits.physical_block_size, |
| q->limits.logical_block_size, |
| q->limits.alignment_offset, |
| (unsigned long long) start << SECTOR_SHIFT); |
| return 0; |
| } |
| |
| /* |
| * Decrement a device's use count and remove it if necessary. |
| */ |
| void dm_put_device(struct dm_target *ti, struct dm_dev *d) |
| { |
| int found = 0; |
| struct dm_table *t = ti->table; |
| struct list_head *devices = &t->devices; |
| struct dm_dev_internal *dd; |
| |
| down_write(&t->devices_lock); |
| |
| list_for_each_entry(dd, devices, list) { |
| if (dd->dm_dev == d) { |
| found = 1; |
| break; |
| } |
| } |
| if (!found) { |
| DMERR("%s: device %s not in table devices list", |
| dm_device_name(t->md), d->name); |
| goto unlock_ret; |
| } |
| if (refcount_dec_and_test(&dd->count)) { |
| dm_put_table_device(t->md, d); |
| list_del(&dd->list); |
| kfree(dd); |
| } |
| |
| unlock_ret: |
| up_write(&t->devices_lock); |
| } |
| EXPORT_SYMBOL(dm_put_device); |
| |
| /* |
| * Checks to see if the target joins onto the end of the table. |
| */ |
| static int adjoin(struct dm_table *t, struct dm_target *ti) |
| { |
| struct dm_target *prev; |
| |
| if (!t->num_targets) |
| return !ti->begin; |
| |
| prev = &t->targets[t->num_targets - 1]; |
| return (ti->begin == (prev->begin + prev->len)); |
| } |
| |
| /* |
| * Used to dynamically allocate the arg array. |
| * |
| * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must |
| * process messages even if some device is suspended. These messages have a |
| * small fixed number of arguments. |
| * |
| * On the other hand, dm-switch needs to process bulk data using messages and |
| * excessive use of GFP_NOIO could cause trouble. |
| */ |
| static char **realloc_argv(unsigned int *size, char **old_argv) |
| { |
| char **argv; |
| unsigned int new_size; |
| gfp_t gfp; |
| |
| if (*size) { |
| new_size = *size * 2; |
| gfp = GFP_KERNEL; |
| } else { |
| new_size = 8; |
| gfp = GFP_NOIO; |
| } |
| argv = kmalloc_array(new_size, sizeof(*argv), gfp); |
| if (argv && old_argv) { |
| memcpy(argv, old_argv, *size * sizeof(*argv)); |
| *size = new_size; |
| } |
| |
| kfree(old_argv); |
| return argv; |
| } |
| |
| /* |
| * Destructively splits up the argument list to pass to ctr. |
| */ |
| int dm_split_args(int *argc, char ***argvp, char *input) |
| { |
| char *start, *end = input, *out, **argv = NULL; |
| unsigned int array_size = 0; |
| |
| *argc = 0; |
| |
| if (!input) { |
| *argvp = NULL; |
| return 0; |
| } |
| |
| argv = realloc_argv(&array_size, argv); |
| if (!argv) |
| return -ENOMEM; |
| |
| while (1) { |
| /* Skip whitespace */ |
| start = skip_spaces(end); |
| |
| if (!*start) |
| break; /* success, we hit the end */ |
| |
| /* 'out' is used to remove any back-quotes */ |
| end = out = start; |
| while (*end) { |
| /* Everything apart from '\0' can be quoted */ |
| if (*end == '\\' && *(end + 1)) { |
| *out++ = *(end + 1); |
| end += 2; |
| continue; |
| } |
| |
| if (isspace(*end)) |
| break; /* end of token */ |
| |
| *out++ = *end++; |
| } |
| |
| /* have we already filled the array ? */ |
| if ((*argc + 1) > array_size) { |
| argv = realloc_argv(&array_size, argv); |
| if (!argv) |
| return -ENOMEM; |
| } |
| |
| /* we know this is whitespace */ |
| if (*end) |
| end++; |
| |
| /* terminate the string and put it in the array */ |
| *out = '\0'; |
| argv[*argc] = start; |
| (*argc)++; |
| } |
| |
| *argvp = argv; |
| return 0; |
| } |
| |
| /* |
| * Impose necessary and sufficient conditions on a devices's table such |
| * that any incoming bio which respects its logical_block_size can be |
| * processed successfully. If it falls across the boundary between |
| * two or more targets, the size of each piece it gets split into must |
| * be compatible with the logical_block_size of the target processing it. |
| */ |
| static int validate_hardware_logical_block_alignment(struct dm_table *t, |
| struct queue_limits *limits) |
| { |
| /* |
| * This function uses arithmetic modulo the logical_block_size |
| * (in units of 512-byte sectors). |
| */ |
| unsigned short device_logical_block_size_sects = |
| limits->logical_block_size >> SECTOR_SHIFT; |
| |
| /* |
| * Offset of the start of the next table entry, mod logical_block_size. |
| */ |
| unsigned short next_target_start = 0; |
| |
| /* |
| * Given an aligned bio that extends beyond the end of a |
| * target, how many sectors must the next target handle? |
| */ |
| unsigned short remaining = 0; |
| |
| struct dm_target *ti; |
| struct queue_limits ti_limits; |
| unsigned int i; |
| |
| /* |
| * Check each entry in the table in turn. |
| */ |
| for (i = 0; i < t->num_targets; i++) { |
| ti = dm_table_get_target(t, i); |
| |
| blk_set_stacking_limits(&ti_limits); |
| |
| /* combine all target devices' limits */ |
| if (ti->type->iterate_devices) |
| ti->type->iterate_devices(ti, dm_set_device_limits, |
| &ti_limits); |
| |
| /* |
| * If the remaining sectors fall entirely within this |
| * table entry are they compatible with its logical_block_size? |
| */ |
| if (remaining < ti->len && |
| remaining & ((ti_limits.logical_block_size >> |
| SECTOR_SHIFT) - 1)) |
| break; /* Error */ |
| |
| next_target_start = |
| (unsigned short) ((next_target_start + ti->len) & |
| (device_logical_block_size_sects - 1)); |
| remaining = next_target_start ? |
| device_logical_block_size_sects - next_target_start : 0; |
| } |
| |
| if (remaining) { |
| DMERR("%s: table line %u (start sect %llu len %llu) " |
| "not aligned to h/w logical block size %u", |
| dm_device_name(t->md), i, |
| (unsigned long long) ti->begin, |
| (unsigned long long) ti->len, |
| limits->logical_block_size); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int dm_table_add_target(struct dm_table *t, const char *type, |
| sector_t start, sector_t len, char *params) |
| { |
| int r = -EINVAL, argc; |
| char **argv; |
| struct dm_target *ti; |
| |
| if (t->singleton) { |
| DMERR("%s: target type %s must appear alone in table", |
| dm_device_name(t->md), t->targets->type->name); |
| return -EINVAL; |
| } |
| |
| BUG_ON(t->num_targets >= t->num_allocated); |
| |
| ti = t->targets + t->num_targets; |
| memset(ti, 0, sizeof(*ti)); |
| |
| if (!len) { |
| DMERR("%s: zero-length target", dm_device_name(t->md)); |
| return -EINVAL; |
| } |
| |
| ti->type = dm_get_target_type(type); |
| if (!ti->type) { |
| DMERR("%s: %s: unknown target type", dm_device_name(t->md), type); |
| return -EINVAL; |
| } |
| |
| if (dm_target_needs_singleton(ti->type)) { |
| if (t->num_targets) { |
| ti->error = "singleton target type must appear alone in table"; |
| goto bad; |
| } |
| t->singleton = true; |
| } |
| |
| if (dm_target_always_writeable(ti->type) && |
| !(t->mode & BLK_OPEN_WRITE)) { |
| ti->error = "target type may not be included in a read-only table"; |
| goto bad; |
| } |
| |
| if (t->immutable_target_type) { |
| if (t->immutable_target_type != ti->type) { |
| ti->error = "immutable target type cannot be mixed with other target types"; |
| goto bad; |
| } |
| } else if (dm_target_is_immutable(ti->type)) { |
| if (t->num_targets) { |
| ti->error = "immutable target type cannot be mixed with other target types"; |
| goto bad; |
| } |
| t->immutable_target_type = ti->type; |
| } |
| |
| if (dm_target_has_integrity(ti->type)) |
| t->integrity_added = 1; |
| |
| ti->table = t; |
| ti->begin = start; |
| ti->len = len; |
| ti->error = "Unknown error"; |
| |
| /* |
| * Does this target adjoin the previous one ? |
| */ |
| if (!adjoin(t, ti)) { |
| ti->error = "Gap in table"; |
| goto bad; |
| } |
| |
| r = dm_split_args(&argc, &argv, params); |
| if (r) { |
| ti->error = "couldn't split parameters"; |
| goto bad; |
| } |
| |
| r = ti->type->ctr(ti, argc, argv); |
| kfree(argv); |
| if (r) |
| goto bad; |
| |
| t->highs[t->num_targets++] = ti->begin + ti->len - 1; |
| |
| if (!ti->num_discard_bios && ti->discards_supported) |
| DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.", |
| dm_device_name(t->md), type); |
| |
| if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key)) |
| static_branch_enable(&swap_bios_enabled); |
| |
| return 0; |
| |
| bad: |
| DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r)); |
| dm_put_target_type(ti->type); |
| return r; |
| } |
| |
| /* |
| * Target argument parsing helpers. |
| */ |
| static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, |
| unsigned int *value, char **error, unsigned int grouped) |
| { |
| const char *arg_str = dm_shift_arg(arg_set); |
| char dummy; |
| |
| if (!arg_str || |
| (sscanf(arg_str, "%u%c", value, &dummy) != 1) || |
| (*value < arg->min) || |
| (*value > arg->max) || |
| (grouped && arg_set->argc < *value)) { |
| *error = arg->error; |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set, |
| unsigned int *value, char **error) |
| { |
| return validate_next_arg(arg, arg_set, value, error, 0); |
| } |
| EXPORT_SYMBOL(dm_read_arg); |
| |
| int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set, |
| unsigned int *value, char **error) |
| { |
| return validate_next_arg(arg, arg_set, value, error, 1); |
| } |
| EXPORT_SYMBOL(dm_read_arg_group); |
| |
| const char *dm_shift_arg(struct dm_arg_set *as) |
| { |
| char *r; |
| |
| if (as->argc) { |
| as->argc--; |
| r = *as->argv; |
| as->argv++; |
| return r; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(dm_shift_arg); |
| |
| void dm_consume_args(struct dm_arg_set *as, unsigned int num_args) |
| { |
| BUG_ON(as->argc < num_args); |
| as->argc -= num_args; |
| as->argv += num_args; |
| } |
| EXPORT_SYMBOL(dm_consume_args); |
| |
| static bool __table_type_bio_based(enum dm_queue_mode table_type) |
| { |
| return (table_type == DM_TYPE_BIO_BASED || |
| table_type == DM_TYPE_DAX_BIO_BASED); |
| } |
| |
| static bool __table_type_request_based(enum dm_queue_mode table_type) |
| { |
| return table_type == DM_TYPE_REQUEST_BASED; |
| } |
| |
| void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type) |
| { |
| t->type = type; |
| } |
| EXPORT_SYMBOL_GPL(dm_table_set_type); |
| |
| /* validate the dax capability of the target device span */ |
| static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| if (dev->dax_dev) |
| return false; |
| |
| DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev); |
| return true; |
| } |
| |
| /* Check devices support synchronous DAX */ |
| static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| return !dev->dax_dev || !dax_synchronous(dev->dax_dev); |
| } |
| |
| static bool dm_table_supports_dax(struct dm_table *t, |
| iterate_devices_callout_fn iterate_fn) |
| { |
| /* Ensure that all targets support DAX. */ |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->type->direct_access) |
| return false; |
| |
| if (dm_target_is_wildcard(ti->type) || |
| !ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, iterate_fn, NULL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct block_device *bdev = dev->bdev; |
| struct request_queue *q = bdev_get_queue(bdev); |
| |
| /* request-based cannot stack on partitions! */ |
| if (bdev_is_partition(bdev)) |
| return false; |
| |
| return queue_is_mq(q); |
| } |
| |
| static int dm_table_determine_type(struct dm_table *t) |
| { |
| unsigned int bio_based = 0, request_based = 0, hybrid = 0; |
| struct dm_target *ti; |
| struct list_head *devices = dm_table_get_devices(t); |
| enum dm_queue_mode live_md_type = dm_get_md_type(t->md); |
| |
| if (t->type != DM_TYPE_NONE) { |
| /* target already set the table's type */ |
| if (t->type == DM_TYPE_BIO_BASED) { |
| /* possibly upgrade to a variant of bio-based */ |
| goto verify_bio_based; |
| } |
| BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED); |
| goto verify_rq_based; |
| } |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| ti = dm_table_get_target(t, i); |
| if (dm_target_hybrid(ti)) |
| hybrid = 1; |
| else if (dm_target_request_based(ti)) |
| request_based = 1; |
| else |
| bio_based = 1; |
| |
| if (bio_based && request_based) { |
| DMERR("Inconsistent table: different target types can't be mixed up"); |
| return -EINVAL; |
| } |
| } |
| |
| if (hybrid && !bio_based && !request_based) { |
| /* |
| * The targets can work either way. |
| * Determine the type from the live device. |
| * Default to bio-based if device is new. |
| */ |
| if (__table_type_request_based(live_md_type)) |
| request_based = 1; |
| else |
| bio_based = 1; |
| } |
| |
| if (bio_based) { |
| verify_bio_based: |
| /* We must use this table as bio-based */ |
| t->type = DM_TYPE_BIO_BASED; |
| if (dm_table_supports_dax(t, device_not_dax_capable) || |
| (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) { |
| t->type = DM_TYPE_DAX_BIO_BASED; |
| } |
| return 0; |
| } |
| |
| BUG_ON(!request_based); /* No targets in this table */ |
| |
| t->type = DM_TYPE_REQUEST_BASED; |
| |
| verify_rq_based: |
| /* |
| * Request-based dm supports only tables that have a single target now. |
| * To support multiple targets, request splitting support is needed, |
| * and that needs lots of changes in the block-layer. |
| * (e.g. request completion process for partial completion.) |
| */ |
| if (t->num_targets > 1) { |
| DMERR("request-based DM doesn't support multiple targets"); |
| return -EINVAL; |
| } |
| |
| if (list_empty(devices)) { |
| int srcu_idx; |
| struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx); |
| |
| /* inherit live table's type */ |
| if (live_table) |
| t->type = live_table->type; |
| dm_put_live_table(t->md, srcu_idx); |
| return 0; |
| } |
| |
| ti = dm_table_get_immutable_target(t); |
| if (!ti) { |
| DMERR("table load rejected: immutable target is required"); |
| return -EINVAL; |
| } else if (ti->max_io_len) { |
| DMERR("table load rejected: immutable target that splits IO is not supported"); |
| return -EINVAL; |
| } |
| |
| /* Non-request-stackable devices can't be used for request-based dm */ |
| if (!ti->type->iterate_devices || |
| !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) { |
| DMERR("table load rejected: including non-request-stackable devices"); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| enum dm_queue_mode dm_table_get_type(struct dm_table *t) |
| { |
| return t->type; |
| } |
| |
| struct target_type *dm_table_get_immutable_target_type(struct dm_table *t) |
| { |
| return t->immutable_target_type; |
| } |
| |
| struct dm_target *dm_table_get_immutable_target(struct dm_table *t) |
| { |
| /* Immutable target is implicitly a singleton */ |
| if (t->num_targets > 1 || |
| !dm_target_is_immutable(t->targets[0].type)) |
| return NULL; |
| |
| return t->targets; |
| } |
| |
| struct dm_target *dm_table_get_wildcard_target(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (dm_target_is_wildcard(ti->type)) |
| return ti; |
| } |
| |
| return NULL; |
| } |
| |
| bool dm_table_bio_based(struct dm_table *t) |
| { |
| return __table_type_bio_based(dm_table_get_type(t)); |
| } |
| |
| bool dm_table_request_based(struct dm_table *t) |
| { |
| return __table_type_request_based(dm_table_get_type(t)); |
| } |
| |
| static bool dm_table_supports_poll(struct dm_table *t); |
| |
| static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md) |
| { |
| enum dm_queue_mode type = dm_table_get_type(t); |
| unsigned int per_io_data_size = 0, front_pad, io_front_pad; |
| unsigned int min_pool_size = 0, pool_size; |
| struct dm_md_mempools *pools; |
| |
| if (unlikely(type == DM_TYPE_NONE)) { |
| DMERR("no table type is set, can't allocate mempools"); |
| return -EINVAL; |
| } |
| |
| pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id); |
| if (!pools) |
| return -ENOMEM; |
| |
| if (type == DM_TYPE_REQUEST_BASED) { |
| pool_size = dm_get_reserved_rq_based_ios(); |
| front_pad = offsetof(struct dm_rq_clone_bio_info, clone); |
| goto init_bs; |
| } |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| per_io_data_size = max(per_io_data_size, ti->per_io_data_size); |
| min_pool_size = max(min_pool_size, ti->num_flush_bios); |
| } |
| pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size); |
| front_pad = roundup(per_io_data_size, |
| __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET; |
| |
| io_front_pad = roundup(per_io_data_size, |
| __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET; |
| if (bioset_init(&pools->io_bs, pool_size, io_front_pad, |
| dm_table_supports_poll(t) ? BIOSET_PERCPU_CACHE : 0)) |
| goto out_free_pools; |
| if (t->integrity_supported && |
| bioset_integrity_create(&pools->io_bs, pool_size)) |
| goto out_free_pools; |
| init_bs: |
| if (bioset_init(&pools->bs, pool_size, front_pad, 0)) |
| goto out_free_pools; |
| if (t->integrity_supported && |
| bioset_integrity_create(&pools->bs, pool_size)) |
| goto out_free_pools; |
| |
| t->mempools = pools; |
| return 0; |
| |
| out_free_pools: |
| dm_free_md_mempools(pools); |
| return -ENOMEM; |
| } |
| |
| static int setup_indexes(struct dm_table *t) |
| { |
| int i; |
| unsigned int total = 0; |
| sector_t *indexes; |
| |
| /* allocate the space for *all* the indexes */ |
| for (i = t->depth - 2; i >= 0; i--) { |
| t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE); |
| total += t->counts[i]; |
| } |
| |
| indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL); |
| if (!indexes) |
| return -ENOMEM; |
| |
| /* set up internal nodes, bottom-up */ |
| for (i = t->depth - 2; i >= 0; i--) { |
| t->index[i] = indexes; |
| indexes += (KEYS_PER_NODE * t->counts[i]); |
| setup_btree_index(i, t); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Builds the btree to index the map. |
| */ |
| static int dm_table_build_index(struct dm_table *t) |
| { |
| int r = 0; |
| unsigned int leaf_nodes; |
| |
| /* how many indexes will the btree have ? */ |
| leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE); |
| t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE); |
| |
| /* leaf layer has already been set up */ |
| t->counts[t->depth - 1] = leaf_nodes; |
| t->index[t->depth - 1] = t->highs; |
| |
| if (t->depth >= 2) |
| r = setup_indexes(t); |
| |
| return r; |
| } |
| |
| static bool integrity_profile_exists(struct gendisk *disk) |
| { |
| return !!blk_get_integrity(disk); |
| } |
| |
| /* |
| * Get a disk whose integrity profile reflects the table's profile. |
| * Returns NULL if integrity support was inconsistent or unavailable. |
| */ |
| static struct gendisk *dm_table_get_integrity_disk(struct dm_table *t) |
| { |
| struct list_head *devices = dm_table_get_devices(t); |
| struct dm_dev_internal *dd = NULL; |
| struct gendisk *prev_disk = NULL, *template_disk = NULL; |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!dm_target_passes_integrity(ti->type)) |
| goto no_integrity; |
| } |
| |
| list_for_each_entry(dd, devices, list) { |
| template_disk = dd->dm_dev->bdev->bd_disk; |
| if (!integrity_profile_exists(template_disk)) |
| goto no_integrity; |
| else if (prev_disk && |
| blk_integrity_compare(prev_disk, template_disk) < 0) |
| goto no_integrity; |
| prev_disk = template_disk; |
| } |
| |
| return template_disk; |
| |
| no_integrity: |
| if (prev_disk) |
| DMWARN("%s: integrity not set: %s and %s profile mismatch", |
| dm_device_name(t->md), |
| prev_disk->disk_name, |
| template_disk->disk_name); |
| return NULL; |
| } |
| |
| /* |
| * Register the mapped device for blk_integrity support if the |
| * underlying devices have an integrity profile. But all devices may |
| * not have matching profiles (checking all devices isn't reliable |
| * during table load because this table may use other DM device(s) which |
| * must be resumed before they will have an initialized integity |
| * profile). Consequently, stacked DM devices force a 2 stage integrity |
| * profile validation: First pass during table load, final pass during |
| * resume. |
| */ |
| static int dm_table_register_integrity(struct dm_table *t) |
| { |
| struct mapped_device *md = t->md; |
| struct gendisk *template_disk = NULL; |
| |
| /* If target handles integrity itself do not register it here. */ |
| if (t->integrity_added) |
| return 0; |
| |
| template_disk = dm_table_get_integrity_disk(t); |
| if (!template_disk) |
| return 0; |
| |
| if (!integrity_profile_exists(dm_disk(md))) { |
| t->integrity_supported = true; |
| /* |
| * Register integrity profile during table load; we can do |
| * this because the final profile must match during resume. |
| */ |
| blk_integrity_register(dm_disk(md), |
| blk_get_integrity(template_disk)); |
| return 0; |
| } |
| |
| /* |
| * If DM device already has an initialized integrity |
| * profile the new profile should not conflict. |
| */ |
| if (blk_integrity_compare(dm_disk(md), template_disk) < 0) { |
| DMERR("%s: conflict with existing integrity profile: %s profile mismatch", |
| dm_device_name(t->md), |
| template_disk->disk_name); |
| return 1; |
| } |
| |
| /* Preserve existing integrity profile */ |
| t->integrity_supported = true; |
| return 0; |
| } |
| |
| #ifdef CONFIG_BLK_INLINE_ENCRYPTION |
| |
| struct dm_crypto_profile { |
| struct blk_crypto_profile profile; |
| struct mapped_device *md; |
| }; |
| |
| static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| const struct blk_crypto_key *key = data; |
| |
| blk_crypto_evict_key(dev->bdev, key); |
| return 0; |
| } |
| |
| /* |
| * When an inline encryption key is evicted from a device-mapper device, evict |
| * it from all the underlying devices. |
| */ |
| static int dm_keyslot_evict(struct blk_crypto_profile *profile, |
| const struct blk_crypto_key *key, unsigned int slot) |
| { |
| struct mapped_device *md = |
| container_of(profile, struct dm_crypto_profile, profile)->md; |
| struct dm_table *t; |
| int srcu_idx; |
| |
| t = dm_get_live_table(md, &srcu_idx); |
| if (!t) |
| return 0; |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->type->iterate_devices) |
| continue; |
| ti->type->iterate_devices(ti, dm_keyslot_evict_callback, |
| (void *)key); |
| } |
| |
| dm_put_live_table(md, srcu_idx); |
| return 0; |
| } |
| |
| static int |
| device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct blk_crypto_profile *parent = data; |
| struct blk_crypto_profile *child = |
| bdev_get_queue(dev->bdev)->crypto_profile; |
| |
| blk_crypto_intersect_capabilities(parent, child); |
| return 0; |
| } |
| |
| void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) |
| { |
| struct dm_crypto_profile *dmcp = container_of(profile, |
| struct dm_crypto_profile, |
| profile); |
| |
| if (!profile) |
| return; |
| |
| blk_crypto_profile_destroy(profile); |
| kfree(dmcp); |
| } |
| |
| static void dm_table_destroy_crypto_profile(struct dm_table *t) |
| { |
| dm_destroy_crypto_profile(t->crypto_profile); |
| t->crypto_profile = NULL; |
| } |
| |
| /* |
| * Constructs and initializes t->crypto_profile with a crypto profile that |
| * represents the common set of crypto capabilities of the devices described by |
| * the dm_table. However, if the constructed crypto profile doesn't support all |
| * crypto capabilities that are supported by the current mapped_device, it |
| * returns an error instead, since we don't support removing crypto capabilities |
| * on table changes. Finally, if the constructed crypto profile is "empty" (has |
| * no crypto capabilities at all), it just sets t->crypto_profile to NULL. |
| */ |
| static int dm_table_construct_crypto_profile(struct dm_table *t) |
| { |
| struct dm_crypto_profile *dmcp; |
| struct blk_crypto_profile *profile; |
| unsigned int i; |
| bool empty_profile = true; |
| |
| dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL); |
| if (!dmcp) |
| return -ENOMEM; |
| dmcp->md = t->md; |
| |
| profile = &dmcp->profile; |
| blk_crypto_profile_init(profile, 0); |
| profile->ll_ops.keyslot_evict = dm_keyslot_evict; |
| profile->max_dun_bytes_supported = UINT_MAX; |
| memset(profile->modes_supported, 0xFF, |
| sizeof(profile->modes_supported)); |
| |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!dm_target_passes_crypto(ti->type)) { |
| blk_crypto_intersect_capabilities(profile, NULL); |
| break; |
| } |
| if (!ti->type->iterate_devices) |
| continue; |
| ti->type->iterate_devices(ti, |
| device_intersect_crypto_capabilities, |
| profile); |
| } |
| |
| if (t->md->queue && |
| !blk_crypto_has_capabilities(profile, |
| t->md->queue->crypto_profile)) { |
| DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!"); |
| dm_destroy_crypto_profile(profile); |
| return -EINVAL; |
| } |
| |
| /* |
| * If the new profile doesn't actually support any crypto capabilities, |
| * we may as well represent it with a NULL profile. |
| */ |
| for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) { |
| if (profile->modes_supported[i]) { |
| empty_profile = false; |
| break; |
| } |
| } |
| |
| if (empty_profile) { |
| dm_destroy_crypto_profile(profile); |
| profile = NULL; |
| } |
| |
| /* |
| * t->crypto_profile is only set temporarily while the table is being |
| * set up, and it gets set to NULL after the profile has been |
| * transferred to the request_queue. |
| */ |
| t->crypto_profile = profile; |
| |
| return 0; |
| } |
| |
| static void dm_update_crypto_profile(struct request_queue *q, |
| struct dm_table *t) |
| { |
| if (!t->crypto_profile) |
| return; |
| |
| /* Make the crypto profile less restrictive. */ |
| if (!q->crypto_profile) { |
| blk_crypto_register(t->crypto_profile, q); |
| } else { |
| blk_crypto_update_capabilities(q->crypto_profile, |
| t->crypto_profile); |
| dm_destroy_crypto_profile(t->crypto_profile); |
| } |
| t->crypto_profile = NULL; |
| } |
| |
| #else /* CONFIG_BLK_INLINE_ENCRYPTION */ |
| |
| static int dm_table_construct_crypto_profile(struct dm_table *t) |
| { |
| return 0; |
| } |
| |
| void dm_destroy_crypto_profile(struct blk_crypto_profile *profile) |
| { |
| } |
| |
| static void dm_table_destroy_crypto_profile(struct dm_table *t) |
| { |
| } |
| |
| static void dm_update_crypto_profile(struct request_queue *q, |
| struct dm_table *t) |
| { |
| } |
| |
| #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */ |
| |
| /* |
| * Prepares the table for use by building the indices, |
| * setting the type, and allocating mempools. |
| */ |
| int dm_table_complete(struct dm_table *t) |
| { |
| int r; |
| |
| r = dm_table_determine_type(t); |
| if (r) { |
| DMERR("unable to determine table type"); |
| return r; |
| } |
| |
| r = dm_table_build_index(t); |
| if (r) { |
| DMERR("unable to build btrees"); |
| return r; |
| } |
| |
| r = dm_table_register_integrity(t); |
| if (r) { |
| DMERR("could not register integrity profile."); |
| return r; |
| } |
| |
| r = dm_table_construct_crypto_profile(t); |
| if (r) { |
| DMERR("could not construct crypto profile."); |
| return r; |
| } |
| |
| r = dm_table_alloc_md_mempools(t, t->md); |
| if (r) |
| DMERR("unable to allocate mempools"); |
| |
| return r; |
| } |
| |
| static DEFINE_MUTEX(_event_lock); |
| void dm_table_event_callback(struct dm_table *t, |
| void (*fn)(void *), void *context) |
| { |
| mutex_lock(&_event_lock); |
| t->event_fn = fn; |
| t->event_context = context; |
| mutex_unlock(&_event_lock); |
| } |
| |
| void dm_table_event(struct dm_table *t) |
| { |
| mutex_lock(&_event_lock); |
| if (t->event_fn) |
| t->event_fn(t->event_context); |
| mutex_unlock(&_event_lock); |
| } |
| EXPORT_SYMBOL(dm_table_event); |
| |
| inline sector_t dm_table_get_size(struct dm_table *t) |
| { |
| return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0; |
| } |
| EXPORT_SYMBOL(dm_table_get_size); |
| |
| /* |
| * Search the btree for the correct target. |
| * |
| * Caller should check returned pointer for NULL |
| * to trap I/O beyond end of device. |
| */ |
| struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector) |
| { |
| unsigned int l, n = 0, k = 0; |
| sector_t *node; |
| |
| if (unlikely(sector >= dm_table_get_size(t))) |
| return NULL; |
| |
| for (l = 0; l < t->depth; l++) { |
| n = get_child(n, k); |
| node = get_node(t, l, n); |
| |
| for (k = 0; k < KEYS_PER_NODE; k++) |
| if (node[k] >= sector) |
| break; |
| } |
| |
| return &t->targets[(KEYS_PER_NODE * n) + k]; |
| } |
| |
| static int device_not_poll_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct request_queue *q = bdev_get_queue(dev->bdev); |
| |
| return !test_bit(QUEUE_FLAG_POLL, &q->queue_flags); |
| } |
| |
| /* |
| * type->iterate_devices() should be called when the sanity check needs to |
| * iterate and check all underlying data devices. iterate_devices() will |
| * iterate all underlying data devices until it encounters a non-zero return |
| * code, returned by whether the input iterate_devices_callout_fn, or |
| * iterate_devices() itself internally. |
| * |
| * For some target type (e.g. dm-stripe), one call of iterate_devices() may |
| * iterate multiple underlying devices internally, in which case a non-zero |
| * return code returned by iterate_devices_callout_fn will stop the iteration |
| * in advance. |
| * |
| * Cases requiring _any_ underlying device supporting some kind of attribute, |
| * should use the iteration structure like dm_table_any_dev_attr(), or call |
| * it directly. @func should handle semantics of positive examples, e.g. |
| * capable of something. |
| * |
| * Cases requiring _all_ underlying devices supporting some kind of attribute, |
| * should use the iteration structure like dm_table_supports_nowait() or |
| * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that |
| * uses an @anti_func that handle semantics of counter examples, e.g. not |
| * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data); |
| */ |
| static bool dm_table_any_dev_attr(struct dm_table *t, |
| iterate_devices_callout_fn func, void *data) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (ti->type->iterate_devices && |
| ti->type->iterate_devices(ti, func, data)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int count_device(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| unsigned int *num_devices = data; |
| |
| (*num_devices)++; |
| |
| return 0; |
| } |
| |
| static bool dm_table_supports_poll(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_poll_capable, NULL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Check whether a table has no data devices attached using each |
| * target's iterate_devices method. |
| * Returns false if the result is unknown because a target doesn't |
| * support iterate_devices. |
| */ |
| bool dm_table_has_no_data_devices(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| unsigned int num_devices = 0; |
| |
| if (!ti->type->iterate_devices) |
| return false; |
| |
| ti->type->iterate_devices(ti, count_device, &num_devices); |
| if (num_devices) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| bool *zoned = data; |
| |
| return bdev_is_zoned(dev->bdev) != *zoned; |
| } |
| |
| static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| return bdev_is_zoned(dev->bdev); |
| } |
| |
| /* |
| * Check the device zoned model based on the target feature flag. If the target |
| * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are |
| * also accepted but all devices must have the same zoned model. If the target |
| * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any |
| * zoned model with all zoned devices having the same zone size. |
| */ |
| static bool dm_table_supports_zoned(struct dm_table *t, bool zoned) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| /* |
| * For the wildcard target (dm-error), if we do not have a |
| * backing device, we must always return false. If we have a |
| * backing device, the result must depend on checking zoned |
| * model, like for any other target. So for this, check directly |
| * if the target backing device is zoned as we get "false" when |
| * dm-error was set without a backing device. |
| */ |
| if (dm_target_is_wildcard(ti->type) && |
| !ti->type->iterate_devices(ti, device_is_zoned_model, NULL)) |
| return false; |
| |
| if (dm_target_supports_zoned_hm(ti->type)) { |
| if (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_zoned, |
| &zoned)) |
| return false; |
| } else if (!dm_target_supports_mixed_zoned_model(ti->type)) { |
| if (zoned) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| unsigned int *zone_sectors = data; |
| |
| if (!bdev_is_zoned(dev->bdev)) |
| return 0; |
| return bdev_zone_sectors(dev->bdev) != *zone_sectors; |
| } |
| |
| /* |
| * Check consistency of zoned model and zone sectors across all targets. For |
| * zone sectors, if the destination device is a zoned block device, it shall |
| * have the specified zone_sectors. |
| */ |
| static int validate_hardware_zoned(struct dm_table *t, bool zoned, |
| unsigned int zone_sectors) |
| { |
| if (!zoned) |
| return 0; |
| |
| if (!dm_table_supports_zoned(t, zoned)) { |
| DMERR("%s: zoned model is not consistent across all devices", |
| dm_device_name(t->md)); |
| return -EINVAL; |
| } |
| |
| /* Check zone size validity and compatibility */ |
| if (!zone_sectors || !is_power_of_2(zone_sectors)) |
| return -EINVAL; |
| |
| if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) { |
| DMERR("%s: zone sectors is not consistent across all zoned devices", |
| dm_device_name(t->md)); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Establish the new table's queue_limits and validate them. |
| */ |
| int dm_calculate_queue_limits(struct dm_table *t, |
| struct queue_limits *limits) |
| { |
| struct queue_limits ti_limits; |
| unsigned int zone_sectors = 0; |
| bool zoned = false; |
| |
| blk_set_stacking_limits(limits); |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| blk_set_stacking_limits(&ti_limits); |
| |
| if (!ti->type->iterate_devices) { |
| /* Set I/O hints portion of queue limits */ |
| if (ti->type->io_hints) |
| ti->type->io_hints(ti, &ti_limits); |
| goto combine_limits; |
| } |
| |
| /* |
| * Combine queue limits of all the devices this target uses. |
| */ |
| ti->type->iterate_devices(ti, dm_set_device_limits, |
| &ti_limits); |
| |
| if (!zoned && ti_limits.zoned) { |
| /* |
| * After stacking all limits, validate all devices |
| * in table support this zoned model and zone sectors. |
| */ |
| zoned = ti_limits.zoned; |
| zone_sectors = ti_limits.chunk_sectors; |
| } |
| |
| /* Set I/O hints portion of queue limits */ |
| if (ti->type->io_hints) |
| ti->type->io_hints(ti, &ti_limits); |
| |
| /* |
| * Check each device area is consistent with the target's |
| * overall queue limits. |
| */ |
| if (ti->type->iterate_devices(ti, device_area_is_invalid, |
| &ti_limits)) |
| return -EINVAL; |
| |
| combine_limits: |
| /* |
| * Merge this target's queue limits into the overall limits |
| * for the table. |
| */ |
| if (blk_stack_limits(limits, &ti_limits, 0) < 0) |
| DMWARN("%s: adding target device (start sect %llu len %llu) " |
| "caused an alignment inconsistency", |
| dm_device_name(t->md), |
| (unsigned long long) ti->begin, |
| (unsigned long long) ti->len); |
| } |
| |
| /* |
| * Verify that the zoned model and zone sectors, as determined before |
| * any .io_hints override, are the same across all devices in the table. |
| * - this is especially relevant if .io_hints is emulating a disk-managed |
| * zoned model on host-managed zoned block devices. |
| * BUT... |
| */ |
| if (limits->zoned) { |
| /* |
| * ...IF the above limits stacking determined a zoned model |
| * validate that all of the table's devices conform to it. |
| */ |
| zoned = limits->zoned; |
| zone_sectors = limits->chunk_sectors; |
| } |
| if (validate_hardware_zoned(t, zoned, zone_sectors)) |
| return -EINVAL; |
| |
| return validate_hardware_logical_block_alignment(t, limits); |
| } |
| |
| /* |
| * Verify that all devices have an integrity profile that matches the |
| * DM device's registered integrity profile. If the profiles don't |
| * match then unregister the DM device's integrity profile. |
| */ |
| static void dm_table_verify_integrity(struct dm_table *t) |
| { |
| struct gendisk *template_disk = NULL; |
| |
| if (t->integrity_added) |
| return; |
| |
| if (t->integrity_supported) { |
| /* |
| * Verify that the original integrity profile |
| * matches all the devices in this table. |
| */ |
| template_disk = dm_table_get_integrity_disk(t); |
| if (template_disk && |
| blk_integrity_compare(dm_disk(t->md), template_disk) >= 0) |
| return; |
| } |
| |
| if (integrity_profile_exists(dm_disk(t->md))) { |
| DMWARN("%s: unable to establish an integrity profile", |
| dm_device_name(t->md)); |
| blk_integrity_unregister(dm_disk(t->md)); |
| } |
| } |
| |
| static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| unsigned long flush = (unsigned long) data; |
| struct request_queue *q = bdev_get_queue(dev->bdev); |
| |
| return (q->queue_flags & flush); |
| } |
| |
| static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush) |
| { |
| /* |
| * Require at least one underlying device to support flushes. |
| * t->devices includes internal dm devices such as mirror logs |
| * so we need to use iterate_devices here, which targets |
| * supporting flushes must provide. |
| */ |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->num_flush_bios) |
| continue; |
| |
| if (ti->flush_supported) |
| return true; |
| |
| if (ti->type->iterate_devices && |
| ti->type->iterate_devices(ti, device_flush_capable, (void *) flush)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static int device_dax_write_cache_enabled(struct dm_target *ti, |
| struct dm_dev *dev, sector_t start, |
| sector_t len, void *data) |
| { |
| struct dax_device *dax_dev = dev->dax_dev; |
| |
| if (!dax_dev) |
| return false; |
| |
| if (dax_write_cache_enabled(dax_dev)) |
| return true; |
| return false; |
| } |
| |
| static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| return !bdev_nonrot(dev->bdev); |
| } |
| |
| static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct request_queue *q = bdev_get_queue(dev->bdev); |
| |
| return !blk_queue_add_random(q); |
| } |
| |
| static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| struct request_queue *q = bdev_get_queue(dev->bdev); |
| |
| return !q->limits.max_write_zeroes_sectors; |
| } |
| |
| static bool dm_table_supports_write_zeroes(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->num_write_zeroes_bios) |
| return false; |
| |
| if (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| return !bdev_nowait(dev->bdev); |
| } |
| |
| static bool dm_table_supports_nowait(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!dm_target_supports_nowait(ti->type)) |
| return false; |
| |
| if (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_nowait_capable, NULL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev, |
| sector_t start, sector_t len, void *data) |
| { |
| return !bdev_max_discard_sectors(dev->bdev); |
| } |
| |
| static bool dm_table_supports_discards(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->num_discard_bios) |
| return false; |
| |
| /* |
| * Either the target provides discard support (as implied by setting |
| * 'discards_supported') or it relies on _all_ data devices having |
| * discard support. |
| */ |
| if (!ti->discards_supported && |
| (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_discard_capable, NULL))) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_not_secure_erase_capable(struct dm_target *ti, |
| struct dm_dev *dev, sector_t start, |
| sector_t len, void *data) |
| { |
| return !bdev_max_secure_erase_sectors(dev->bdev); |
| } |
| |
| static bool dm_table_supports_secure_erase(struct dm_table *t) |
| { |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->num_secure_erase_bios) |
| return false; |
| |
| if (!ti->type->iterate_devices || |
| ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static int device_requires_stable_pages(struct dm_target *ti, |
| struct dm_dev *dev, sector_t start, |
| sector_t len, void *data) |
| { |
| return bdev_stable_writes(dev->bdev); |
| } |
| |
| int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q, |
| struct queue_limits *limits) |
| { |
| bool wc = false, fua = false; |
| int r; |
| |
| if (dm_table_supports_nowait(t)) |
| blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q); |
| else |
| blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q); |
| |
| if (!dm_table_supports_discards(t)) { |
| limits->max_hw_discard_sectors = 0; |
| limits->discard_granularity = 0; |
| limits->discard_alignment = 0; |
| limits->discard_misaligned = 0; |
| } |
| |
| if (!dm_table_supports_write_zeroes(t)) |
| limits->max_write_zeroes_sectors = 0; |
| |
| if (!dm_table_supports_secure_erase(t)) |
| limits->max_secure_erase_sectors = 0; |
| |
| r = queue_limits_set(q, limits); |
| if (r) |
| return r; |
| |
| if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) { |
| wc = true; |
| if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA))) |
| fua = true; |
| } |
| blk_queue_write_cache(q, wc, fua); |
| |
| if (dm_table_supports_dax(t, device_not_dax_capable)) { |
| blk_queue_flag_set(QUEUE_FLAG_DAX, q); |
| if (dm_table_supports_dax(t, device_not_dax_synchronous_capable)) |
| set_dax_synchronous(t->md->dax_dev); |
| } else |
| blk_queue_flag_clear(QUEUE_FLAG_DAX, q); |
| |
| if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL)) |
| dax_write_cache(t->md->dax_dev, true); |
| |
| /* Ensure that all underlying devices are non-rotational. */ |
| if (dm_table_any_dev_attr(t, device_is_rotational, NULL)) |
| blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); |
| else |
| blk_queue_flag_set(QUEUE_FLAG_NONROT, q); |
| |
| dm_table_verify_integrity(t); |
| |
| /* |
| * Some devices don't use blk_integrity but still want stable pages |
| * because they do their own checksumming. |
| * If any underlying device requires stable pages, a table must require |
| * them as well. Only targets that support iterate_devices are considered: |
| * don't want error, zero, etc to require stable pages. |
| */ |
| if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL)) |
| blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q); |
| else |
| blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q); |
| |
| /* |
| * Determine whether or not this queue's I/O timings contribute |
| * to the entropy pool, Only request-based targets use this. |
| * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not |
| * have it set. |
| */ |
| if (blk_queue_add_random(q) && |
| dm_table_any_dev_attr(t, device_is_not_random, NULL)) |
| blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); |
| |
| /* |
| * For a zoned target, setup the zones related queue attributes |
| * and resources necessary for zone append emulation if necessary. |
| */ |
| if (blk_queue_is_zoned(q)) { |
| r = dm_set_zones_restrictions(t, q); |
| if (r) |
| return r; |
| if (blk_queue_is_zoned(q) && |
| !static_key_enabled(&zoned_enabled.key)) |
| static_branch_enable(&zoned_enabled); |
| } |
| |
| dm_update_crypto_profile(q, t); |
| |
| /* |
| * Check for request-based device is left to |
| * dm_mq_init_request_queue()->blk_mq_init_allocated_queue(). |
| * |
| * For bio-based device, only set QUEUE_FLAG_POLL when all |
| * underlying devices supporting polling. |
| */ |
| if (__table_type_bio_based(t->type)) { |
| if (dm_table_supports_poll(t)) |
| blk_queue_flag_set(QUEUE_FLAG_POLL, q); |
| else |
| blk_queue_flag_clear(QUEUE_FLAG_POLL, q); |
| } |
| |
| return 0; |
| } |
| |
| struct list_head *dm_table_get_devices(struct dm_table *t) |
| { |
| return &t->devices; |
| } |
| |
| blk_mode_t dm_table_get_mode(struct dm_table *t) |
| { |
| return t->mode; |
| } |
| EXPORT_SYMBOL(dm_table_get_mode); |
| |
| enum suspend_mode { |
| PRESUSPEND, |
| PRESUSPEND_UNDO, |
| POSTSUSPEND, |
| }; |
| |
| static void suspend_targets(struct dm_table *t, enum suspend_mode mode) |
| { |
| lockdep_assert_held(&t->md->suspend_lock); |
| |
| for (unsigned int i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| switch (mode) { |
| case PRESUSPEND: |
| if (ti->type->presuspend) |
| ti->type->presuspend(ti); |
| break; |
| case PRESUSPEND_UNDO: |
| if (ti->type->presuspend_undo) |
| ti->type->presuspend_undo(ti); |
| break; |
| case POSTSUSPEND: |
| if (ti->type->postsuspend) |
| ti->type->postsuspend(ti); |
| break; |
| } |
| } |
| } |
| |
| void dm_table_presuspend_targets(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| suspend_targets(t, PRESUSPEND); |
| } |
| |
| void dm_table_presuspend_undo_targets(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| suspend_targets(t, PRESUSPEND_UNDO); |
| } |
| |
| void dm_table_postsuspend_targets(struct dm_table *t) |
| { |
| if (!t) |
| return; |
| |
| suspend_targets(t, POSTSUSPEND); |
| } |
| |
| int dm_table_resume_targets(struct dm_table *t) |
| { |
| unsigned int i; |
| int r = 0; |
| |
| lockdep_assert_held(&t->md->suspend_lock); |
| |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (!ti->type->preresume) |
| continue; |
| |
| r = ti->type->preresume(ti); |
| if (r) { |
| DMERR("%s: %s: preresume failed, error = %d", |
| dm_device_name(t->md), ti->type->name, r); |
| return r; |
| } |
| } |
| |
| for (i = 0; i < t->num_targets; i++) { |
| struct dm_target *ti = dm_table_get_target(t, i); |
| |
| if (ti->type->resume) |
| ti->type->resume(ti); |
| } |
| |
| return 0; |
| } |
| |
| struct mapped_device *dm_table_get_md(struct dm_table *t) |
| { |
| return t->md; |
| } |
| EXPORT_SYMBOL(dm_table_get_md); |
| |
| const char *dm_table_device_name(struct dm_table *t) |
| { |
| return dm_device_name(t->md); |
| } |
| EXPORT_SYMBOL_GPL(dm_table_device_name); |
| |
| void dm_table_run_md_queue_async(struct dm_table *t) |
| { |
| if (!dm_table_request_based(t)) |
| return; |
| |
| if (t->md->queue) |
| blk_mq_run_hw_queues(t->md->queue, true); |
| } |
| EXPORT_SYMBOL(dm_table_run_md_queue_async); |
| |