| // SPDX-License-Identifier: GPL-2.0-or-later |
| // Copyright (C) IBM Corporation 2020 |
| |
| #include <linux/bitfield.h> |
| #include <linux/bits.h> |
| #include <linux/fsi.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/spi/spi.h> |
| |
| #define FSI_ENGID_SPI 0x23 |
| #define FSI_MBOX_ROOT_CTRL_8 0x2860 |
| #define FSI_MBOX_ROOT_CTRL_8_SPI_MUX 0xf0000000 |
| |
| #define FSI2SPI_DATA0 0x00 |
| #define FSI2SPI_DATA1 0x04 |
| #define FSI2SPI_CMD 0x08 |
| #define FSI2SPI_CMD_WRITE BIT(31) |
| #define FSI2SPI_RESET 0x18 |
| #define FSI2SPI_STATUS 0x1c |
| #define FSI2SPI_STATUS_ANY_ERROR BIT(31) |
| #define FSI2SPI_IRQ 0x20 |
| |
| #define SPI_FSI_BASE 0x70000 |
| #define SPI_FSI_INIT_TIMEOUT_MS 1000 |
| #define SPI_FSI_STATUS_TIMEOUT_MS 100 |
| #define SPI_FSI_MAX_RX_SIZE 8 |
| #define SPI_FSI_MAX_TX_SIZE 40 |
| |
| #define SPI_FSI_ERROR 0x0 |
| #define SPI_FSI_COUNTER_CFG 0x1 |
| #define SPI_FSI_CFG1 0x2 |
| #define SPI_FSI_CLOCK_CFG 0x3 |
| #define SPI_FSI_CLOCK_CFG_MM_ENABLE BIT_ULL(32) |
| #define SPI_FSI_CLOCK_CFG_ECC_DISABLE (BIT_ULL(35) | BIT_ULL(33)) |
| #define SPI_FSI_CLOCK_CFG_RESET1 (BIT_ULL(36) | BIT_ULL(38)) |
| #define SPI_FSI_CLOCK_CFG_RESET2 (BIT_ULL(37) | BIT_ULL(39)) |
| #define SPI_FSI_CLOCK_CFG_MODE (BIT_ULL(41) | BIT_ULL(42)) |
| #define SPI_FSI_CLOCK_CFG_SCK_RECV_DEL GENMASK_ULL(51, 44) |
| #define SPI_FSI_CLOCK_CFG_SCK_NO_DEL BIT_ULL(51) |
| #define SPI_FSI_CLOCK_CFG_SCK_DIV GENMASK_ULL(63, 52) |
| #define SPI_FSI_MMAP 0x4 |
| #define SPI_FSI_DATA_TX 0x5 |
| #define SPI_FSI_DATA_RX 0x6 |
| #define SPI_FSI_SEQUENCE 0x7 |
| #define SPI_FSI_SEQUENCE_STOP 0x00 |
| #define SPI_FSI_SEQUENCE_SEL_SLAVE(x) (0x10 | ((x) & 0xf)) |
| #define SPI_FSI_SEQUENCE_SHIFT_OUT(x) (0x30 | ((x) & 0xf)) |
| #define SPI_FSI_SEQUENCE_SHIFT_IN(x) (0x40 | ((x) & 0xf)) |
| #define SPI_FSI_SEQUENCE_COPY_DATA_TX 0xc0 |
| #define SPI_FSI_SEQUENCE_BRANCH(x) (0xe0 | ((x) & 0xf)) |
| #define SPI_FSI_STATUS 0x8 |
| #define SPI_FSI_STATUS_ERROR \ |
| (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12)) |
| #define SPI_FSI_STATUS_SEQ_STATE GENMASK_ULL(55, 48) |
| #define SPI_FSI_STATUS_SEQ_STATE_IDLE BIT_ULL(48) |
| #define SPI_FSI_STATUS_TDR_UNDERRUN BIT_ULL(57) |
| #define SPI_FSI_STATUS_TDR_OVERRUN BIT_ULL(58) |
| #define SPI_FSI_STATUS_TDR_FULL BIT_ULL(59) |
| #define SPI_FSI_STATUS_RDR_UNDERRUN BIT_ULL(61) |
| #define SPI_FSI_STATUS_RDR_OVERRUN BIT_ULL(62) |
| #define SPI_FSI_STATUS_RDR_FULL BIT_ULL(63) |
| #define SPI_FSI_STATUS_ANY_ERROR \ |
| (SPI_FSI_STATUS_ERROR | \ |
| SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \ |
| SPI_FSI_STATUS_RDR_OVERRUN) |
| #define SPI_FSI_PORT_CTRL 0x9 |
| |
| struct fsi2spi { |
| struct fsi_device *fsi; /* FSI2SPI CFAM engine device */ |
| struct mutex lock; /* lock access to the device */ |
| }; |
| |
| struct fsi_spi { |
| struct device *dev; /* SPI controller device */ |
| struct fsi2spi *bridge; /* FSI2SPI device */ |
| u32 base; |
| }; |
| |
| struct fsi_spi_sequence { |
| int bit; |
| u64 data; |
| }; |
| |
| static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev) |
| { |
| int rc; |
| u32 root_ctrl_8; |
| __be32 root_ctrl_8_be; |
| |
| rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be, |
| sizeof(root_ctrl_8_be)); |
| if (rc) |
| return rc; |
| |
| root_ctrl_8 = be32_to_cpu(root_ctrl_8_be); |
| dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8); |
| if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) == |
| FSI_MBOX_ROOT_CTRL_8_SPI_MUX) |
| return 0; |
| |
| return -ENOLINK; |
| } |
| |
| static int fsi_spi_check_status(struct fsi_spi *ctx) |
| { |
| int rc; |
| u32 sts; |
| __be32 sts_be; |
| |
| rc = fsi_device_read(ctx->bridge->fsi, FSI2SPI_STATUS, &sts_be, |
| sizeof(sts_be)); |
| if (rc) |
| return rc; |
| |
| sts = be32_to_cpu(sts_be); |
| if (sts & FSI2SPI_STATUS_ANY_ERROR) { |
| dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value) |
| { |
| int rc = 0; |
| __be32 cmd_be; |
| __be32 data_be; |
| u32 cmd = offset + ctx->base; |
| struct fsi2spi *bridge = ctx->bridge; |
| |
| *value = 0ULL; |
| |
| if (cmd & FSI2SPI_CMD_WRITE) |
| return -EINVAL; |
| |
| rc = mutex_lock_interruptible(&bridge->lock); |
| if (rc) |
| return rc; |
| |
| cmd_be = cpu_to_be32(cmd); |
| rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, |
| sizeof(cmd_be)); |
| if (rc) |
| goto unlock; |
| |
| rc = fsi_spi_check_status(ctx); |
| if (rc) |
| goto unlock; |
| |
| rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA0, &data_be, |
| sizeof(data_be)); |
| if (rc) |
| goto unlock; |
| |
| *value |= (u64)be32_to_cpu(data_be) << 32; |
| |
| rc = fsi_device_read(bridge->fsi, FSI2SPI_DATA1, &data_be, |
| sizeof(data_be)); |
| if (rc) |
| goto unlock; |
| |
| *value |= (u64)be32_to_cpu(data_be); |
| dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value); |
| |
| unlock: |
| mutex_unlock(&bridge->lock); |
| return rc; |
| } |
| |
| static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value) |
| { |
| int rc = 0; |
| __be32 cmd_be; |
| __be32 data_be; |
| u32 cmd = offset + ctx->base; |
| struct fsi2spi *bridge = ctx->bridge; |
| |
| if (cmd & FSI2SPI_CMD_WRITE) |
| return -EINVAL; |
| |
| rc = mutex_lock_interruptible(&bridge->lock); |
| if (rc) |
| return rc; |
| |
| dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value); |
| |
| data_be = cpu_to_be32(upper_32_bits(value)); |
| rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA0, &data_be, |
| sizeof(data_be)); |
| if (rc) |
| goto unlock; |
| |
| data_be = cpu_to_be32(lower_32_bits(value)); |
| rc = fsi_device_write(bridge->fsi, FSI2SPI_DATA1, &data_be, |
| sizeof(data_be)); |
| if (rc) |
| goto unlock; |
| |
| cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE); |
| rc = fsi_device_write(bridge->fsi, FSI2SPI_CMD, &cmd_be, |
| sizeof(cmd_be)); |
| if (rc) |
| goto unlock; |
| |
| rc = fsi_spi_check_status(ctx); |
| |
| unlock: |
| mutex_unlock(&bridge->lock); |
| return rc; |
| } |
| |
| static int fsi_spi_data_in(u64 in, u8 *rx, int len) |
| { |
| int i; |
| int num_bytes = min(len, 8); |
| |
| for (i = 0; i < num_bytes; ++i) |
| rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i))); |
| |
| return num_bytes; |
| } |
| |
| static int fsi_spi_data_out(u64 *out, const u8 *tx, int len) |
| { |
| int i; |
| int num_bytes = min(len, 8); |
| u8 *out_bytes = (u8 *)out; |
| |
| /* Unused bytes of the tx data should be 0. */ |
| *out = 0ULL; |
| |
| for (i = 0; i < num_bytes; ++i) |
| out_bytes[8 - (i + 1)] = tx[i]; |
| |
| return num_bytes; |
| } |
| |
| static int fsi_spi_reset(struct fsi_spi *ctx) |
| { |
| int rc; |
| |
| dev_dbg(ctx->dev, "Resetting SPI controller.\n"); |
| |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| SPI_FSI_CLOCK_CFG_RESET1); |
| if (rc) |
| return rc; |
| |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| SPI_FSI_CLOCK_CFG_RESET2); |
| if (rc) |
| return rc; |
| |
| return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL); |
| } |
| |
| static int fsi_spi_status(struct fsi_spi *ctx, u64 *status, const char *dir) |
| { |
| int rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, status); |
| |
| if (rc) |
| return rc; |
| |
| if (*status & SPI_FSI_STATUS_ANY_ERROR) { |
| dev_err(ctx->dev, "%s error: %016llx\n", dir, *status); |
| |
| rc = fsi_spi_reset(ctx); |
| if (rc) |
| return rc; |
| |
| return -EREMOTEIO; |
| } |
| |
| return 0; |
| } |
| |
| static void fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val) |
| { |
| /* |
| * Add the next byte of instruction to the 8-byte sequence register. |
| * Then decrement the counter so that the next instruction will go in |
| * the right place. Return the index of the slot we just filled in the |
| * sequence register. |
| */ |
| seq->data |= (u64)val << seq->bit; |
| seq->bit -= 8; |
| } |
| |
| static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq) |
| { |
| seq->bit = 56; |
| seq->data = 0ULL; |
| } |
| |
| static int fsi_spi_transfer_data(struct fsi_spi *ctx, |
| struct spi_transfer *transfer) |
| { |
| int rc = 0; |
| unsigned long end; |
| u64 status = 0ULL; |
| |
| if (transfer->tx_buf) { |
| int nb; |
| int sent = 0; |
| u64 out = 0ULL; |
| const u8 *tx = transfer->tx_buf; |
| |
| while (transfer->len > sent) { |
| nb = fsi_spi_data_out(&out, &tx[sent], |
| (int)transfer->len - sent); |
| |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out); |
| if (rc) |
| return rc; |
| |
| end = jiffies + msecs_to_jiffies(SPI_FSI_STATUS_TIMEOUT_MS); |
| do { |
| if (time_after(jiffies, end)) |
| return -ETIMEDOUT; |
| |
| rc = fsi_spi_status(ctx, &status, "TX"); |
| if (rc) |
| return rc; |
| } while (status & SPI_FSI_STATUS_TDR_FULL); |
| |
| sent += nb; |
| } |
| } else if (transfer->rx_buf) { |
| int recv = 0; |
| u64 in = 0ULL; |
| u8 *rx = transfer->rx_buf; |
| |
| while (transfer->len > recv) { |
| end = jiffies + msecs_to_jiffies(SPI_FSI_STATUS_TIMEOUT_MS); |
| do { |
| if (time_after(jiffies, end)) |
| return -ETIMEDOUT; |
| |
| rc = fsi_spi_status(ctx, &status, "RX"); |
| if (rc) |
| return rc; |
| } while (!(status & SPI_FSI_STATUS_RDR_FULL)); |
| |
| rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in); |
| if (rc) |
| return rc; |
| |
| recv += fsi_spi_data_in(in, &rx[recv], |
| (int)transfer->len - recv); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int fsi_spi_transfer_init(struct fsi_spi *ctx) |
| { |
| int rc; |
| bool reset = false; |
| unsigned long end; |
| u64 seq_state; |
| u64 clock_cfg = 0ULL; |
| u64 status = 0ULL; |
| u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| SPI_FSI_CLOCK_CFG_SCK_NO_DEL | |
| FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19); |
| |
| end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS); |
| do { |
| if (time_after(jiffies, end)) |
| return -ETIMEDOUT; |
| |
| rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status); |
| if (rc) |
| return rc; |
| |
| seq_state = status & SPI_FSI_STATUS_SEQ_STATE; |
| |
| if (status & (SPI_FSI_STATUS_ANY_ERROR | |
| SPI_FSI_STATUS_TDR_FULL | |
| SPI_FSI_STATUS_RDR_FULL)) { |
| if (reset) { |
| dev_err(ctx->dev, |
| "Initialization error: %08llx\n", |
| status); |
| return -EIO; |
| } |
| |
| rc = fsi_spi_reset(ctx); |
| if (rc) |
| return rc; |
| |
| reset = true; |
| continue; |
| } |
| } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE)); |
| |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL); |
| if (rc) |
| return rc; |
| |
| rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg); |
| if (rc) |
| return rc; |
| |
| if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE | |
| SPI_FSI_CLOCK_CFG_ECC_DISABLE | |
| SPI_FSI_CLOCK_CFG_MODE | |
| SPI_FSI_CLOCK_CFG_SCK_RECV_DEL | |
| SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg) |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG, |
| wanted_clock_cfg); |
| |
| return rc; |
| } |
| |
| static int fsi_spi_transfer_one_message(struct spi_controller *ctlr, |
| struct spi_message *mesg) |
| { |
| int rc; |
| u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1); |
| unsigned int len; |
| struct spi_transfer *transfer; |
| struct fsi_spi *ctx = spi_controller_get_devdata(ctlr); |
| |
| rc = fsi_spi_check_mux(ctx->bridge->fsi, ctx->dev); |
| if (rc) |
| goto error; |
| |
| list_for_each_entry(transfer, &mesg->transfers, transfer_list) { |
| struct fsi_spi_sequence seq; |
| struct spi_transfer *next = NULL; |
| |
| /* Sequencer must do shift out (tx) first. */ |
| if (!transfer->tx_buf || transfer->len > SPI_FSI_MAX_TX_SIZE) { |
| rc = -EINVAL; |
| goto error; |
| } |
| |
| dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len); |
| |
| rc = fsi_spi_transfer_init(ctx); |
| if (rc < 0) |
| goto error; |
| |
| fsi_spi_sequence_init(&seq); |
| fsi_spi_sequence_add(&seq, seq_slave); |
| |
| len = transfer->len; |
| while (len > 8) { |
| fsi_spi_sequence_add(&seq, |
| SPI_FSI_SEQUENCE_SHIFT_OUT(8)); |
| len -= 8; |
| } |
| fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SHIFT_OUT(len)); |
| |
| if (!list_is_last(&transfer->transfer_list, |
| &mesg->transfers)) { |
| next = list_next_entry(transfer, transfer_list); |
| |
| /* Sequencer can only do shift in (rx) after tx. */ |
| if (next->rx_buf) { |
| u8 shift; |
| |
| if (next->len > SPI_FSI_MAX_RX_SIZE) { |
| rc = -EINVAL; |
| goto error; |
| } |
| |
| dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n", |
| next->len); |
| |
| shift = SPI_FSI_SEQUENCE_SHIFT_IN(next->len); |
| fsi_spi_sequence_add(&seq, shift); |
| } else { |
| next = NULL; |
| } |
| } |
| |
| fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0)); |
| |
| rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data); |
| if (rc) |
| goto error; |
| |
| rc = fsi_spi_transfer_data(ctx, transfer); |
| if (rc) |
| goto error; |
| |
| if (next) { |
| rc = fsi_spi_transfer_data(ctx, next); |
| if (rc) |
| goto error; |
| |
| transfer = next; |
| } |
| } |
| |
| error: |
| mesg->status = rc; |
| spi_finalize_current_message(ctlr); |
| |
| return rc; |
| } |
| |
| static size_t fsi_spi_max_transfer_size(struct spi_device *spi) |
| { |
| return SPI_FSI_MAX_RX_SIZE; |
| } |
| |
| static int fsi_spi_probe(struct device *dev) |
| { |
| int rc; |
| struct device_node *np; |
| int num_controllers_registered = 0; |
| struct fsi2spi *bridge; |
| struct fsi_device *fsi = to_fsi_dev(dev); |
| |
| rc = fsi_spi_check_mux(fsi, dev); |
| if (rc) |
| return -ENODEV; |
| |
| bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); |
| if (!bridge) |
| return -ENOMEM; |
| |
| bridge->fsi = fsi; |
| mutex_init(&bridge->lock); |
| |
| for_each_available_child_of_node(dev->of_node, np) { |
| u32 base; |
| struct fsi_spi *ctx; |
| struct spi_controller *ctlr; |
| |
| if (of_property_read_u32(np, "reg", &base)) |
| continue; |
| |
| ctlr = spi_alloc_master(dev, sizeof(*ctx)); |
| if (!ctlr) { |
| of_node_put(np); |
| break; |
| } |
| |
| ctlr->dev.of_node = np; |
| ctlr->num_chipselect = of_get_available_child_count(np) ?: 1; |
| ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX; |
| ctlr->max_transfer_size = fsi_spi_max_transfer_size; |
| ctlr->transfer_one_message = fsi_spi_transfer_one_message; |
| |
| ctx = spi_controller_get_devdata(ctlr); |
| ctx->dev = &ctlr->dev; |
| ctx->bridge = bridge; |
| ctx->base = base + SPI_FSI_BASE; |
| |
| rc = devm_spi_register_controller(dev, ctlr); |
| if (rc) |
| spi_controller_put(ctlr); |
| else |
| num_controllers_registered++; |
| } |
| |
| if (!num_controllers_registered) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| static const struct fsi_device_id fsi_spi_ids[] = { |
| { FSI_ENGID_SPI, FSI_VERSION_ANY }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(fsi, fsi_spi_ids); |
| |
| static struct fsi_driver fsi_spi_driver = { |
| .id_table = fsi_spi_ids, |
| .drv = { |
| .name = "spi-fsi", |
| .bus = &fsi_bus_type, |
| .probe = fsi_spi_probe, |
| }, |
| }; |
| module_fsi_driver(fsi_spi_driver); |
| |
| MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>"); |
| MODULE_DESCRIPTION("FSI attached SPI controller"); |
| MODULE_LICENSE("GPL"); |