blob: 85e1e4760d0e59ee794400f560d320f2ca6068c6 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
//
// This file is provided under a dual BSD/GPLv2 license. When using or
// redistributing this file, you may do so under either license.
//
// Copyright(c) 2018 Intel Corporation. All rights reserved.
//
// Authors: Liam Girdwood <liam.r.girdwood@linux.intel.com>
// Ranjani Sridharan <ranjani.sridharan@linux.intel.com>
// Rander Wang <rander.wang@intel.com>
// Keyon Jie <yang.jie@linux.intel.com>
//
/*
* Hardware interface for audio DSP on Cannonlake.
*/
#include <sound/sof/ext_manifest4.h>
#include <sound/sof/ipc4/header.h>
#include <trace/events/sof_intel.h>
#include "../ipc4-priv.h"
#include "../ops.h"
#include "hda.h"
#include "hda-ipc.h"
#include "../sof-audio.h"
static const struct snd_sof_debugfs_map cnl_dsp_debugfs[] = {
{"hda", HDA_DSP_HDA_BAR, 0, 0x4000, SOF_DEBUGFS_ACCESS_ALWAYS},
{"pp", HDA_DSP_PP_BAR, 0, 0x1000, SOF_DEBUGFS_ACCESS_ALWAYS},
{"dsp", HDA_DSP_BAR, 0, 0x10000, SOF_DEBUGFS_ACCESS_ALWAYS},
};
static void cnl_ipc_host_done(struct snd_sof_dev *sdev);
static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev);
irqreturn_t cnl_ipc4_irq_thread(int irq, void *context)
{
struct sof_ipc4_msg notification_data = {{ 0 }};
struct snd_sof_dev *sdev = context;
bool ack_received = false;
bool ipc_irq = false;
u32 hipcida, hipctdr;
hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
/* DSP received the message */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCCTL,
CNL_DSP_REG_HIPCCTL_DONE, 0);
cnl_ipc_dsp_done(sdev);
ipc_irq = true;
ack_received = true;
}
if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
/* Message from DSP (reply or notification) */
u32 hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCTDD);
u32 primary = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
u32 extension = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
if (primary & SOF_IPC4_MSG_DIR_MASK) {
/* Reply received */
if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
struct sof_ipc4_msg *data = sdev->ipc->msg.reply_data;
data->primary = primary;
data->extension = extension;
spin_lock_irq(&sdev->ipc_lock);
snd_sof_ipc_get_reply(sdev);
cnl_ipc_host_done(sdev);
snd_sof_ipc_reply(sdev, data->primary);
spin_unlock_irq(&sdev->ipc_lock);
} else {
dev_dbg_ratelimited(sdev->dev,
"IPC reply before FW_READY: %#x|%#x\n",
primary, extension);
}
} else {
/* Notification received */
notification_data.primary = primary;
notification_data.extension = extension;
sdev->ipc->msg.rx_data = &notification_data;
snd_sof_ipc_msgs_rx(sdev);
sdev->ipc->msg.rx_data = NULL;
/* Let DSP know that we have finished processing the message */
cnl_ipc_host_done(sdev);
}
ipc_irq = true;
}
if (!ipc_irq)
/* This interrupt is not shared so no need to return IRQ_NONE. */
dev_dbg_ratelimited(sdev->dev, "nothing to do in IPC IRQ thread\n");
if (ack_received) {
struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
if (hdev->delayed_ipc_tx_msg)
cnl_ipc4_send_msg(sdev, hdev->delayed_ipc_tx_msg);
}
return IRQ_HANDLED;
}
irqreturn_t cnl_ipc_irq_thread(int irq, void *context)
{
struct snd_sof_dev *sdev = context;
u32 hipci;
u32 hipcida;
u32 hipctdr;
u32 hipctdd;
u32 msg;
u32 msg_ext;
bool ipc_irq = false;
hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
hipci = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
/* reply message from DSP */
if (hipcida & CNL_DSP_REG_HIPCIDA_DONE) {
msg_ext = hipci & CNL_DSP_REG_HIPCIDR_MSG_MASK;
msg = hipcida & CNL_DSP_REG_HIPCIDA_MSG_MASK;
trace_sof_intel_ipc_firmware_response(sdev, msg, msg_ext);
/* mask Done interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCCTL,
CNL_DSP_REG_HIPCCTL_DONE, 0);
if (likely(sdev->fw_state == SOF_FW_BOOT_COMPLETE)) {
spin_lock_irq(&sdev->ipc_lock);
/* handle immediate reply from DSP core */
hda_dsp_ipc_get_reply(sdev);
snd_sof_ipc_reply(sdev, msg);
cnl_ipc_dsp_done(sdev);
spin_unlock_irq(&sdev->ipc_lock);
} else {
dev_dbg_ratelimited(sdev->dev, "IPC reply before FW_READY: %#x\n",
msg);
}
ipc_irq = true;
}
/* new message from DSP */
if (hipctdr & CNL_DSP_REG_HIPCTDR_BUSY) {
msg = hipctdr & CNL_DSP_REG_HIPCTDR_MSG_MASK;
msg_ext = hipctdd & CNL_DSP_REG_HIPCTDD_MSG_MASK;
trace_sof_intel_ipc_firmware_initiated(sdev, msg, msg_ext);
/* handle messages from DSP */
if ((hipctdr & SOF_IPC_PANIC_MAGIC_MASK) == SOF_IPC_PANIC_MAGIC) {
struct sof_intel_hda_dev *hda = sdev->pdata->hw_pdata;
bool non_recoverable = true;
/*
* This is a PANIC message!
*
* If it is arriving during firmware boot and it is not
* the last boot attempt then change the non_recoverable
* to false as the DSP might be able to boot in the next
* iteration(s)
*/
if (sdev->fw_state == SOF_FW_BOOT_IN_PROGRESS &&
hda->boot_iteration < HDA_FW_BOOT_ATTEMPTS)
non_recoverable = false;
snd_sof_dsp_panic(sdev, HDA_DSP_PANIC_OFFSET(msg_ext),
non_recoverable);
} else {
snd_sof_ipc_msgs_rx(sdev);
}
cnl_ipc_host_done(sdev);
ipc_irq = true;
}
if (!ipc_irq) {
/*
* This interrupt is not shared so no need to return IRQ_NONE.
*/
dev_dbg_ratelimited(sdev->dev,
"nothing to do in IPC IRQ thread\n");
}
return IRQ_HANDLED;
}
static void cnl_ipc_host_done(struct snd_sof_dev *sdev)
{
/*
* clear busy interrupt to tell dsp controller this
* interrupt has been accepted, not trigger it again
*/
snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCTDR,
CNL_DSP_REG_HIPCTDR_BUSY,
CNL_DSP_REG_HIPCTDR_BUSY);
/*
* set done bit to ack dsp the msg has been
* processed and send reply msg to dsp
*/
snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCTDA,
CNL_DSP_REG_HIPCTDA_DONE,
CNL_DSP_REG_HIPCTDA_DONE);
}
static void cnl_ipc_dsp_done(struct snd_sof_dev *sdev)
{
/*
* set DONE bit - tell DSP we have received the reply msg
* from DSP, and processed it, don't send more reply to host
*/
snd_sof_dsp_update_bits_forced(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCIDA,
CNL_DSP_REG_HIPCIDA_DONE,
CNL_DSP_REG_HIPCIDA_DONE);
/* unmask Done interrupt */
snd_sof_dsp_update_bits(sdev, HDA_DSP_BAR,
CNL_DSP_REG_HIPCCTL,
CNL_DSP_REG_HIPCCTL_DONE,
CNL_DSP_REG_HIPCCTL_DONE);
}
static bool cnl_compact_ipc_compress(struct snd_sof_ipc_msg *msg,
u32 *dr, u32 *dd)
{
struct sof_ipc_pm_gate *pm_gate = msg->msg_data;
if (pm_gate->hdr.cmd == (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_GATE)) {
/* send the compact message via the primary register */
*dr = HDA_IPC_MSG_COMPACT | HDA_IPC_PM_GATE;
/* send payload via the extended data register */
*dd = pm_gate->flags;
return true;
}
return false;
}
int cnl_ipc4_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
{
struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
struct sof_ipc4_msg *msg_data = msg->msg_data;
if (hda_ipc4_tx_is_busy(sdev)) {
hdev->delayed_ipc_tx_msg = msg;
return 0;
}
hdev->delayed_ipc_tx_msg = NULL;
/* send the message via mailbox */
if (msg_data->data_size)
sof_mailbox_write(sdev, sdev->host_box.offset, msg_data->data_ptr,
msg_data->data_size);
snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD, msg_data->extension);
snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
msg_data->primary | CNL_DSP_REG_HIPCIDR_BUSY);
hda_dsp_ipc4_schedule_d0i3_work(hdev, msg);
return 0;
}
int cnl_ipc_send_msg(struct snd_sof_dev *sdev, struct snd_sof_ipc_msg *msg)
{
struct sof_intel_hda_dev *hdev = sdev->pdata->hw_pdata;
struct sof_ipc_cmd_hdr *hdr;
u32 dr = 0;
u32 dd = 0;
/*
* Currently the only compact IPC supported is the PM_GATE
* IPC which is used for transitioning the DSP between the
* D0I0 and D0I3 states. And these are sent only during the
* set_power_state() op. Therefore, there will never be a case
* that a compact IPC results in the DSP exiting D0I3 without
* the host and FW being in sync.
*/
if (cnl_compact_ipc_compress(msg, &dr, &dd)) {
/* send the message via IPC registers */
snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD,
dd);
snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
CNL_DSP_REG_HIPCIDR_BUSY | dr);
return 0;
}
/* send the message via mailbox */
sof_mailbox_write(sdev, sdev->host_box.offset, msg->msg_data,
msg->msg_size);
snd_sof_dsp_write(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR,
CNL_DSP_REG_HIPCIDR_BUSY);
hdr = msg->msg_data;
/*
* Use mod_delayed_work() to schedule the delayed work
* to avoid scheduling multiple workqueue items when
* IPCs are sent at a high-rate. mod_delayed_work()
* modifies the timer if the work is pending.
* Also, a new delayed work should not be queued after the
* CTX_SAVE IPC, which is sent before the DSP enters D3.
*/
if (hdr->cmd != (SOF_IPC_GLB_PM_MSG | SOF_IPC_PM_CTX_SAVE))
mod_delayed_work(system_wq, &hdev->d0i3_work,
msecs_to_jiffies(SOF_HDA_D0I3_WORK_DELAY_MS));
return 0;
}
void cnl_ipc_dump(struct snd_sof_dev *sdev)
{
u32 hipcctl;
u32 hipcida;
u32 hipctdr;
hda_ipc_irq_dump(sdev);
/* read IPC status */
hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
/* dump the IPC regs */
/* TODO: parse the raw msg */
dev_err(sdev->dev,
"error: host status 0x%8.8x dsp status 0x%8.8x mask 0x%8.8x\n",
hipcida, hipctdr, hipcctl);
}
void cnl_ipc4_dump(struct snd_sof_dev *sdev)
{
u32 hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl;
hda_ipc_irq_dump(sdev);
hipcidr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDR);
hipcidd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDD);
hipcida = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCIDA);
hipctdr = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDR);
hipctdd = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDD);
hipctda = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCTDA);
hipcctl = snd_sof_dsp_read(sdev, HDA_DSP_BAR, CNL_DSP_REG_HIPCCTL);
/* dump the IPC regs */
/* TODO: parse the raw msg */
dev_err(sdev->dev,
"Host IPC initiator: %#x|%#x|%#x, target: %#x|%#x|%#x, ctl: %#x\n",
hipcidr, hipcidd, hipcida, hipctdr, hipctdd, hipctda, hipcctl);
}
/* cannonlake ops */
struct snd_sof_dsp_ops sof_cnl_ops;
EXPORT_SYMBOL_NS(sof_cnl_ops, SND_SOC_SOF_INTEL_HDA_COMMON);
int sof_cnl_ops_init(struct snd_sof_dev *sdev)
{
/* common defaults */
memcpy(&sof_cnl_ops, &sof_hda_common_ops, sizeof(struct snd_sof_dsp_ops));
/* probe/remove/shutdown */
sof_cnl_ops.shutdown = hda_dsp_shutdown;
/* ipc */
if (sdev->pdata->ipc_type == SOF_IPC_TYPE_3) {
/* doorbell */
sof_cnl_ops.irq_thread = cnl_ipc_irq_thread;
/* ipc */
sof_cnl_ops.send_msg = cnl_ipc_send_msg;
/* debug */
sof_cnl_ops.ipc_dump = cnl_ipc_dump;
sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc3;
}
if (sdev->pdata->ipc_type == SOF_IPC_TYPE_4) {
struct sof_ipc4_fw_data *ipc4_data;
sdev->private = kzalloc(sizeof(*ipc4_data), GFP_KERNEL);
if (!sdev->private)
return -ENOMEM;
ipc4_data = sdev->private;
ipc4_data->manifest_fw_hdr_offset = SOF_MAN4_FW_HDR_OFFSET;
ipc4_data->mtrace_type = SOF_IPC4_MTRACE_INTEL_CAVS_1_8;
/* External library loading support */
ipc4_data->load_library = hda_dsp_ipc4_load_library;
/* doorbell */
sof_cnl_ops.irq_thread = cnl_ipc4_irq_thread;
/* ipc */
sof_cnl_ops.send_msg = cnl_ipc4_send_msg;
/* debug */
sof_cnl_ops.ipc_dump = cnl_ipc4_dump;
sof_cnl_ops.set_power_state = hda_dsp_set_power_state_ipc4;
}
/* set DAI driver ops */
hda_set_dai_drv_ops(sdev, &sof_cnl_ops);
/* debug */
sof_cnl_ops.debug_map = cnl_dsp_debugfs;
sof_cnl_ops.debug_map_count = ARRAY_SIZE(cnl_dsp_debugfs);
/* pre/post fw run */
sof_cnl_ops.post_fw_run = hda_dsp_post_fw_run;
/* firmware run */
sof_cnl_ops.run = hda_dsp_cl_boot_firmware;
/* dsp core get/put */
sof_cnl_ops.core_get = hda_dsp_core_get;
return 0;
};
EXPORT_SYMBOL_NS(sof_cnl_ops_init, SND_SOC_SOF_INTEL_HDA_COMMON);
const struct sof_intel_dsp_desc cnl_chip_info = {
/* Cannonlake */
.cores_num = 4,
.init_core_mask = 1,
.host_managed_cores_mask = GENMASK(3, 0),
.ipc_req = CNL_DSP_REG_HIPCIDR,
.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
.ipc_ack = CNL_DSP_REG_HIPCIDA,
.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
.ipc_ctl = CNL_DSP_REG_HIPCCTL,
.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
.rom_init_timeout = 300,
.ssp_count = CNL_SSP_COUNT,
.ssp_base_offset = CNL_SSP_BASE_OFFSET,
.sdw_shim_base = SDW_SHIM_BASE,
.sdw_alh_base = SDW_ALH_BASE,
.d0i3_offset = SOF_HDA_VS_D0I3C,
.read_sdw_lcount = hda_sdw_check_lcount_common,
.enable_sdw_irq = hda_common_enable_sdw_irq,
.check_sdw_irq = hda_common_check_sdw_irq,
.check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
.check_ipc_irq = hda_dsp_check_ipc_irq,
.cl_init = cl_dsp_init,
.power_down_dsp = hda_power_down_dsp,
.disable_interrupts = hda_dsp_disable_interrupts,
.hw_ip_version = SOF_INTEL_CAVS_1_8,
};
EXPORT_SYMBOL_NS(cnl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);
/*
* JasperLake is technically derived from IceLake, and should be in
* described in icl.c. However since JasperLake was designed with
* two cores, it cannot support the IceLake-specific power-up sequences
* which rely on core3. To simplify, JasperLake uses the CannonLake ops and
* is described in cnl.c
*/
const struct sof_intel_dsp_desc jsl_chip_info = {
/* Jasperlake */
.cores_num = 2,
.init_core_mask = 1,
.host_managed_cores_mask = GENMASK(1, 0),
.ipc_req = CNL_DSP_REG_HIPCIDR,
.ipc_req_mask = CNL_DSP_REG_HIPCIDR_BUSY,
.ipc_ack = CNL_DSP_REG_HIPCIDA,
.ipc_ack_mask = CNL_DSP_REG_HIPCIDA_DONE,
.ipc_ctl = CNL_DSP_REG_HIPCCTL,
.rom_status_reg = HDA_DSP_SRAM_REG_ROM_STATUS,
.rom_init_timeout = 300,
.ssp_count = ICL_SSP_COUNT,
.ssp_base_offset = CNL_SSP_BASE_OFFSET,
.sdw_shim_base = SDW_SHIM_BASE,
.sdw_alh_base = SDW_ALH_BASE,
.d0i3_offset = SOF_HDA_VS_D0I3C,
.read_sdw_lcount = hda_sdw_check_lcount_common,
.enable_sdw_irq = hda_common_enable_sdw_irq,
.check_sdw_irq = hda_common_check_sdw_irq,
.check_sdw_wakeen_irq = hda_sdw_check_wakeen_irq_common,
.check_ipc_irq = hda_dsp_check_ipc_irq,
.cl_init = cl_dsp_init,
.power_down_dsp = hda_power_down_dsp,
.disable_interrupts = hda_dsp_disable_interrupts,
.hw_ip_version = SOF_INTEL_CAVS_2_0,
};
EXPORT_SYMBOL_NS(jsl_chip_info, SND_SOC_SOF_INTEL_HDA_COMMON);