blob: bdf8e55ed308e7b8cd25819108ccb517f0db6662 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Stand-alone page-table allocator for hyp stage-1 and guest stage-2.
* No bombay mix was harmed in the writing of this file.
*
* Copyright (C) 2020 Google LLC
* Author: Will Deacon <will@kernel.org>
*/
#include <linux/bitfield.h>
#include <asm/kvm_pgtable.h>
#define KVM_PGTABLE_MAX_LEVELS 4U
#define KVM_PTE_VALID BIT(0)
#define KVM_PTE_TYPE BIT(1)
#define KVM_PTE_TYPE_BLOCK 0
#define KVM_PTE_TYPE_PAGE 1
#define KVM_PTE_TYPE_TABLE 1
#define KVM_PTE_ADDR_MASK GENMASK(47, PAGE_SHIFT)
#define KVM_PTE_ADDR_51_48 GENMASK(15, 12)
#define KVM_PTE_LEAF_ATTR_LO GENMASK(11, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX GENMASK(4, 2)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP GENMASK(7, 6)
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RO 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AP_RW 1
#define KVM_PTE_LEAF_ATTR_LO_S1_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S1_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S1_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR GENMASK(5, 2)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R BIT(6)
#define KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W BIT(7)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH GENMASK(9, 8)
#define KVM_PTE_LEAF_ATTR_LO_S2_SH_IS 3
#define KVM_PTE_LEAF_ATTR_LO_S2_AF BIT(10)
#define KVM_PTE_LEAF_ATTR_HI GENMASK(63, 51)
#define KVM_PTE_LEAF_ATTR_HI_S1_XN BIT(54)
#define KVM_PTE_LEAF_ATTR_HI_S2_XN BIT(54)
struct kvm_pgtable_walk_data {
struct kvm_pgtable *pgt;
struct kvm_pgtable_walker *walker;
u64 addr;
u64 end;
};
static u64 kvm_granule_shift(u32 level)
{
/* Assumes KVM_PGTABLE_MAX_LEVELS is 4 */
return ARM64_HW_PGTABLE_LEVEL_SHIFT(level);
}
static u64 kvm_granule_size(u32 level)
{
return BIT(kvm_granule_shift(level));
}
static bool kvm_block_mapping_supported(u64 addr, u64 end, u64 phys, u32 level)
{
u64 granule = kvm_granule_size(level);
/*
* Reject invalid block mappings and don't bother with 4TB mappings for
* 52-bit PAs.
*/
if (level == 0 || (PAGE_SIZE != SZ_4K && level == 1))
return false;
if (granule > (end - addr))
return false;
return IS_ALIGNED(addr, granule) && IS_ALIGNED(phys, granule);
}
static u32 kvm_pgtable_idx(struct kvm_pgtable_walk_data *data, u32 level)
{
u64 shift = kvm_granule_shift(level);
u64 mask = BIT(PAGE_SHIFT - 3) - 1;
return (data->addr >> shift) & mask;
}
static u32 __kvm_pgd_page_idx(struct kvm_pgtable *pgt, u64 addr)
{
u64 shift = kvm_granule_shift(pgt->start_level - 1); /* May underflow */
u64 mask = BIT(pgt->ia_bits) - 1;
return (addr & mask) >> shift;
}
static u32 kvm_pgd_page_idx(struct kvm_pgtable_walk_data *data)
{
return __kvm_pgd_page_idx(data->pgt, data->addr);
}
static u32 kvm_pgd_pages(u32 ia_bits, u32 start_level)
{
struct kvm_pgtable pgt = {
.ia_bits = ia_bits,
.start_level = start_level,
};
return __kvm_pgd_page_idx(&pgt, -1ULL) + 1;
}
static bool kvm_pte_valid(kvm_pte_t pte)
{
return pte & KVM_PTE_VALID;
}
static bool kvm_pte_table(kvm_pte_t pte, u32 level)
{
if (level == KVM_PGTABLE_MAX_LEVELS - 1)
return false;
if (!kvm_pte_valid(pte))
return false;
return FIELD_GET(KVM_PTE_TYPE, pte) == KVM_PTE_TYPE_TABLE;
}
static u64 kvm_pte_to_phys(kvm_pte_t pte)
{
u64 pa = pte & KVM_PTE_ADDR_MASK;
if (PAGE_SHIFT == 16)
pa |= FIELD_GET(KVM_PTE_ADDR_51_48, pte) << 48;
return pa;
}
static kvm_pte_t kvm_phys_to_pte(u64 pa)
{
kvm_pte_t pte = pa & KVM_PTE_ADDR_MASK;
if (PAGE_SHIFT == 16)
pte |= FIELD_PREP(KVM_PTE_ADDR_51_48, pa >> 48);
return pte;
}
static kvm_pte_t *kvm_pte_follow(kvm_pte_t pte)
{
return __va(kvm_pte_to_phys(pte));
}
static void kvm_set_invalid_pte(kvm_pte_t *ptep)
{
kvm_pte_t pte = *ptep;
WRITE_ONCE(*ptep, pte & ~KVM_PTE_VALID);
}
static void kvm_set_table_pte(kvm_pte_t *ptep, kvm_pte_t *childp)
{
kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(__pa(childp));
pte |= FIELD_PREP(KVM_PTE_TYPE, KVM_PTE_TYPE_TABLE);
pte |= KVM_PTE_VALID;
WARN_ON(kvm_pte_valid(old));
smp_store_release(ptep, pte);
}
static bool kvm_set_valid_leaf_pte(kvm_pte_t *ptep, u64 pa, kvm_pte_t attr,
u32 level)
{
kvm_pte_t old = *ptep, pte = kvm_phys_to_pte(pa);
u64 type = (level == KVM_PGTABLE_MAX_LEVELS - 1) ? KVM_PTE_TYPE_PAGE :
KVM_PTE_TYPE_BLOCK;
pte |= attr & (KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI);
pte |= FIELD_PREP(KVM_PTE_TYPE, type);
pte |= KVM_PTE_VALID;
/* Tolerate KVM recreating the exact same mapping. */
if (kvm_pte_valid(old))
return old == pte;
smp_store_release(ptep, pte);
return true;
}
static int kvm_pgtable_visitor_cb(struct kvm_pgtable_walk_data *data, u64 addr,
u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag)
{
struct kvm_pgtable_walker *walker = data->walker;
return walker->cb(addr, data->end, level, ptep, flag, walker->arg);
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
kvm_pte_t *pgtable, u32 level);
static inline int __kvm_pgtable_visit(struct kvm_pgtable_walk_data *data,
kvm_pte_t *ptep, u32 level)
{
int ret = 0;
u64 addr = data->addr;
kvm_pte_t *childp, pte = *ptep;
bool table = kvm_pte_table(pte, level);
enum kvm_pgtable_walk_flags flags = data->walker->flags;
if (table && (flags & KVM_PGTABLE_WALK_TABLE_PRE)) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_TABLE_PRE);
}
if (!table && (flags & KVM_PGTABLE_WALK_LEAF)) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_LEAF);
pte = *ptep;
table = kvm_pte_table(pte, level);
}
if (ret)
goto out;
if (!table) {
data->addr += kvm_granule_size(level);
goto out;
}
childp = kvm_pte_follow(pte);
ret = __kvm_pgtable_walk(data, childp, level + 1);
if (ret)
goto out;
if (flags & KVM_PGTABLE_WALK_TABLE_POST) {
ret = kvm_pgtable_visitor_cb(data, addr, level, ptep,
KVM_PGTABLE_WALK_TABLE_POST);
}
out:
return ret;
}
static int __kvm_pgtable_walk(struct kvm_pgtable_walk_data *data,
kvm_pte_t *pgtable, u32 level)
{
u32 idx;
int ret = 0;
if (WARN_ON_ONCE(level >= KVM_PGTABLE_MAX_LEVELS))
return -EINVAL;
for (idx = kvm_pgtable_idx(data, level); idx < PTRS_PER_PTE; ++idx) {
kvm_pte_t *ptep = &pgtable[idx];
if (data->addr >= data->end)
break;
ret = __kvm_pgtable_visit(data, ptep, level);
if (ret)
break;
}
return ret;
}
static int _kvm_pgtable_walk(struct kvm_pgtable_walk_data *data)
{
u32 idx;
int ret = 0;
struct kvm_pgtable *pgt = data->pgt;
u64 limit = BIT(pgt->ia_bits);
if (data->addr > limit || data->end > limit)
return -ERANGE;
if (!pgt->pgd)
return -EINVAL;
for (idx = kvm_pgd_page_idx(data); data->addr < data->end; ++idx) {
kvm_pte_t *ptep = &pgt->pgd[idx * PTRS_PER_PTE];
ret = __kvm_pgtable_walk(data, ptep, pgt->start_level);
if (ret)
break;
}
return ret;
}
int kvm_pgtable_walk(struct kvm_pgtable *pgt, u64 addr, u64 size,
struct kvm_pgtable_walker *walker)
{
struct kvm_pgtable_walk_data walk_data = {
.pgt = pgt,
.addr = ALIGN_DOWN(addr, PAGE_SIZE),
.end = PAGE_ALIGN(walk_data.addr + size),
.walker = walker,
};
return _kvm_pgtable_walk(&walk_data);
}
struct hyp_map_data {
u64 phys;
kvm_pte_t attr;
};
static int hyp_map_set_prot_attr(enum kvm_pgtable_prot prot,
struct hyp_map_data *data)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
u32 mtype = device ? MT_DEVICE_nGnRE : MT_NORMAL;
kvm_pte_t attr = FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_ATTRIDX, mtype);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S1_SH_IS;
u32 ap = (prot & KVM_PGTABLE_PROT_W) ? KVM_PTE_LEAF_ATTR_LO_S1_AP_RW :
KVM_PTE_LEAF_ATTR_LO_S1_AP_RO;
if (!(prot & KVM_PGTABLE_PROT_R))
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_X) {
if (prot & KVM_PGTABLE_PROT_W)
return -EINVAL;
if (device)
return -EINVAL;
} else {
attr |= KVM_PTE_LEAF_ATTR_HI_S1_XN;
}
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_AP, ap);
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S1_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S1_AF;
data->attr = attr;
return 0;
}
static bool hyp_map_walker_try_leaf(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep, struct hyp_map_data *data)
{
u64 granule = kvm_granule_size(level), phys = data->phys;
if (!kvm_block_mapping_supported(addr, end, phys, level))
return false;
WARN_ON(!kvm_set_valid_leaf_pte(ptep, phys, data->attr, level));
data->phys += granule;
return true;
}
static int hyp_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
kvm_pte_t *childp;
if (hyp_map_walker_try_leaf(addr, end, level, ptep, arg))
return 0;
if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
childp = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
if (!childp)
return -ENOMEM;
kvm_set_table_pte(ptep, childp);
return 0;
}
int kvm_pgtable_hyp_map(struct kvm_pgtable *pgt, u64 addr, u64 size, u64 phys,
enum kvm_pgtable_prot prot)
{
int ret;
struct hyp_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
};
struct kvm_pgtable_walker walker = {
.cb = hyp_map_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
.arg = &map_data,
};
ret = hyp_map_set_prot_attr(prot, &map_data);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
isb();
return ret;
}
int kvm_pgtable_hyp_init(struct kvm_pgtable *pgt, u32 va_bits)
{
u64 levels = ARM64_HW_PGTABLE_LEVELS(va_bits);
pgt->pgd = (kvm_pte_t *)get_zeroed_page(GFP_KERNEL);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = va_bits;
pgt->start_level = KVM_PGTABLE_MAX_LEVELS - levels;
pgt->mmu = NULL;
return 0;
}
static int hyp_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
free_page((unsigned long)kvm_pte_follow(*ptep));
return 0;
}
void kvm_pgtable_hyp_destroy(struct kvm_pgtable *pgt)
{
struct kvm_pgtable_walker walker = {
.cb = hyp_free_walker,
.flags = KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
free_page((unsigned long)pgt->pgd);
pgt->pgd = NULL;
}
struct stage2_map_data {
u64 phys;
kvm_pte_t attr;
kvm_pte_t *anchor;
struct kvm_s2_mmu *mmu;
struct kvm_mmu_memory_cache *memcache;
};
static int stage2_map_set_prot_attr(enum kvm_pgtable_prot prot,
struct stage2_map_data *data)
{
bool device = prot & KVM_PGTABLE_PROT_DEVICE;
kvm_pte_t attr = device ? PAGE_S2_MEMATTR(DEVICE_nGnRE) :
PAGE_S2_MEMATTR(NORMAL);
u32 sh = KVM_PTE_LEAF_ATTR_LO_S2_SH_IS;
if (!(prot & KVM_PGTABLE_PROT_X))
attr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
else if (device)
return -EINVAL;
if (prot & KVM_PGTABLE_PROT_R)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
attr |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
attr |= FIELD_PREP(KVM_PTE_LEAF_ATTR_LO_S2_SH, sh);
attr |= KVM_PTE_LEAF_ATTR_LO_S2_AF;
data->attr = attr;
return 0;
}
static bool stage2_map_walker_try_leaf(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
u64 granule = kvm_granule_size(level), phys = data->phys;
if (!kvm_block_mapping_supported(addr, end, phys, level))
return false;
/*
* If the PTE was already valid, drop the refcount on the table
* early, as it will be bumped-up again in stage2_map_walk_leaf().
* This ensures that the refcount stays constant across a valid to
* valid PTE update.
*/
if (kvm_pte_valid(*ptep))
put_page(virt_to_page(ptep));
if (kvm_set_valid_leaf_pte(ptep, phys, data->attr, level))
goto out;
/* There's an existing valid leaf entry, so perform break-before-make */
kvm_set_invalid_pte(ptep);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
kvm_set_valid_leaf_pte(ptep, phys, data->attr, level);
out:
data->phys += granule;
return true;
}
static int stage2_map_walk_table_pre(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
if (data->anchor)
return 0;
if (!kvm_block_mapping_supported(addr, end, data->phys, level))
return 0;
kvm_set_invalid_pte(ptep);
/*
* Invalidate the whole stage-2, as we may have numerous leaf
* entries below us which would otherwise need invalidating
* individually.
*/
kvm_call_hyp(__kvm_tlb_flush_vmid, data->mmu);
data->anchor = ptep;
return 0;
}
static int stage2_map_walk_leaf(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
struct stage2_map_data *data)
{
kvm_pte_t *childp, pte = *ptep;
struct page *page = virt_to_page(ptep);
if (data->anchor) {
if (kvm_pte_valid(pte))
put_page(page);
return 0;
}
if (stage2_map_walker_try_leaf(addr, end, level, ptep, data))
goto out_get_page;
if (WARN_ON(level == KVM_PGTABLE_MAX_LEVELS - 1))
return -EINVAL;
if (!data->memcache)
return -ENOMEM;
childp = kvm_mmu_memory_cache_alloc(data->memcache);
if (!childp)
return -ENOMEM;
/*
* If we've run into an existing block mapping then replace it with
* a table. Accesses beyond 'end' that fall within the new table
* will be mapped lazily.
*/
if (kvm_pte_valid(pte)) {
kvm_set_invalid_pte(ptep);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, data->mmu, addr, level);
put_page(page);
}
kvm_set_table_pte(ptep, childp);
out_get_page:
get_page(page);
return 0;
}
static int stage2_map_walk_table_post(u64 addr, u64 end, u32 level,
kvm_pte_t *ptep,
struct stage2_map_data *data)
{
int ret = 0;
if (!data->anchor)
return 0;
free_page((unsigned long)kvm_pte_follow(*ptep));
put_page(virt_to_page(ptep));
if (data->anchor == ptep) {
data->anchor = NULL;
ret = stage2_map_walk_leaf(addr, end, level, ptep, data);
}
return ret;
}
/*
* This is a little fiddly, as we use all three of the walk flags. The idea
* is that the TABLE_PRE callback runs for table entries on the way down,
* looking for table entries which we could conceivably replace with a
* block entry for this mapping. If it finds one, then it sets the 'anchor'
* field in 'struct stage2_map_data' to point at the table entry, before
* clearing the entry to zero and descending into the now detached table.
*
* The behaviour of the LEAF callback then depends on whether or not the
* anchor has been set. If not, then we're not using a block mapping higher
* up the table and we perform the mapping at the existing leaves instead.
* If, on the other hand, the anchor _is_ set, then we drop references to
* all valid leaves so that the pages beneath the anchor can be freed.
*
* Finally, the TABLE_POST callback does nothing if the anchor has not
* been set, but otherwise frees the page-table pages while walking back up
* the page-table, installing the block entry when it revisits the anchor
* pointer and clearing the anchor to NULL.
*/
static int stage2_map_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag, void * const arg)
{
struct stage2_map_data *data = arg;
switch (flag) {
case KVM_PGTABLE_WALK_TABLE_PRE:
return stage2_map_walk_table_pre(addr, end, level, ptep, data);
case KVM_PGTABLE_WALK_LEAF:
return stage2_map_walk_leaf(addr, end, level, ptep, data);
case KVM_PGTABLE_WALK_TABLE_POST:
return stage2_map_walk_table_post(addr, end, level, ptep, data);
}
return -EINVAL;
}
int kvm_pgtable_stage2_map(struct kvm_pgtable *pgt, u64 addr, u64 size,
u64 phys, enum kvm_pgtable_prot prot,
struct kvm_mmu_memory_cache *mc)
{
int ret;
struct stage2_map_data map_data = {
.phys = ALIGN_DOWN(phys, PAGE_SIZE),
.mmu = pgt->mmu,
.memcache = mc,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_map_walker,
.flags = KVM_PGTABLE_WALK_TABLE_PRE |
KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
.arg = &map_data,
};
ret = stage2_map_set_prot_attr(prot, &map_data);
if (ret)
return ret;
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
dsb(ishst);
return ret;
}
static void stage2_flush_dcache(void *addr, u64 size)
{
if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
return;
__flush_dcache_area(addr, size);
}
static bool stage2_pte_cacheable(kvm_pte_t pte)
{
u64 memattr = pte & KVM_PTE_LEAF_ATTR_LO_S2_MEMATTR;
return memattr == PAGE_S2_MEMATTR(NORMAL);
}
static int stage2_unmap_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
struct kvm_s2_mmu *mmu = arg;
kvm_pte_t pte = *ptep, *childp = NULL;
bool need_flush = false;
if (!kvm_pte_valid(pte))
return 0;
if (kvm_pte_table(pte, level)) {
childp = kvm_pte_follow(pte);
if (page_count(virt_to_page(childp)) != 1)
return 0;
} else if (stage2_pte_cacheable(pte)) {
need_flush = true;
}
/*
* This is similar to the map() path in that we unmap the entire
* block entry and rely on the remaining portions being faulted
* back lazily.
*/
kvm_set_invalid_pte(ptep);
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, mmu, addr, level);
put_page(virt_to_page(ptep));
if (need_flush) {
stage2_flush_dcache(kvm_pte_follow(pte),
kvm_granule_size(level));
}
if (childp)
free_page((unsigned long)childp);
return 0;
}
int kvm_pgtable_stage2_unmap(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_unmap_walker,
.arg = pgt->mmu,
.flags = KVM_PGTABLE_WALK_LEAF | KVM_PGTABLE_WALK_TABLE_POST,
};
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
struct stage2_attr_data {
kvm_pte_t attr_set;
kvm_pte_t attr_clr;
kvm_pte_t pte;
u32 level;
};
static int stage2_attr_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
kvm_pte_t pte = *ptep;
struct stage2_attr_data *data = arg;
if (!kvm_pte_valid(pte))
return 0;
data->level = level;
data->pte = pte;
pte &= ~data->attr_clr;
pte |= data->attr_set;
/*
* We may race with the CPU trying to set the access flag here,
* but worst-case the access flag update gets lost and will be
* set on the next access instead.
*/
if (data->pte != pte)
WRITE_ONCE(*ptep, pte);
return 0;
}
static int stage2_update_leaf_attrs(struct kvm_pgtable *pgt, u64 addr,
u64 size, kvm_pte_t attr_set,
kvm_pte_t attr_clr, kvm_pte_t *orig_pte,
u32 *level)
{
int ret;
kvm_pte_t attr_mask = KVM_PTE_LEAF_ATTR_LO | KVM_PTE_LEAF_ATTR_HI;
struct stage2_attr_data data = {
.attr_set = attr_set & attr_mask,
.attr_clr = attr_clr & attr_mask,
};
struct kvm_pgtable_walker walker = {
.cb = stage2_attr_walker,
.arg = &data,
.flags = KVM_PGTABLE_WALK_LEAF,
};
ret = kvm_pgtable_walk(pgt, addr, size, &walker);
if (ret)
return ret;
if (orig_pte)
*orig_pte = data.pte;
if (level)
*level = data.level;
return 0;
}
int kvm_pgtable_stage2_wrprotect(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
return stage2_update_leaf_attrs(pgt, addr, size, 0,
KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W,
NULL, NULL);
}
kvm_pte_t kvm_pgtable_stage2_mkyoung(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, KVM_PTE_LEAF_ATTR_LO_S2_AF, 0,
&pte, NULL);
dsb(ishst);
return pte;
}
kvm_pte_t kvm_pgtable_stage2_mkold(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, 0, KVM_PTE_LEAF_ATTR_LO_S2_AF,
&pte, NULL);
/*
* "But where's the TLBI?!", you scream.
* "Over in the core code", I sigh.
*
* See the '->clear_flush_young()' callback on the KVM mmu notifier.
*/
return pte;
}
bool kvm_pgtable_stage2_is_young(struct kvm_pgtable *pgt, u64 addr)
{
kvm_pte_t pte = 0;
stage2_update_leaf_attrs(pgt, addr, 1, 0, 0, &pte, NULL);
return pte & KVM_PTE_LEAF_ATTR_LO_S2_AF;
}
int kvm_pgtable_stage2_relax_perms(struct kvm_pgtable *pgt, u64 addr,
enum kvm_pgtable_prot prot)
{
int ret;
u32 level;
kvm_pte_t set = 0, clr = 0;
if (prot & KVM_PGTABLE_PROT_R)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_R;
if (prot & KVM_PGTABLE_PROT_W)
set |= KVM_PTE_LEAF_ATTR_LO_S2_S2AP_W;
if (prot & KVM_PGTABLE_PROT_X)
clr |= KVM_PTE_LEAF_ATTR_HI_S2_XN;
ret = stage2_update_leaf_attrs(pgt, addr, 1, set, clr, NULL, &level);
if (!ret)
kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, pgt->mmu, addr, level);
return ret;
}
static int stage2_flush_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
kvm_pte_t pte = *ptep;
if (!kvm_pte_valid(pte) || !stage2_pte_cacheable(pte))
return 0;
stage2_flush_dcache(kvm_pte_follow(pte), kvm_granule_size(level));
return 0;
}
int kvm_pgtable_stage2_flush(struct kvm_pgtable *pgt, u64 addr, u64 size)
{
struct kvm_pgtable_walker walker = {
.cb = stage2_flush_walker,
.flags = KVM_PGTABLE_WALK_LEAF,
};
if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
return 0;
return kvm_pgtable_walk(pgt, addr, size, &walker);
}
int kvm_pgtable_stage2_init(struct kvm_pgtable *pgt, struct kvm *kvm)
{
size_t pgd_sz;
u64 vtcr = kvm->arch.vtcr;
u32 ia_bits = VTCR_EL2_IPA(vtcr);
u32 sl0 = FIELD_GET(VTCR_EL2_SL0_MASK, vtcr);
u32 start_level = VTCR_EL2_TGRAN_SL0_BASE - sl0;
pgd_sz = kvm_pgd_pages(ia_bits, start_level) * PAGE_SIZE;
pgt->pgd = alloc_pages_exact(pgd_sz, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
if (!pgt->pgd)
return -ENOMEM;
pgt->ia_bits = ia_bits;
pgt->start_level = start_level;
pgt->mmu = &kvm->arch.mmu;
/* Ensure zeroed PGD pages are visible to the hardware walker */
dsb(ishst);
return 0;
}
static int stage2_free_walker(u64 addr, u64 end, u32 level, kvm_pte_t *ptep,
enum kvm_pgtable_walk_flags flag,
void * const arg)
{
kvm_pte_t pte = *ptep;
if (!kvm_pte_valid(pte))
return 0;
put_page(virt_to_page(ptep));
if (kvm_pte_table(pte, level))
free_page((unsigned long)kvm_pte_follow(pte));
return 0;
}
void kvm_pgtable_stage2_destroy(struct kvm_pgtable *pgt)
{
size_t pgd_sz;
struct kvm_pgtable_walker walker = {
.cb = stage2_free_walker,
.flags = KVM_PGTABLE_WALK_LEAF |
KVM_PGTABLE_WALK_TABLE_POST,
};
WARN_ON(kvm_pgtable_walk(pgt, 0, BIT(pgt->ia_bits), &walker));
pgd_sz = kvm_pgd_pages(pgt->ia_bits, pgt->start_level) * PAGE_SIZE;
free_pages_exact(pgt->pgd, pgd_sz);
pgt->pgd = NULL;
}