blob: a667078a51807bb5bd1ca2e5d5c4ff205e9dd42b [file] [log] [blame]
/*
* Per core/cpu state
*
* Used to coordinate shared registers between HT threads or
* among events on a single PMU.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/nmi.h>
#include <asm/cpufeature.h>
#include <asm/hardirq.h>
#include <asm/apic.h>
#include "perf_event.h"
/*
* Intel PerfMon, used on Core and later.
*/
static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
[PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
};
static struct event_constraint intel_core_event_constraints[] __read_mostly =
{
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_core2_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
EVENT_EXTRA_END
};
static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_snb_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
EVENT_EXTRA_END
};
static struct event_constraint intel_v1_event_constraints[] __read_mostly =
{
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_gen_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
EVENT_CONSTRAINT_END
};
static struct event_constraint intel_slm_event_constraints[] __read_mostly =
{
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_skl_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
EVENT_CONSTRAINT_END
};
static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x01b7,
MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7,
MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
EVENT_EXTRA_END
};
static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
EVENT_EXTRA_END
};
static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
EVENT_EXTRA_END
};
static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
/*
* Note the low 8 bits eventsel code is not a continuous field, containing
* some #GPing bits. These are masked out.
*/
INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
EVENT_EXTRA_END
};
EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
struct attribute *nhm_events_attrs[] = {
EVENT_PTR(mem_ld_nhm),
NULL,
};
struct attribute *snb_events_attrs[] = {
EVENT_PTR(mem_ld_snb),
EVENT_PTR(mem_st_snb),
NULL,
};
static struct event_constraint intel_hsw_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
EVENT_CONSTRAINT_END
};
struct event_constraint intel_bdw_event_constraints[] = {
FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
EVENT_CONSTRAINT_END
};
static u64 intel_pmu_event_map(int hw_event)
{
return intel_perfmon_event_map[hw_event];
}
/*
* Notes on the events:
* - data reads do not include code reads (comparable to earlier tables)
* - data counts include speculative execution (except L1 write, dtlb, bpu)
* - remote node access includes remote memory, remote cache, remote mmio.
* - prefetches are not included in the counts.
* - icache miss does not include decoded icache
*/
#define SKL_DEMAND_DATA_RD BIT_ULL(0)
#define SKL_DEMAND_RFO BIT_ULL(1)
#define SKL_ANY_RESPONSE BIT_ULL(16)
#define SKL_SUPPLIER_NONE BIT_ULL(17)
#define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
#define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
#define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
#define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
#define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
SKL_L3_MISS_REMOTE_HOP0_DRAM| \
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
#define SKL_SPL_HIT BIT_ULL(30)
#define SKL_SNOOP_NONE BIT_ULL(31)
#define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
#define SKL_SNOOP_MISS BIT_ULL(33)
#define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
#define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
#define SKL_SNOOP_HITM BIT_ULL(36)
#define SKL_SNOOP_NON_DRAM BIT_ULL(37)
#define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
#define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
#define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
SKL_SNOOP_HITM|SKL_SPL_HIT)
#define SKL_DEMAND_WRITE SKL_DEMAND_RFO
#define SKL_LLC_ACCESS SKL_ANY_RESPONSE
#define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
SKL_L3_MISS_REMOTE_HOP1_DRAM| \
SKL_L3_MISS_REMOTE_HOP2P_DRAM)
static __initconst const u64 skl_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x608, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x649, /* DTLB_STORE_MISSES.WALK_COMPLETED */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 skl_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
SKL_L3_MISS|SKL_ANY_SNOOP|
SKL_SUPPLIER_NONE,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
SKL_LLC_ACCESS|SKL_ANY_SNOOP,
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS|SKL_ANY_SNOOP|
SKL_SUPPLIER_NONE,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
[ C(RESULT_MISS) ] = SKL_DEMAND_READ|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
[ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
#define SNB_DMND_DATA_RD (1ULL << 0)
#define SNB_DMND_RFO (1ULL << 1)
#define SNB_DMND_IFETCH (1ULL << 2)
#define SNB_DMND_WB (1ULL << 3)
#define SNB_PF_DATA_RD (1ULL << 4)
#define SNB_PF_RFO (1ULL << 5)
#define SNB_PF_IFETCH (1ULL << 6)
#define SNB_LLC_DATA_RD (1ULL << 7)
#define SNB_LLC_RFO (1ULL << 8)
#define SNB_LLC_IFETCH (1ULL << 9)
#define SNB_BUS_LOCKS (1ULL << 10)
#define SNB_STRM_ST (1ULL << 11)
#define SNB_OTHER (1ULL << 15)
#define SNB_RESP_ANY (1ULL << 16)
#define SNB_NO_SUPP (1ULL << 17)
#define SNB_LLC_HITM (1ULL << 18)
#define SNB_LLC_HITE (1ULL << 19)
#define SNB_LLC_HITS (1ULL << 20)
#define SNB_LLC_HITF (1ULL << 21)
#define SNB_LOCAL (1ULL << 22)
#define SNB_REMOTE (0xffULL << 23)
#define SNB_SNP_NONE (1ULL << 31)
#define SNB_SNP_NOT_NEEDED (1ULL << 32)
#define SNB_SNP_MISS (1ULL << 33)
#define SNB_NO_FWD (1ULL << 34)
#define SNB_SNP_FWD (1ULL << 35)
#define SNB_HITM (1ULL << 36)
#define SNB_NON_DRAM (1ULL << 37)
#define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
#define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
#define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
#define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
SNB_HITM)
#define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
#define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
#define SNB_L3_ACCESS SNB_RESP_ANY
#define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
static __initconst const u64 snb_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
[ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
},
},
};
static __initconst const u64 snb_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
[ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
/*
* Notes on the events:
* - data reads do not include code reads (comparable to earlier tables)
* - data counts include speculative execution (except L1 write, dtlb, bpu)
* - remote node access includes remote memory, remote cache, remote mmio.
* - prefetches are not included in the counts because they are not
* reliably counted.
*/
#define HSW_DEMAND_DATA_RD BIT_ULL(0)
#define HSW_DEMAND_RFO BIT_ULL(1)
#define HSW_ANY_RESPONSE BIT_ULL(16)
#define HSW_SUPPLIER_NONE BIT_ULL(17)
#define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
#define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
#define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
#define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
#define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_SNOOP_NONE BIT_ULL(31)
#define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
#define HSW_SNOOP_MISS BIT_ULL(33)
#define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
#define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
#define HSW_SNOOP_HITM BIT_ULL(36)
#define HSW_SNOOP_NON_DRAM BIT_ULL(37)
#define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
#define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
#define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
#define HSW_DEMAND_WRITE HSW_DEMAND_RFO
#define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
#define HSW_LLC_ACCESS HSW_ANY_RESPONSE
#define BDW_L3_MISS_LOCAL BIT(26)
#define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
HSW_L3_MISS_REMOTE_HOP2P)
static __initconst const u64 hsw_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
[ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
[ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
[ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
[ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 hsw_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
HSW_LLC_ACCESS,
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
HSW_L3_MISS|HSW_ANY_SNOOP,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
HSW_LLC_ACCESS,
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS|HSW_ANY_SNOOP,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
HSW_L3_MISS_LOCAL_DRAM|
HSW_SNOOP_DRAM,
[ C(RESULT_MISS) ] = HSW_DEMAND_READ|
HSW_L3_MISS_REMOTE|
HSW_SNOOP_DRAM,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS_LOCAL_DRAM|
HSW_SNOOP_DRAM,
[ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
HSW_L3_MISS_REMOTE|
HSW_SNOOP_DRAM,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
};
static __initconst const u64 westmere_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
/*
* Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
* See IA32 SDM Vol 3B 30.6.1.3
*/
#define NHM_DMND_DATA_RD (1 << 0)
#define NHM_DMND_RFO (1 << 1)
#define NHM_DMND_IFETCH (1 << 2)
#define NHM_DMND_WB (1 << 3)
#define NHM_PF_DATA_RD (1 << 4)
#define NHM_PF_DATA_RFO (1 << 5)
#define NHM_PF_IFETCH (1 << 6)
#define NHM_OFFCORE_OTHER (1 << 7)
#define NHM_UNCORE_HIT (1 << 8)
#define NHM_OTHER_CORE_HIT_SNP (1 << 9)
#define NHM_OTHER_CORE_HITM (1 << 10)
/* reserved */
#define NHM_REMOTE_CACHE_FWD (1 << 12)
#define NHM_REMOTE_DRAM (1 << 13)
#define NHM_LOCAL_DRAM (1 << 14)
#define NHM_NON_DRAM (1 << 15)
#define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_REMOTE (NHM_REMOTE_DRAM)
#define NHM_DMND_READ (NHM_DMND_DATA_RD)
#define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
#define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
#define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
#define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
#define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
static __initconst const u64 nehalem_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
[ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
},
},
};
static __initconst const u64 nehalem_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
[ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
[ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
/*
* Use RFO, not WRITEBACK, because a write miss would typically occur
* on RFO.
*/
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(NODE) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0x01b7,
},
},
};
static __initconst const u64 core2_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static __initconst const u64 atom_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static struct extra_reg intel_slm_extra_regs[] __read_mostly =
{
/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
EVENT_EXTRA_END
};
#define SLM_DMND_READ SNB_DMND_DATA_RD
#define SLM_DMND_WRITE SNB_DMND_RFO
#define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
#define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
#define SLM_LLC_ACCESS SNB_RESP_ANY
#define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
static __initconst const u64 slm_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
[ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
},
},
};
static __initconst const u64 slm_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
[ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
[ C(OP_PREFETCH) ] = {
/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
[ C(RESULT_ACCESS) ] = 0x01b7,
/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
[ C(RESULT_MISS) ] = 0x01b7,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
#define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
#define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
#define KNL_MCDRAM_LOCAL BIT_ULL(21)
#define KNL_MCDRAM_FAR BIT_ULL(22)
#define KNL_DDR_LOCAL BIT_ULL(23)
#define KNL_DDR_FAR BIT_ULL(24)
#define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
KNL_DDR_LOCAL | KNL_DDR_FAR)
#define KNL_L2_READ SLM_DMND_READ
#define KNL_L2_WRITE SLM_DMND_WRITE
#define KNL_L2_PREFETCH SLM_DMND_PREFETCH
#define KNL_L2_ACCESS SLM_LLC_ACCESS
#define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
KNL_DRAM_ANY | SNB_SNP_ANY | \
SNB_NON_DRAM)
static __initconst const u64 knl_hw_cache_extra_regs
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(LL)] = {
[C(OP_READ)] = {
[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
[C(RESULT_MISS)] = 0,
},
[C(OP_WRITE)] = {
[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
[C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
},
[C(OP_PREFETCH)] = {
[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
[C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
},
},
};
/*
* Use from PMIs where the LBRs are already disabled.
*/
static void __intel_pmu_disable_all(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
intel_pmu_disable_bts();
else
intel_bts_disable_local();
intel_pmu_pebs_disable_all();
}
static void intel_pmu_disable_all(void)
{
__intel_pmu_disable_all();
intel_pmu_lbr_disable_all();
}
static void __intel_pmu_enable_all(int added, bool pmi)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
intel_pmu_pebs_enable_all();
intel_pmu_lbr_enable_all(pmi);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
struct perf_event *event =
cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
if (WARN_ON_ONCE(!event))
return;
intel_pmu_enable_bts(event->hw.config);
} else
intel_bts_enable_local();
}
static void intel_pmu_enable_all(int added)
{
__intel_pmu_enable_all(added, false);
}
/*
* Workaround for:
* Intel Errata AAK100 (model 26)
* Intel Errata AAP53 (model 30)
* Intel Errata BD53 (model 44)
*
* The official story:
* These chips need to be 'reset' when adding counters by programming the
* magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
* in sequence on the same PMC or on different PMCs.
*
* In practise it appears some of these events do in fact count, and
* we need to programm all 4 events.
*/
static void intel_pmu_nhm_workaround(void)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
static const unsigned long nhm_magic[4] = {
0x4300B5,
0x4300D2,
0x4300B1,
0x4300B1
};
struct perf_event *event;
int i;
/*
* The Errata requires below steps:
* 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
* 2) Configure 4 PERFEVTSELx with the magic events and clear
* the corresponding PMCx;
* 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
* 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
* 5) Clear 4 pairs of ERFEVTSELx and PMCx;
*/
/*
* The real steps we choose are a little different from above.
* A) To reduce MSR operations, we don't run step 1) as they
* are already cleared before this function is called;
* B) Call x86_perf_event_update to save PMCx before configuring
* PERFEVTSELx with magic number;
* C) With step 5), we do clear only when the PERFEVTSELx is
* not used currently.
* D) Call x86_perf_event_set_period to restore PMCx;
*/
/* We always operate 4 pairs of PERF Counters */
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event)
x86_perf_event_update(event);
}
for (i = 0; i < 4; i++) {
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
}
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
for (i = 0; i < 4; i++) {
event = cpuc->events[i];
if (event) {
x86_perf_event_set_period(event);
__x86_pmu_enable_event(&event->hw,
ARCH_PERFMON_EVENTSEL_ENABLE);
} else
wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
}
}
static void intel_pmu_nhm_enable_all(int added)
{
if (added)
intel_pmu_nhm_workaround();
intel_pmu_enable_all(added);
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
return status;
}
static inline void intel_pmu_ack_status(u64 ack)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}
static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
{
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
u64 ctrl_val, mask;
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
wrmsrl(hwc->config_base, ctrl_val);
}
static inline bool event_is_checkpointed(struct perf_event *event)
{
return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
}
static void intel_pmu_disable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
intel_pmu_disable_bts();
intel_pmu_drain_bts_buffer();
return;
}
cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
cpuc->intel_cp_status &= ~(1ull << hwc->idx);
/*
* must disable before any actual event
* because any event may be combined with LBR
*/
if (needs_branch_stack(event))
intel_pmu_lbr_disable(event);
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_disable_fixed(hwc);
return;
}
x86_pmu_disable_event(event);
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_disable(event);
}
static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
{
int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
u64 ctrl_val, bits, mask;
/*
* Enable IRQ generation (0x8),
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
* if requested:
*/
bits = 0x8ULL;
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
bits |= 0x2;
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
bits |= 0x1;
/*
* ANY bit is supported in v3 and up
*/
if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
bits |= 0x4;
bits <<= (idx * 4);
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
ctrl_val |= bits;
wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_enable_event(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
if (!__this_cpu_read(cpu_hw_events.enabled))
return;
intel_pmu_enable_bts(hwc->config);
return;
}
/*
* must enabled before any actual event
* because any event may be combined with LBR
*/
if (needs_branch_stack(event))
intel_pmu_lbr_enable(event);
if (event->attr.exclude_host)
cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
if (event->attr.exclude_guest)
cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
if (unlikely(event_is_checkpointed(event)))
cpuc->intel_cp_status |= (1ull << hwc->idx);
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_enable_fixed(hwc);
return;
}
if (unlikely(event->attr.precise_ip))
intel_pmu_pebs_enable(event);
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
/*
* Save and restart an expired event. Called by NMI contexts,
* so it has to be careful about preempting normal event ops:
*/
int intel_pmu_save_and_restart(struct perf_event *event)
{
x86_perf_event_update(event);
/*
* For a checkpointed counter always reset back to 0. This
* avoids a situation where the counter overflows, aborts the
* transaction and is then set back to shortly before the
* overflow, and overflows and aborts again.
*/
if (unlikely(event_is_checkpointed(event))) {
/* No race with NMIs because the counter should not be armed */
wrmsrl(event->hw.event_base, 0);
local64_set(&event->hw.prev_count, 0);
}
return x86_perf_event_set_period(event);
}
static void intel_pmu_reset(void)
{
struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
unsigned long flags;
int idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
if (ds)
ds->bts_index = ds->bts_buffer_base;
/* Ack all overflows and disable fixed counters */
if (x86_pmu.version >= 2) {
intel_pmu_ack_status(intel_pmu_get_status());
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
}
/* Reset LBRs and LBR freezing */
if (x86_pmu.lbr_nr) {
update_debugctlmsr(get_debugctlmsr() &
~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
}
local_irq_restore(flags);
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_events *cpuc;
int bit, loops;
u64 status;
int handled;
cpuc = this_cpu_ptr(&cpu_hw_events);
/*
* No known reason to not always do late ACK,
* but just in case do it opt-in.
*/
if (!x86_pmu.late_ack)
apic_write(APIC_LVTPC, APIC_DM_NMI);
__intel_pmu_disable_all();
handled = intel_pmu_drain_bts_buffer();
handled += intel_bts_interrupt();
status = intel_pmu_get_status();
if (!status)
goto done;
loops = 0;
again:
intel_pmu_lbr_read();
intel_pmu_ack_status(status);
if (++loops > 100) {
static bool warned = false;
if (!warned) {
WARN(1, "perfevents: irq loop stuck!\n");
perf_event_print_debug();
warned = true;
}
intel_pmu_reset();
goto done;
}
inc_irq_stat(apic_perf_irqs);
/*
* Ignore a range of extra bits in status that do not indicate
* overflow by themselves.
*/
status &= ~(GLOBAL_STATUS_COND_CHG |
GLOBAL_STATUS_ASIF |
GLOBAL_STATUS_LBRS_FROZEN);
if (!status)
goto done;
/*
* PEBS overflow sets bit 62 in the global status register
*/
if (__test_and_clear_bit(62, (unsigned long *)&status)) {
handled++;
x86_pmu.drain_pebs(regs);
}
/*
* Intel PT
*/
if (__test_and_clear_bit(55, (unsigned long *)&status)) {
handled++;
intel_pt_interrupt();
}
/*
* Checkpointed counters can lead to 'spurious' PMIs because the
* rollback caused by the PMI will have cleared the overflow status
* bit. Therefore always force probe these counters.
*/
status |= cpuc->intel_cp_status;
for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_event *event = cpuc->events[bit];
handled++;
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(event))
continue;
perf_sample_data_init(&data, 0, event->hw.last_period);
if (has_branch_stack(event))
data.br_stack = &cpuc->lbr_stack;
if (perf_event_overflow(event, &data, regs))
x86_pmu_stop(event, 0);
}
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
done:
__intel_pmu_enable_all(0, true);
/*
* Only unmask the NMI after the overflow counters
* have been reset. This avoids spurious NMIs on
* Haswell CPUs.
*/
if (x86_pmu.late_ack)
apic_write(APIC_LVTPC, APIC_DM_NMI);
return handled;
}
static struct event_constraint *
intel_bts_constraints(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
unsigned int hw_event, bts_event;
if (event->attr.freq)
return NULL;
hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
return &bts_constraint;
return NULL;
}
static int intel_alt_er(int idx, u64 config)
{
int alt_idx;
if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
return idx;
if (idx == EXTRA_REG_RSP_0)
alt_idx = EXTRA_REG_RSP_1;
if (idx == EXTRA_REG_RSP_1)
alt_idx = EXTRA_REG_RSP_0;
if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
return idx;
return alt_idx;
}
static void intel_fixup_er(struct perf_event *event, int idx)
{
event->hw.extra_reg.idx = idx;
if (idx == EXTRA_REG_RSP_0) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
} else if (idx == EXTRA_REG_RSP_1) {
event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
}
}
/*
* manage allocation of shared extra msr for certain events
*
* sharing can be:
* per-cpu: to be shared between the various events on a single PMU
* per-core: per-cpu + shared by HT threads
*/
static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event,
struct hw_perf_event_extra *reg)
{
struct event_constraint *c = &emptyconstraint;
struct er_account *era;
unsigned long flags;
int idx = reg->idx;
/*
* reg->alloc can be set due to existing state, so for fake cpuc we
* need to ignore this, otherwise we might fail to allocate proper fake
* state for this extra reg constraint. Also see the comment below.
*/
if (reg->alloc && !cpuc->is_fake)
return NULL; /* call x86_get_event_constraint() */
again:
era = &cpuc->shared_regs->regs[idx];
/*
* we use spin_lock_irqsave() to avoid lockdep issues when
* passing a fake cpuc
*/
raw_spin_lock_irqsave(&era->lock, flags);
if (!atomic_read(&era->ref) || era->config == reg->config) {
/*
* If its a fake cpuc -- as per validate_{group,event}() we
* shouldn't touch event state and we can avoid doing so
* since both will only call get_event_constraints() once
* on each event, this avoids the need for reg->alloc.
*
* Not doing the ER fixup will only result in era->reg being
* wrong, but since we won't actually try and program hardware
* this isn't a problem either.
*/
if (!cpuc->is_fake) {
if (idx != reg->idx)
intel_fixup_er(event, idx);
/*
* x86_schedule_events() can call get_event_constraints()
* multiple times on events in the case of incremental
* scheduling(). reg->alloc ensures we only do the ER
* allocation once.
*/
reg->alloc = 1;
}
/* lock in msr value */
era->config = reg->config;
era->reg = reg->reg;
/* one more user */
atomic_inc(&era->ref);
/*
* need to call x86_get_event_constraint()
* to check if associated event has constraints
*/
c = NULL;
} else {
idx = intel_alt_er(idx, reg->config);
if (idx != reg->idx) {
raw_spin_unlock_irqrestore(&era->lock, flags);
goto again;
}
}
raw_spin_unlock_irqrestore(&era->lock, flags);
return c;
}
static void
__intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
struct hw_perf_event_extra *reg)
{
struct er_account *era;
/*
* Only put constraint if extra reg was actually allocated. Also takes
* care of event which do not use an extra shared reg.
*
* Also, if this is a fake cpuc we shouldn't touch any event state
* (reg->alloc) and we don't care about leaving inconsistent cpuc state
* either since it'll be thrown out.
*/
if (!reg->alloc || cpuc->is_fake)
return;
era = &cpuc->shared_regs->regs[reg->idx];
/* one fewer user */
atomic_dec(&era->ref);
/* allocate again next time */
reg->alloc = 0;
}
static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct event_constraint *c = NULL, *d;
struct hw_perf_event_extra *xreg, *breg;
xreg = &event->hw.extra_reg;
if (xreg->idx != EXTRA_REG_NONE) {
c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
if (c == &emptyconstraint)
return c;
}
breg = &event->hw.branch_reg;
if (breg->idx != EXTRA_REG_NONE) {
d = __intel_shared_reg_get_constraints(cpuc, event, breg);
if (d == &emptyconstraint) {
__intel_shared_reg_put_constraints(cpuc, xreg);
c = d;
}
}
return c;
}
struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
if (x86_pmu.event_constraints) {
for_each_event_constraint(c, x86_pmu.event_constraints) {
if ((event->hw.config & c->cmask) == c->code) {
event->hw.flags |= c->flags;
return c;
}
}
}
return &unconstrained;
}
static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
c = intel_bts_constraints(event);
if (c)
return c;
c = intel_shared_regs_constraints(cpuc, event);
if (c)
return c;
c = intel_pebs_constraints(event);
if (c)
return c;
return x86_get_event_constraints(cpuc, idx, event);
}
static void
intel_start_scheduling(struct cpu_hw_events *cpuc)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xl;
int tid = cpuc->excl_thread_id;
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
return;
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
return;
xl = &excl_cntrs->states[tid];
xl->sched_started = true;
/*
* lock shared state until we are done scheduling
* in stop_event_scheduling()
* makes scheduling appear as a transaction
*/
raw_spin_lock(&excl_cntrs->lock);
}
static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct event_constraint *c = cpuc->event_constraint[idx];
struct intel_excl_states *xl;
int tid = cpuc->excl_thread_id;
if (cpuc->is_fake || !is_ht_workaround_enabled())
return;
if (WARN_ON_ONCE(!excl_cntrs))
return;
if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
return;
xl = &excl_cntrs->states[tid];
lockdep_assert_held(&excl_cntrs->lock);
if (c->flags & PERF_X86_EVENT_EXCL)
xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
else
xl->state[cntr] = INTEL_EXCL_SHARED;
}
static void
intel_stop_scheduling(struct cpu_hw_events *cpuc)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xl;
int tid = cpuc->excl_thread_id;
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
return;
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
return;
xl = &excl_cntrs->states[tid];
xl->sched_started = false;
/*
* release shared state lock (acquired in intel_start_scheduling())
*/
raw_spin_unlock(&excl_cntrs->lock);
}
static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
int idx, struct event_constraint *c)
{
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
struct intel_excl_states *xlo;
int tid = cpuc->excl_thread_id;
int is_excl, i;
/*
* validating a group does not require
* enforcing cross-thread exclusion
*/
if (cpuc->is_fake || !is_ht_workaround_enabled())
return c;
/*
* no exclusion needed
*/
if (WARN_ON_ONCE(!excl_cntrs))
return c;
/*
* because we modify the constraint, we need
* to make a copy. Static constraints come
* from static const tables.
*
* only needed when constraint has not yet
* been cloned (marked dynamic)
*/
if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
struct event_constraint *cx;
/*
* grab pre-allocated constraint entry
*/
cx = &cpuc->constraint_list[idx];
/*
* initialize dynamic constraint
* with static constraint
*/
*cx = *c;
/*
* mark constraint as dynamic, so we
* can free it later on
*/
cx->flags |= PERF_X86_EVENT_DYNAMIC;
c = cx;
}
/*
* From here on, the constraint is dynamic.
* Either it was just allocated above, or it
* was allocated during a earlier invocation
* of this function
*/
/*
* state of sibling HT
*/
xlo = &excl_cntrs->states[tid ^ 1];
/*
* event requires exclusive counter access
* across HT threads
*/
is_excl = c->flags & PERF_X86_EVENT_EXCL;
if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
if (!cpuc->n_excl++)
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
}
/*
* Modify static constraint with current dynamic
* state of thread
*
* EXCLUSIVE: sibling counter measuring exclusive event
* SHARED : sibling counter measuring non-exclusive event
* UNUSED : sibling counter unused
*/
for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
/*
* exclusive event in sibling counter
* our corresponding counter cannot be used
* regardless of our event
*/
if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
__clear_bit(i, c->idxmsk);
/*
* if measuring an exclusive event, sibling
* measuring non-exclusive, then counter cannot
* be used
*/
if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
__clear_bit(i, c->idxmsk);
}
/*
* recompute actual bit weight for scheduling algorithm
*/
c->weight = hweight64(c->idxmsk64);
/*
* if we return an empty mask, then switch
* back to static empty constraint to avoid
* the cost of freeing later on
*/
if (c->weight == 0)
c = &emptyconstraint;
return c;
}
static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c1 = NULL;
struct event_constraint *c2;
if (idx >= 0) /* fake does < 0 */
c1 = cpuc->event_constraint[idx];
/*
* first time only
* - static constraint: no change across incremental scheduling calls
* - dynamic constraint: handled by intel_get_excl_constraints()
*/
c2 = __intel_get_event_constraints(cpuc, idx, event);
if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
c1->weight = c2->weight;
c2 = c1;
}
if (cpuc->excl_cntrs)
return intel_get_excl_constraints(cpuc, event, idx, c2);
return c2;
}
static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
int tid = cpuc->excl_thread_id;
struct intel_excl_states *xl;
/*
* nothing needed if in group validation mode
*/
if (cpuc->is_fake)
return;
if (WARN_ON_ONCE(!excl_cntrs))
return;
if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
if (!--cpuc->n_excl)
WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
}
/*
* If event was actually assigned, then mark the counter state as
* unused now.
*/
if (hwc->idx >= 0) {
xl = &excl_cntrs->states[tid];
/*
* put_constraint may be called from x86_schedule_events()
* which already has the lock held so here make locking
* conditional.
*/
if (!xl->sched_started)
raw_spin_lock(&excl_cntrs->lock);
xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
if (!xl->sched_started)
raw_spin_unlock(&excl_cntrs->lock);
}
}
static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
struct hw_perf_event_extra *reg;
reg = &event->hw.extra_reg;
if (reg->idx != EXTRA_REG_NONE)
__intel_shared_reg_put_constraints(cpuc, reg);
reg = &event->hw.branch_reg;
if (reg->idx != EXTRA_REG_NONE)
__intel_shared_reg_put_constraints(cpuc, reg);
}
static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
struct perf_event *event)
{
intel_put_shared_regs_event_constraints(cpuc, event);
/*
* is PMU has exclusive counter restrictions, then
* all events are subject to and must call the
* put_excl_constraints() routine
*/
if (cpuc->excl_cntrs)
intel_put_excl_constraints(cpuc, event);
}
static void intel_pebs_aliases_core2(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use INST_RETIRED.ANY_P
* (0x00c0), which is a PEBS capable event, to get the same
* count.
*
* INST_RETIRED.ANY_P counts the number of cycles that retires
* CNTMASK instructions. By setting CNTMASK to a value (16)
* larger than the maximum number of instructions that can be
* retired per cycle (4) and then inverting the condition, we
* count all cycles that retire 16 or less instructions, which
* is every cycle.
*
* Thereby we gain a PEBS capable cycle counter.
*/
u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
static void intel_pebs_aliases_snb(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use UOPS_RETIRED.ALL
* (0x01c2), which is a PEBS capable event, to get the same
* count.
*
* UOPS_RETIRED.ALL counts the number of cycles that retires
* CNTMASK micro-ops. By setting CNTMASK to a value (16)
* larger than the maximum number of micro-ops that can be
* retired per cycle (4) and then inverting the condition, we
* count all cycles that retire 16 or less micro-ops, which
* is every cycle.
*
* Thereby we gain a PEBS capable cycle counter.
*/
u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
static void intel_pebs_aliases_precdist(struct perf_event *event)
{
if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
/*
* Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
* (0x003c) so that we can use it with PEBS.
*
* The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
* PEBS capable. However we can use INST_RETIRED.PREC_DIST
* (0x01c0), which is a PEBS capable event, to get the same
* count.
*
* The PREC_DIST event has special support to minimize sample
* shadowing effects. One drawback is that it can be
* only programmed on counter 1, but that seems like an
* acceptable trade off.
*/
u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
event->hw.config = alt_config;
}
}
static void intel_pebs_aliases_ivb(struct perf_event *event)
{
if (event->attr.precise_ip < 3)
return intel_pebs_aliases_snb(event);
return intel_pebs_aliases_precdist(event);
}
static void intel_pebs_aliases_skl(struct perf_event *event)
{
if (event->attr.precise_ip < 3)
return intel_pebs_aliases_core2(event);
return intel_pebs_aliases_precdist(event);
}
static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
{
unsigned long flags = x86_pmu.free_running_flags;
if (event->attr.use_clockid)
flags &= ~PERF_SAMPLE_TIME;
return flags;
}
static int intel_pmu_hw_config(struct perf_event *event)
{
int ret = x86_pmu_hw_config(event);
if (ret)
return ret;
if (event->attr.precise_ip) {
if (!event->attr.freq) {
event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
if (!(event->attr.sample_type &
~intel_pmu_free_running_flags(event)))
event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
}
if (x86_pmu.pebs_aliases)
x86_pmu.pebs_aliases(event);
}
if (needs_branch_stack(event)) {
ret = intel_pmu_setup_lbr_filter(event);
if (ret)
return ret;
/*
* BTS is set up earlier in this path, so don't account twice
*/
if (!intel_pmu_has_bts(event)) {
/* disallow lbr if conflicting events are present */
if (x86_add_exclusive(x86_lbr_exclusive_lbr))
return -EBUSY;
event->destroy = hw_perf_lbr_event_destroy;
}
}
if (event->attr.type != PERF_TYPE_RAW)
return 0;
if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
return 0;
if (x86_pmu.version < 3)
return -EINVAL;
if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
return -EACCES;
event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
return 0;
}
struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
{
if (x86_pmu.guest_get_msrs)
return x86_pmu.guest_get_msrs(nr);
*nr = 0;
return NULL;
}
EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
/*
* If PMU counter has PEBS enabled it is not enough to disable counter
* on a guest entry since PEBS memory write can overshoot guest entry
* and corrupt guest memory. Disabling PEBS solves the problem.
*/
arr[1].msr = MSR_IA32_PEBS_ENABLE;
arr[1].host = cpuc->pebs_enabled;
arr[1].guest = 0;
*nr = 2;
return arr;
}
static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
struct perf_event *event = cpuc->events[idx];
arr[idx].msr = x86_pmu_config_addr(idx);
arr[idx].host = arr[idx].guest = 0;
if (!test_bit(idx, cpuc->active_mask))
continue;
arr[idx].host = arr[idx].guest =
event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
if (event->attr.exclude_host)
arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
else if (event->attr.exclude_guest)
arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
}
*nr = x86_pmu.num_counters;
return arr;
}
static void core_pmu_enable_event(struct perf_event *event)
{
if (!event->attr.exclude_host)
x86_pmu_enable_event(event);
}
static void core_pmu_enable_all(int added)
{
struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
int idx;
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
if (!test_bit(idx, cpuc->active_mask) ||
cpuc->events[idx]->attr.exclude_host)
continue;
__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}
}
static int hsw_hw_config(struct perf_event *event)
{
int ret = intel_pmu_hw_config(event);
if (ret)
return ret;
if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
return 0;
event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
/*
* IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
* PEBS or in ANY thread mode. Since the results are non-sensical forbid
* this combination.
*/
if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
event->attr.precise_ip > 0))
return -EOPNOTSUPP;
if (event_is_checkpointed(event)) {
/*
* Sampling of checkpointed events can cause situations where
* the CPU constantly aborts because of a overflow, which is
* then checkpointed back and ignored. Forbid checkpointing
* for sampling.
*
* But still allow a long sampling period, so that perf stat
* from KVM works.
*/
if (event->attr.sample_period > 0 &&
event->attr.sample_period < 0x7fffffff)
return -EOPNOTSUPP;
}
return 0;
}
static struct event_constraint counter2_constraint =
EVENT_CONSTRAINT(0, 0x4, 0);
static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
struct perf_event *event)
{
struct event_constraint *c;
c = intel_get_event_constraints(cpuc, idx, event);
/* Handle special quirk on in_tx_checkpointed only in counter 2 */
if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
if (c->idxmsk64 & (1U << 2))
return &counter2_constraint;
return &emptyconstraint;
}
return c;
}
/*
* Broadwell:
*
* The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
* (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
* the two to enforce a minimum period of 128 (the smallest value that has bits
* 0-5 cleared and >= 100).
*
* Because of how the code in x86_perf_event_set_period() works, the truncation
* of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
* to make up for the 'lost' events due to carrying the 'error' in period_left.
*
* Therefore the effective (average) period matches the requested period,
* despite coarser hardware granularity.
*/
static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
{
if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
X86_CONFIG(.event=0xc0, .umask=0x01)) {
if (left < 128)
left = 128;
left &= ~0x3fu;
}
return left;
}
PMU_FORMAT_ATTR(event, "config:0-7" );
PMU_FORMAT_ATTR(umask, "config:8-15" );
PMU_FORMAT_ATTR(edge, "config:18" );
PMU_FORMAT_ATTR(pc, "config:19" );
PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
PMU_FORMAT_ATTR(inv, "config:23" );
PMU_FORMAT_ATTR(cmask, "config:24-31" );
PMU_FORMAT_ATTR(in_tx, "config:32");
PMU_FORMAT_ATTR(in_tx_cp, "config:33");
static struct attribute *intel_arch_formats_attr[] = {
&format_attr_event.attr,
&format_attr_umask.attr,
&format_attr_edge.attr,
&format_attr_pc.attr,
&format_attr_inv.attr,
&format_attr_cmask.attr,
NULL,
};
ssize_t intel_event_sysfs_show(char *page, u64 config)
{
u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
return x86_event_sysfs_show(page, config, event);
}
struct intel_shared_regs *allocate_shared_regs(int cpu)
{
struct intel_shared_regs *regs;
int i;
regs = kzalloc_node(sizeof(struct intel_shared_regs),
GFP_KERNEL, cpu_to_node(cpu));
if (regs) {
/*
* initialize the locks to keep lockdep happy
*/
for (i = 0; i < EXTRA_REG_MAX; i++)
raw_spin_lock_init(&regs->regs[i].lock);
regs->core_id = -1;
}
return regs;
}
static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
{
struct intel_excl_cntrs *c;
c = kzalloc_node(sizeof(struct intel_excl_cntrs),
GFP_KERNEL, cpu_to_node(cpu));
if (c) {
raw_spin_lock_init(&c->lock);
c->core_id = -1;
}
return c;
}
static int intel_pmu_cpu_prepare(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
cpuc->shared_regs = allocate_shared_regs(cpu);
if (!cpuc->shared_regs)
goto err;
}
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
if (!cpuc->constraint_list)
goto err_shared_regs;
cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
if (!cpuc->excl_cntrs)
goto err_constraint_list;
cpuc->excl_thread_id = 0;
}
return NOTIFY_OK;
err_constraint_list:
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
err_shared_regs:
kfree(cpuc->shared_regs);
cpuc->shared_regs = NULL;
err:
return NOTIFY_BAD;
}
static void intel_pmu_cpu_starting(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
int core_id = topology_core_id(cpu);
int i;
init_debug_store_on_cpu(cpu);
/*
* Deal with CPUs that don't clear their LBRs on power-up.
*/
intel_pmu_lbr_reset();
cpuc->lbr_sel = NULL;
if (!cpuc->shared_regs)
return;
if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
struct intel_shared_regs *pc;
pc = per_cpu(cpu_hw_events, i).shared_regs;
if (pc && pc->core_id == core_id) {
*onln = cpuc->shared_regs;
cpuc->shared_regs = pc;
break;
}
}
cpuc->shared_regs->core_id = core_id;
cpuc->shared_regs->refcnt++;
}
if (x86_pmu.lbr_sel_map)
cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
for_each_cpu(i, topology_sibling_cpumask(cpu)) {
struct intel_excl_cntrs *c;
c = per_cpu(cpu_hw_events, i).excl_cntrs;
if (c && c->core_id == core_id) {
cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
cpuc->excl_cntrs = c;
cpuc->excl_thread_id = 1;
break;
}
}
cpuc->excl_cntrs->core_id = core_id;
cpuc->excl_cntrs->refcnt++;
}
}
static void free_excl_cntrs(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
struct intel_excl_cntrs *c;
c = cpuc->excl_cntrs;
if (c) {
if (c->core_id == -1 || --c->refcnt == 0)
kfree(c);
cpuc->excl_cntrs = NULL;
kfree(cpuc->constraint_list);
cpuc->constraint_list = NULL;
}
}
static void intel_pmu_cpu_dying(int cpu)
{
struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
struct intel_shared_regs *pc;
pc = cpuc->shared_regs;
if (pc) {
if (pc->core_id == -1 || --pc->refcnt == 0)
kfree(pc);
cpuc->shared_regs = NULL;
}
free_excl_cntrs(cpu);
fini_debug_store_on_cpu(cpu);
}
static void intel_pmu_sched_task(struct perf_event_context *ctx,
bool sched_in)
{
if (x86_pmu.pebs_active)
intel_pmu_pebs_sched_task(ctx, sched_in);
if (x86_pmu.lbr_nr)
intel_pmu_lbr_sched_task(ctx, sched_in);
}
PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
PMU_FORMAT_ATTR(ldlat, "config1:0-15");
PMU_FORMAT_ATTR(frontend, "config1:0-23");
static struct attribute *intel_arch3_formats_attr[] = {
&format_attr_event.attr,
&format_attr_umask.attr,
&format_attr_edge.attr,
&format_attr_pc.attr,
&format_attr_any.attr,
&format_attr_inv.attr,
&format_attr_cmask.attr,
&format_attr_in_tx.attr,
&format_attr_in_tx_cp.attr,
&format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
&format_attr_ldlat.attr, /* PEBS load latency */
NULL,
};
static struct attribute *skl_format_attr[] = {
&format_attr_frontend.attr,
NULL,
};
static __initconst const struct x86_pmu core_pmu = {
.name = "core",
.handle_irq = x86_pmu_handle_irq,
.disable_all = x86_pmu_disable_all,
.enable_all = core_pmu_enable_all,
.enable = core_pmu_enable_event,
.disable = x86_pmu_disable_event,
.hw_config = x86_pmu_hw_config,
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
.free_running_flags = PEBS_FREERUNNING_FLAGS,
/*
* Intel PMCs cannot be accessed sanely above 32-bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL<<31) - 1,
.get_event_constraints = intel_get_event_constraints,
.put_event_constraints = intel_put_event_constraints,
.event_constraints = intel_core_event_constraints,
.guest_get_msrs = core_guest_get_msrs,
.format_attrs = intel_arch_formats_attr,
.events_sysfs_show = intel_event_sysfs_show,
/*
* Virtual (or funny metal) CPU can define x86_pmu.extra_regs
* together with PMU version 1 and thus be using core_pmu with
* shared_regs. We need following callbacks here to allocate
* it properly.
*/
.cpu_prepare = intel_pmu_cpu_prepare,
.cpu_starting = intel_pmu_cpu_starting,
.cpu_dying = intel_pmu_cpu_dying,
};
static __initconst const struct x86_pmu intel_pmu = {
.name = "Intel",
.handle_irq = intel_pmu_handle_irq,
.disable_all = intel_pmu_disable_all,
.enable_all = intel_pmu_enable_all,
.enable = intel_pmu_enable_event,
.disable = intel_pmu_disable_event,
.hw_config = intel_pmu_hw_config,
.schedule_events = x86_schedule_events,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
.apic = 1,
.free_running_flags = PEBS_FREERUNNING_FLAGS,
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic event period:
*/
.max_period = (1ULL << 31) - 1,
.get_event_constraints = intel_get_event_constraints,
.put_event_constraints = intel_put_event_constraints,
.pebs_aliases = intel_pebs_aliases_core2,
.format_attrs = intel_arch3_formats_attr,
.events_sysfs_show = intel_event_sysfs_show,
.cpu_prepare = intel_pmu_cpu_prepare,
.cpu_starting = intel_pmu_cpu_starting,
.cpu_dying = intel_pmu_cpu_dying,
.guest_get_msrs = intel_guest_get_msrs,
.sched_task = intel_pmu_sched_task,
};
static __init void intel_clovertown_quirk(void)
{
/*
* PEBS is unreliable due to:
*
* AJ67 - PEBS may experience CPL leaks
* AJ68 - PEBS PMI may be delayed by one event
* AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
* AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
*
* AJ67 could be worked around by restricting the OS/USR flags.
* AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
*
* AJ106 could possibly be worked around by not allowing LBR
* usage from PEBS, including the fixup.
* AJ68 could possibly be worked around by always programming
* a pebs_event_reset[0] value and coping with the lost events.
*
* But taken together it might just make sense to not enable PEBS on
* these chips.
*/
pr_warn("PEBS disabled due to CPU errata\n");
x86_pmu.pebs = 0;
x86_pmu.pebs_constraints = NULL;
}
static int intel_snb_pebs_broken(int cpu)
{
u32 rev = UINT_MAX; /* default to broken for unknown models */
switch (cpu_data(cpu).x86_model) {
case 42: /* SNB */
rev = 0x28;
break;
case 45: /* SNB-EP */
switch (cpu_data(cpu).x86_mask) {
case 6: rev = 0x618; break;
case 7: rev = 0x70c; break;
}
}
return (cpu_data(cpu).microcode < rev);
}
static void intel_snb_check_microcode(void)
{
int pebs_broken = 0;
int cpu;
get_online_cpus();
for_each_online_cpu(cpu) {
if ((pebs_broken = intel_snb_pebs_broken(cpu)))
break;
}
put_online_cpus();
if (pebs_broken == x86_pmu.pebs_broken)
return;
/*
* Serialized by the microcode lock..
*/
if (x86_pmu.pebs_broken) {
pr_info("PEBS enabled due to microcode update\n");
x86_pmu.pebs_broken = 0;
} else {
pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
x86_pmu.pebs_broken = 1;
}
}
/*
* Under certain circumstances, access certain MSR may cause #GP.
* The function tests if the input MSR can be safely accessed.
*/
static bool check_msr(unsigned long msr, u64 mask)
{
u64 val_old, val_new, val_tmp;
/*
* Read the current value, change it and read it back to see if it
* matches, this is needed to detect certain hardware emulators
* (qemu/kvm) that don't trap on the MSR access and always return 0s.
*/
if (rdmsrl_safe(msr, &val_old))
return false;
/*
* Only change the bits which can be updated by wrmsrl.
*/
val_tmp = val_old ^ mask;
if (wrmsrl_safe(msr, val_tmp) ||
rdmsrl_safe(msr, &val_new))
return false;
if (val_new != val_tmp)
return false;
/* Here it's sure that the MSR can be safely accessed.
* Restore the old value and return.
*/
wrmsrl(msr, val_old);
return true;
}
static __init void intel_sandybridge_quirk(void)
{
x86_pmu.check_microcode = intel_snb_check_microcode;
intel_snb_check_microcode();
}
static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
};
static __init void intel_arch_events_quirk(void)
{
int bit;
/* disable event that reported as not presend by cpuid */
for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
pr_warn("CPUID marked event: \'%s\' unavailable\n",
intel_arch_events_map[bit].name);
}
}
static __init void intel_nehalem_quirk(void)
{
union cpuid10_ebx ebx;
ebx.full = x86_pmu.events_maskl;
if (ebx.split.no_branch_misses_retired) {
/*
* Erratum AAJ80 detected, we work it around by using
* the BR_MISP_EXEC.ANY event. This will over-count
* branch-misses, but it's still much better than the
* architectural event which is often completely bogus:
*/
intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
ebx.split.no_branch_misses_retired = 0;
x86_pmu.events_maskl = ebx.full;
pr_info("CPU erratum AAJ80 worked around\n");
}
}
/*
* enable software workaround for errata:
* SNB: BJ122
* IVB: BV98
* HSW: HSD29
*
* Only needed when HT is enabled. However detecting
* if HT is enabled is difficult (model specific). So instead,
* we enable the workaround in the early boot, and verify if
* it is needed in a later initcall phase once we have valid
* topology information to check if HT is actually enabled
*/
static __init void intel_ht_bug(void)
{
x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
x86_pmu.start_scheduling = intel_start_scheduling;
x86_pmu.commit_scheduling = intel_commit_scheduling;
x86_pmu.stop_scheduling = intel_stop_scheduling;
}
EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
/* Haswell special events */
EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
static struct attribute *hsw_events_attrs[] = {
EVENT_PTR(tx_start),
EVENT_PTR(tx_commit),
EVENT_PTR(tx_abort),
EVENT_PTR(tx_capacity),
EVENT_PTR(tx_conflict),
EVENT_PTR(el_start),
EVENT_PTR(el_commit),
EVENT_PTR(el_abort),
EVENT_PTR(el_capacity),
EVENT_PTR(el_conflict),
EVENT_PTR(cycles_t),
EVENT_PTR(cycles_ct),
EVENT_PTR(mem_ld_hsw),
EVENT_PTR(mem_st_hsw),
NULL
};
__init int intel_pmu_init(void)
{
union cpuid10_edx edx;
union cpuid10_eax eax;
union cpuid10_ebx ebx;
struct event_constraint *c;
unsigned int unused;
struct extra_reg *er;
int version, i;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
switch (boot_cpu_data.x86) {
case 0x6:
return p6_pmu_init();
case 0xb:
return knc_pmu_init();
case 0xf:
return p4_pmu_init();
}
return -ENODEV;
}
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired hw_event or not.
*/
cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
return -ENODEV;
version = eax.split.version_id;
if (version < 2)
x86_pmu = core_pmu;
else
x86_pmu = intel_pmu;
x86_pmu.version = version;
x86_pmu.num_counters = eax.split.num_counters;
x86_pmu.cntval_bits = eax.split.bit_width;
x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
x86_pmu.events_maskl = ebx.full;
x86_pmu.events_mask_len = eax.split.mask_length;
x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
/*
* Quirk: v2 perfmon does not report fixed-purpose events, so
* assume at least 3 events:
*/
if (version > 1)
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
if (boot_cpu_has(X86_FEATURE_PDCM)) {
u64 capabilities;
rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
x86_pmu.intel_cap.capabilities = capabilities;
}
intel_ds_init();
x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
/*
* Install the hw-cache-events table:
*/
switch (boot_cpu_data.x86_model) {
case 14: /* 65nm Core "Yonah" */
pr_cont("Core events, ");
break;
case 15: /* 65nm Core2 "Merom" */
x86_add_quirk(intel_clovertown_quirk);
case 22: /* 65nm Core2 "Merom-L" */
case 23: /* 45nm Core2 "Penryn" */
case 29: /* 45nm Core2 "Dunnington (MP) */
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_core();
x86_pmu.event_constraints = intel_core2_event_constraints;
x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
pr_cont("Core2 events, ");
break;
case 30: /* 45nm Nehalem */
case 26: /* 45nm Nehalem-EP */
case 46: /* 45nm Nehalem-EX */
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_nehalem_event_constraints;
x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
x86_pmu.extra_regs = intel_nehalem_extra_regs;
x86_pmu.cpu_events = nhm_events_attrs;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
x86_add_quirk(intel_nehalem_quirk);
pr_cont("Nehalem events, ");
break;
case 28: /* 45nm Atom "Pineview" */
case 38: /* 45nm Atom "Lincroft" */
case 39: /* 32nm Atom "Penwell" */
case 53: /* 32nm Atom "Cloverview" */
case 54: /* 32nm Atom "Cedarview" */
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
intel_pmu_lbr_init_atom();
x86_pmu.event_constraints = intel_gen_event_constraints;
x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
pr_cont("Atom events, ");
break;
case 55: /* 22nm Atom "Silvermont" */
case 76: /* 14nm Atom "Airmont" */
case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_atom();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
x86_pmu.extra_regs = intel_slm_extra_regs;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
pr_cont("Silvermont events, ");
break;
case 37: /* 32nm Westmere */
case 44: /* 32nm Westmere-EP */
case 47: /* 32nm Westmere-EX */
memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_nhm();
x86_pmu.event_constraints = intel_westmere_event_constraints;
x86_pmu.enable_all = intel_pmu_nhm_enable_all;
x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
x86_pmu.extra_regs = intel_westmere_extra_regs;
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.cpu_events = nhm_events_attrs;
/* UOPS_ISSUED.STALLED_CYCLES */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
pr_cont("Westmere events, ");
break;
case 42: /* 32nm SandyBridge */
case 45: /* 32nm SandyBridge-E/EN/EP */
x86_add_quirk(intel_sandybridge_quirk);
x86_add_quirk(intel_ht_bug);
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_snb();
x86_pmu.event_constraints = intel_snb_event_constraints;
x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
if (boot_cpu_data.x86_model == 45)
x86_pmu.extra_regs = intel_snbep_extra_regs;
else
x86_pmu.extra_regs = intel_snb_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.cpu_events = snb_events_attrs;
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
pr_cont("SandyBridge events, ");
break;
case 58: /* 22nm IvyBridge */
case 62: /* 22nm IvyBridge-EP/EX */
x86_add_quirk(intel_ht_bug);
memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
/* dTLB-load-misses on IVB is different than SNB */
hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_snb();
x86_pmu.event_constraints = intel_ivb_event_constraints;
x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
if (boot_cpu_data.x86_model == 62)
x86_pmu.extra_regs = intel_snbep_extra_regs;
else
x86_pmu.extra_regs = intel_snb_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.cpu_events = snb_events_attrs;
/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
pr_cont("IvyBridge events, ");
break;
case 60: /* 22nm Haswell Core */
case 63: /* 22nm Haswell Server */
case 69: /* 22nm Haswell ULT */
case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
x86_add_quirk(intel_ht_bug);
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_hsw();
x86_pmu.event_constraints = intel_hsw_event_constraints;
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
x86_pmu.extra_regs = intel_snbep_extra_regs;
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
x86_pmu.cpu_events = hsw_events_attrs;
x86_pmu.lbr_double_abort = true;
pr_cont("Haswell events, ");
break;
case 61: /* 14nm Broadwell Core-M */
case 86: /* 14nm Broadwell Xeon D */
case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
case 79: /* 14nm Broadwell Server */
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
BDW_L3_MISS|HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
intel_pmu_lbr_init_hsw();
x86_pmu.event_constraints = intel_bdw_event_constraints;
x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
x86_pmu.extra_regs = intel_snbep_extra_regs;
x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
x86_pmu.cpu_events = hsw_events_attrs;
x86_pmu.limit_period = bdw_limit_period;
pr_cont("Broadwell events, ");
break;
case 87: /* Knights Landing Xeon Phi */
memcpy(hw_cache_event_ids,
slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs,
knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_knl();
x86_pmu.event_constraints = intel_slm_event_constraints;
x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
x86_pmu.extra_regs = intel_knl_extra_regs;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
pr_cont("Knights Landing events, ");
break;
case 78: /* 14nm Skylake Mobile */
case 94: /* 14nm Skylake Desktop */
x86_pmu.late_ack = true;
memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
intel_pmu_lbr_init_skl();
x86_pmu.event_constraints = intel_skl_event_constraints;
x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
x86_pmu.extra_regs = intel_skl_extra_regs;
x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
x86_pmu.pebs_prec_dist = true;
/* all extra regs are per-cpu when HT is on */
x86_pmu.flags |= PMU_FL_HAS_RSP_1;
x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
x86_pmu.hw_config = hsw_hw_config;
x86_pmu.get_event_constraints = hsw_get_event_constraints;
x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
skl_format_attr);
WARN_ON(!x86_pmu.format_attrs);
x86_pmu.cpu_events = hsw_events_attrs;
pr_cont("Skylake events, ");
break;
default:
switch (x86_pmu.version) {
case 1:
x86_pmu.event_constraints = intel_v1_event_constraints;
pr_cont("generic architected perfmon v1, ");
break;
default:
/*
* default constraints for v2 and up
*/
x86_pmu.event_constraints = intel_gen_event_constraints;
pr_cont("generic architected perfmon, ");
break;
}
}
if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
}
x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
}
x86_pmu.intel_ctrl |=
((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
if (x86_pmu.event_constraints) {
/*
* event on fixed counter2 (REF_CYCLES) only works on this
* counter, so do not extend mask to generic counters
*/
for_each_event_constraint(c, x86_pmu.event_constraints) {
if (c->cmask == FIXED_EVENT_FLAGS
&& c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
}
c->idxmsk64 &=
~(~0UL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
c->weight = hweight64(c->idxmsk64);
}
}
/*
* Access LBR MSR may cause #GP under certain circumstances.
* E.g. KVM doesn't support LBR MSR
* Check all LBT MSR here.
* Disable LBR access if any LBR MSRs can not be accessed.
*/
if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
x86_pmu.lbr_nr = 0;
for (i = 0; i < x86_pmu.lbr_nr; i++) {
if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
x86_pmu.lbr_nr = 0;
}
/*
* Access extra MSR may cause #GP under certain circumstances.
* E.g. KVM doesn't support offcore event
* Check all extra_regs here.
*/
if (x86_pmu.extra_regs) {
for (er = x86_pmu.extra_regs; er->msr; er++) {
er->extra_msr_access = check_msr(er->msr, 0x11UL);
/* Disable LBR select mapping */
if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
x86_pmu.lbr_sel_map = NULL;
}
}
/* Support full width counters using alternative MSR range */
if (x86_pmu.intel_cap.full_width_write) {
x86_pmu.max_period = x86_pmu.cntval_mask;
x86_pmu.perfctr = MSR_IA32_PMC0;
pr_cont("full-width counters, ");
}
return 0;
}
/*
* HT bug: phase 2 init
* Called once we have valid topology information to check
* whether or not HT is enabled
* If HT is off, then we disable the workaround
*/
static __init int fixup_ht_bug(void)
{
int cpu = smp_processor_id();
int w, c;
/*
* problem not present on this CPU model, nothing to do
*/
if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
return 0;
w = cpumask_weight(topology_sibling_cpumask(cpu));
if (w > 1) {
pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
return 0;
}
if (lockup_detector_suspend() != 0) {
pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
return 0;
}
x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
x86_pmu.start_scheduling = NULL;
x86_pmu.commit_scheduling = NULL;
x86_pmu.stop_scheduling = NULL;
lockup_detector_resume();
get_online_cpus();
for_each_online_cpu(c) {
free_excl_cntrs(c);
}
put_online_cpus();
pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
return 0;
}
subsys_initcall(fixup_ht_bug)