blob: 5b642d81e617dc61207f3a690df1e7b304203326 [file] [log] [blame]
/*
* Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <rdma/ib_umem.h>
#include <rdma/ib_umem_odp.h>
#include <linux/kernel.h>
#include "mlx5_ib.h"
#include "cmd.h"
#include <linux/mlx5/eq.h>
/* Contains the details of a pagefault. */
struct mlx5_pagefault {
u32 bytes_committed;
u32 token;
u8 event_subtype;
u8 type;
union {
/* Initiator or send message responder pagefault details. */
struct {
/* Received packet size, only valid for responders. */
u32 packet_size;
/*
* Number of resource holding WQE, depends on type.
*/
u32 wq_num;
/*
* WQE index. Refers to either the send queue or
* receive queue, according to event_subtype.
*/
u16 wqe_index;
} wqe;
/* RDMA responder pagefault details */
struct {
u32 r_key;
/*
* Received packet size, minimal size page fault
* resolution required for forward progress.
*/
u32 packet_size;
u32 rdma_op_len;
u64 rdma_va;
} rdma;
};
struct mlx5_ib_pf_eq *eq;
struct work_struct work;
};
#define MAX_PREFETCH_LEN (4*1024*1024U)
/* Timeout in ms to wait for an active mmu notifier to complete when handling
* a pagefault. */
#define MMU_NOTIFIER_TIMEOUT 1000
#define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
#define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
#define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
#define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
#define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
#define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
static u64 mlx5_imr_ksm_entries;
static int check_parent(struct ib_umem_odp *odp,
struct mlx5_ib_mr *parent)
{
struct mlx5_ib_mr *mr = odp->private;
return mr && mr->parent == parent && !odp->dying;
}
static struct ib_ucontext_per_mm *mr_to_per_mm(struct mlx5_ib_mr *mr)
{
if (WARN_ON(!mr || !is_odp_mr(mr)))
return NULL;
return to_ib_umem_odp(mr->umem)->per_mm;
}
static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp)
{
struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent;
struct ib_ucontext_per_mm *per_mm = odp->per_mm;
struct rb_node *rb;
down_read(&per_mm->umem_rwsem);
while (1) {
rb = rb_next(&odp->interval_tree.rb);
if (!rb)
goto not_found;
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
if (check_parent(odp, parent))
goto end;
}
not_found:
odp = NULL;
end:
up_read(&per_mm->umem_rwsem);
return odp;
}
static struct ib_umem_odp *odp_lookup(u64 start, u64 length,
struct mlx5_ib_mr *parent)
{
struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(parent);
struct ib_umem_odp *odp;
struct rb_node *rb;
down_read(&per_mm->umem_rwsem);
odp = rbt_ib_umem_lookup(&per_mm->umem_tree, start, length);
if (!odp)
goto end;
while (1) {
if (check_parent(odp, parent))
goto end;
rb = rb_next(&odp->interval_tree.rb);
if (!rb)
goto not_found;
odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb);
if (ib_umem_start(odp) > start + length)
goto not_found;
}
not_found:
odp = NULL;
end:
up_read(&per_mm->umem_rwsem);
return odp;
}
void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset,
size_t nentries, struct mlx5_ib_mr *mr, int flags)
{
struct ib_pd *pd = mr->ibmr.pd;
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct ib_umem_odp *odp;
unsigned long va;
int i;
if (flags & MLX5_IB_UPD_XLT_ZAP) {
for (i = 0; i < nentries; i++, pklm++) {
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
pklm->key = cpu_to_be32(dev->null_mkey);
pklm->va = 0;
}
return;
}
odp = odp_lookup(offset * MLX5_IMR_MTT_SIZE,
nentries * MLX5_IMR_MTT_SIZE, mr);
for (i = 0; i < nentries; i++, pklm++) {
pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
va = (offset + i) * MLX5_IMR_MTT_SIZE;
if (odp && odp->umem.address == va) {
struct mlx5_ib_mr *mtt = odp->private;
pklm->key = cpu_to_be32(mtt->ibmr.lkey);
odp = odp_next(odp);
} else {
pklm->key = cpu_to_be32(dev->null_mkey);
}
mlx5_ib_dbg(dev, "[%d] va %lx key %x\n",
i, va, be32_to_cpu(pklm->key));
}
}
static void mr_leaf_free_action(struct work_struct *work)
{
struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work);
int idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent;
mr->parent = NULL;
synchronize_srcu(&mr->dev->mr_srcu);
ib_umem_release(&odp->umem);
if (imr->live)
mlx5_ib_update_xlt(imr, idx, 1, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
mlx5_mr_cache_free(mr->dev, mr);
if (atomic_dec_and_test(&imr->num_leaf_free))
wake_up(&imr->q_leaf_free);
}
void mlx5_ib_invalidate_range(struct ib_umem_odp *umem_odp, unsigned long start,
unsigned long end)
{
struct mlx5_ib_mr *mr;
const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
sizeof(struct mlx5_mtt)) - 1;
u64 idx = 0, blk_start_idx = 0;
int in_block = 0;
u64 addr;
if (!umem_odp) {
pr_err("invalidation called on NULL umem or non-ODP umem\n");
return;
}
mr = umem_odp->private;
if (!mr || !mr->ibmr.pd)
return;
start = max_t(u64, ib_umem_start(umem_odp), start);
end = min_t(u64, ib_umem_end(umem_odp), end);
/*
* Iteration one - zap the HW's MTTs. The notifiers_count ensures that
* while we are doing the invalidation, no page fault will attempt to
* overwrite the same MTTs. Concurent invalidations might race us,
* but they will write 0s as well, so no difference in the end result.
*/
for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
/*
* Strive to write the MTTs in chunks, but avoid overwriting
* non-existing MTTs. The huristic here can be improved to
* estimate the cost of another UMR vs. the cost of bigger
* UMR.
*/
if (umem_odp->dma_list[idx] &
(ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
if (!in_block) {
blk_start_idx = idx;
in_block = 1;
}
} else {
u64 umr_offset = idx & umr_block_mask;
if (in_block && umr_offset == 0) {
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx, 0,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
in_block = 0;
}
}
}
if (in_block)
mlx5_ib_update_xlt(mr, blk_start_idx,
idx - blk_start_idx + 1, 0,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ATOMIC);
/*
* We are now sure that the device will not access the
* memory. We can safely unmap it, and mark it as dirty if
* needed.
*/
ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
if (unlikely(!umem_odp->npages && mr->parent &&
!umem_odp->dying)) {
WRITE_ONCE(umem_odp->dying, 1);
atomic_inc(&mr->parent->num_leaf_free);
schedule_work(&umem_odp->work);
}
}
void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
{
struct ib_odp_caps *caps = &dev->odp_caps;
memset(caps, 0, sizeof(*caps));
if (!MLX5_CAP_GEN(dev->mdev, pg))
return;
caps->general_caps = IB_ODP_SUPPORT;
if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
dev->odp_max_size = U64_MAX;
else
dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
MLX5_CAP_GEN(dev->mdev, null_mkey) &&
MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
return;
}
static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
int error)
{
int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
pfault->wqe.wq_num : pfault->token;
u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { };
int err;
MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
MLX5_SET(page_fault_resume_in, in, token, pfault->token);
MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
MLX5_SET(page_fault_resume_in, in, error, !!error);
err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
if (err)
mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
wq_num, err);
}
static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd,
struct ib_umem *umem,
bool ksm, int access_flags)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
struct mlx5_ib_mr *mr;
int err;
mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY :
MLX5_IMR_MTT_CACHE_ENTRY);
if (IS_ERR(mr))
return mr;
mr->ibmr.pd = pd;
mr->dev = dev;
mr->access_flags = access_flags;
mr->mmkey.iova = 0;
mr->umem = umem;
if (ksm) {
err = mlx5_ib_update_xlt(mr, 0,
mlx5_imr_ksm_entries,
MLX5_KSM_PAGE_SHIFT,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE);
} else {
err = mlx5_ib_update_xlt(mr, 0,
MLX5_IMR_MTT_ENTRIES,
PAGE_SHIFT,
MLX5_IB_UPD_XLT_ZAP |
MLX5_IB_UPD_XLT_ENABLE |
MLX5_IB_UPD_XLT_ATOMIC);
}
if (err)
goto fail;
mr->ibmr.lkey = mr->mmkey.key;
mr->ibmr.rkey = mr->mmkey.key;
mr->live = 1;
mlx5_ib_dbg(dev, "key %x dev %p mr %p\n",
mr->mmkey.key, dev->mdev, mr);
return mr;
fail:
mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
mlx5_mr_cache_free(dev, mr);
return ERR_PTR(err);
}
static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr,
u64 io_virt, size_t bcnt)
{
struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device);
struct ib_umem_odp *odp, *result = NULL;
struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
u64 addr = io_virt & MLX5_IMR_MTT_MASK;
int nentries = 0, start_idx = 0, ret;
struct mlx5_ib_mr *mtt;
mutex_lock(&odp_mr->umem_mutex);
odp = odp_lookup(addr, 1, mr);
mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n",
io_virt, bcnt, addr, odp);
next_mr:
if (likely(odp)) {
if (nentries)
nentries++;
} else {
odp = ib_alloc_odp_umem(odp_mr, addr,
MLX5_IMR_MTT_SIZE);
if (IS_ERR(odp)) {
mutex_unlock(&odp_mr->umem_mutex);
return ERR_CAST(odp);
}
mtt = implicit_mr_alloc(mr->ibmr.pd, &odp->umem, 0,
mr->access_flags);
if (IS_ERR(mtt)) {
mutex_unlock(&odp_mr->umem_mutex);
ib_umem_release(&odp->umem);
return ERR_CAST(mtt);
}
odp->private = mtt;
mtt->umem = &odp->umem;
mtt->mmkey.iova = addr;
mtt->parent = mr;
INIT_WORK(&odp->work, mr_leaf_free_action);
if (!nentries)
start_idx = addr >> MLX5_IMR_MTT_SHIFT;
nentries++;
}
/* Return first odp if region not covered by single one */
if (likely(!result))
result = odp;
addr += MLX5_IMR_MTT_SIZE;
if (unlikely(addr < io_virt + bcnt)) {
odp = odp_next(odp);
if (odp && odp->umem.address != addr)
odp = NULL;
goto next_mr;
}
if (unlikely(nentries)) {
ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0,
MLX5_IB_UPD_XLT_INDIRECT |
MLX5_IB_UPD_XLT_ATOMIC);
if (ret) {
mlx5_ib_err(dev, "Failed to update PAS\n");
result = ERR_PTR(ret);
}
}
mutex_unlock(&odp_mr->umem_mutex);
return result;
}
struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
struct ib_udata *udata,
int access_flags)
{
struct mlx5_ib_mr *imr;
struct ib_umem *umem;
umem = ib_umem_get(udata, 0, 0, access_flags, 0);
if (IS_ERR(umem))
return ERR_CAST(umem);
imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags);
if (IS_ERR(imr)) {
ib_umem_release(umem);
return ERR_CAST(imr);
}
imr->umem = umem;
init_waitqueue_head(&imr->q_leaf_free);
atomic_set(&imr->num_leaf_free, 0);
atomic_set(&imr->num_pending_prefetch, 0);
return imr;
}
static int mr_leaf_free(struct ib_umem_odp *umem_odp, u64 start, u64 end,
void *cookie)
{
struct mlx5_ib_mr *mr = umem_odp->private, *imr = cookie;
if (mr->parent != imr)
return 0;
ib_umem_odp_unmap_dma_pages(umem_odp, ib_umem_start(umem_odp),
ib_umem_end(umem_odp));
if (umem_odp->dying)
return 0;
WRITE_ONCE(umem_odp->dying, 1);
atomic_inc(&imr->num_leaf_free);
schedule_work(&umem_odp->work);
return 0;
}
void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
{
struct ib_ucontext_per_mm *per_mm = mr_to_per_mm(imr);
down_read(&per_mm->umem_rwsem);
rbt_ib_umem_for_each_in_range(&per_mm->umem_tree, 0, ULLONG_MAX,
mr_leaf_free, true, imr);
up_read(&per_mm->umem_rwsem);
wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free));
}
#define MLX5_PF_FLAGS_PREFETCH BIT(0)
#define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
u64 io_virt, size_t bcnt, u32 *bytes_mapped,
u32 flags)
{
int npages = 0, current_seq, page_shift, ret, np;
bool implicit = false;
struct ib_umem_odp *odp_mr = to_ib_umem_odp(mr->umem);
bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
u64 access_mask;
u64 start_idx, page_mask;
struct ib_umem_odp *odp;
size_t size;
if (!odp_mr->page_list) {
odp = implicit_mr_get_data(mr, io_virt, bcnt);
if (IS_ERR(odp))
return PTR_ERR(odp);
mr = odp->private;
implicit = true;
} else {
odp = odp_mr;
}
next_mr:
size = min_t(size_t, bcnt, ib_umem_end(odp) - io_virt);
page_shift = odp->page_shift;
page_mask = ~(BIT(page_shift) - 1);
start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift;
access_mask = ODP_READ_ALLOWED_BIT;
if (prefetch && !downgrade && !mr->umem->writable) {
/* prefetch with write-access must
* be supported by the MR
*/
ret = -EINVAL;
goto out;
}
if (mr->umem->writable && !downgrade)
access_mask |= ODP_WRITE_ALLOWED_BIT;
current_seq = READ_ONCE(odp->notifiers_seq);
/*
* Ensure the sequence number is valid for some time before we call
* gup.
*/
smp_rmb();
ret = ib_umem_odp_map_dma_pages(to_ib_umem_odp(mr->umem), io_virt, size,
access_mask, current_seq);
if (ret < 0)
goto out;
np = ret;
mutex_lock(&odp->umem_mutex);
if (!ib_umem_mmu_notifier_retry(to_ib_umem_odp(mr->umem),
current_seq)) {
/*
* No need to check whether the MTTs really belong to
* this MR, since ib_umem_odp_map_dma_pages already
* checks this.
*/
ret = mlx5_ib_update_xlt(mr, start_idx, np,
page_shift, MLX5_IB_UPD_XLT_ATOMIC);
} else {
ret = -EAGAIN;
}
mutex_unlock(&odp->umem_mutex);
if (ret < 0) {
if (ret != -EAGAIN)
mlx5_ib_err(dev, "Failed to update mkey page tables\n");
goto out;
}
if (bytes_mapped) {
u32 new_mappings = (np << page_shift) -
(io_virt - round_down(io_virt, 1 << page_shift));
*bytes_mapped += min_t(u32, new_mappings, size);
}
npages += np << (page_shift - PAGE_SHIFT);
bcnt -= size;
if (unlikely(bcnt)) {
struct ib_umem_odp *next;
io_virt += size;
next = odp_next(odp);
if (unlikely(!next || next->umem.address != io_virt)) {
mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n",
io_virt, next);
return -EAGAIN;
}
odp = next;
mr = odp->private;
goto next_mr;
}
return npages;
out:
if (ret == -EAGAIN) {
if (implicit || !odp->dying) {
unsigned long timeout =
msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT);
if (!wait_for_completion_timeout(
&odp->notifier_completion,
timeout)) {
mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d. notifiers_count=%d\n",
current_seq, odp->notifiers_seq, odp->notifiers_count);
}
} else {
/* The MR is being killed, kill the QP as well. */
ret = -EFAULT;
}
}
return ret;
}
struct pf_frame {
struct pf_frame *next;
u32 key;
u64 io_virt;
size_t bcnt;
int depth;
};
static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
{
if (!mmkey)
return false;
if (mmkey->type == MLX5_MKEY_MW)
return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
return mmkey->key == key;
}
static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
{
struct mlx5_ib_mw *mw;
struct mlx5_ib_devx_mr *devx_mr;
if (mmkey->type == MLX5_MKEY_MW) {
mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
return mw->ndescs;
}
devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
mmkey);
return devx_mr->ndescs;
}
/*
* Handle a single data segment in a page-fault WQE or RDMA region.
*
* Returns number of OS pages retrieved on success. The caller may continue to
* the next data segment.
* Can return the following error codes:
* -EAGAIN to designate a temporary error. The caller will abort handling the
* page fault and resolve it.
* -EFAULT when there's an error mapping the requested pages. The caller will
* abort the page fault handling.
*/
static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
struct ib_pd *pd, u32 key,
u64 io_virt, size_t bcnt,
u32 *bytes_committed,
u32 *bytes_mapped, u32 flags)
{
int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
bool prefetch = flags & MLX5_PF_FLAGS_PREFETCH;
struct pf_frame *head = NULL, *frame;
struct mlx5_core_mkey *mmkey;
struct mlx5_ib_mr *mr;
struct mlx5_klm *pklm;
u32 *out = NULL;
size_t offset;
int ndescs;
srcu_key = srcu_read_lock(&dev->mr_srcu);
io_virt += *bytes_committed;
bcnt -= *bytes_committed;
next_mr:
mmkey = xa_load(&dev->mdev->priv.mkey_table, mlx5_base_mkey(key));
if (!mkey_is_eq(mmkey, key)) {
mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
ret = -EFAULT;
goto srcu_unlock;
}
if (prefetch && mmkey->type != MLX5_MKEY_MR) {
mlx5_ib_dbg(dev, "prefetch is allowed only for MR\n");
ret = -EINVAL;
goto srcu_unlock;
}
switch (mmkey->type) {
case MLX5_MKEY_MR:
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
if (!mr->live || !mr->ibmr.pd) {
mlx5_ib_dbg(dev, "got dead MR\n");
ret = -EFAULT;
goto srcu_unlock;
}
if (prefetch) {
if (!is_odp_mr(mr) ||
mr->ibmr.pd != pd) {
mlx5_ib_dbg(dev, "Invalid prefetch request: %s\n",
is_odp_mr(mr) ? "MR is not ODP" :
"PD is not of the MR");
ret = -EINVAL;
goto srcu_unlock;
}
}
if (!is_odp_mr(mr)) {
mlx5_ib_dbg(dev, "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
key);
if (bytes_mapped)
*bytes_mapped += bcnt;
ret = 0;
goto srcu_unlock;
}
ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped, flags);
if (ret < 0)
goto srcu_unlock;
npages += ret;
ret = 0;
break;
case MLX5_MKEY_MW:
case MLX5_MKEY_INDIRECT_DEVX:
ndescs = get_indirect_num_descs(mmkey);
if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
mlx5_ib_dbg(dev, "indirection level exceeded\n");
ret = -EFAULT;
goto srcu_unlock;
}
outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
sizeof(*pklm) * (ndescs - 2);
if (outlen > cur_outlen) {
kfree(out);
out = kzalloc(outlen, GFP_KERNEL);
if (!out) {
ret = -ENOMEM;
goto srcu_unlock;
}
cur_outlen = outlen;
}
pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
bsf0_klm0_pas_mtt0_1);
ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
if (ret)
goto srcu_unlock;
offset = io_virt - MLX5_GET64(query_mkey_out, out,
memory_key_mkey_entry.start_addr);
for (i = 0; bcnt && i < ndescs; i++, pklm++) {
if (offset >= be32_to_cpu(pklm->bcount)) {
offset -= be32_to_cpu(pklm->bcount);
continue;
}
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame) {
ret = -ENOMEM;
goto srcu_unlock;
}
frame->key = be32_to_cpu(pklm->key);
frame->io_virt = be64_to_cpu(pklm->va) + offset;
frame->bcnt = min_t(size_t, bcnt,
be32_to_cpu(pklm->bcount) - offset);
frame->depth = depth + 1;
frame->next = head;
head = frame;
bcnt -= frame->bcnt;
offset = 0;
}
break;
default:
mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
ret = -EFAULT;
goto srcu_unlock;
}
if (head) {
frame = head;
head = frame->next;
key = frame->key;
io_virt = frame->io_virt;
bcnt = frame->bcnt;
depth = frame->depth;
kfree(frame);
goto next_mr;
}
srcu_unlock:
while (head) {
frame = head;
head = frame->next;
kfree(frame);
}
kfree(out);
srcu_read_unlock(&dev->mr_srcu, srcu_key);
*bytes_committed = 0;
return ret ? ret : npages;
}
/**
* Parse a series of data segments for page fault handling.
*
* @pfault contains page fault information.
* @wqe points at the first data segment in the WQE.
* @wqe_end points after the end of the WQE.
* @bytes_mapped receives the number of bytes that the function was able to
* map. This allows the caller to decide intelligently whether
* enough memory was mapped to resolve the page fault
* successfully (e.g. enough for the next MTU, or the entire
* WQE).
* @total_wqe_bytes receives the total data size of this WQE in bytes (minus
* the committed bytes).
*
* Returns the number of pages loaded if positive, zero for an empty WQE, or a
* negative error code.
*/
static int pagefault_data_segments(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault,
void *wqe,
void *wqe_end, u32 *bytes_mapped,
u32 *total_wqe_bytes, bool receive_queue)
{
int ret = 0, npages = 0;
u64 io_virt;
u32 key;
u32 byte_count;
size_t bcnt;
int inline_segment;
if (bytes_mapped)
*bytes_mapped = 0;
if (total_wqe_bytes)
*total_wqe_bytes = 0;
while (wqe < wqe_end) {
struct mlx5_wqe_data_seg *dseg = wqe;
io_virt = be64_to_cpu(dseg->addr);
key = be32_to_cpu(dseg->lkey);
byte_count = be32_to_cpu(dseg->byte_count);
inline_segment = !!(byte_count & MLX5_INLINE_SEG);
bcnt = byte_count & ~MLX5_INLINE_SEG;
if (inline_segment) {
bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
16);
} else {
wqe += sizeof(*dseg);
}
/* receive WQE end of sg list. */
if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
io_virt == 0)
break;
if (!inline_segment && total_wqe_bytes) {
*total_wqe_bytes += bcnt - min_t(size_t, bcnt,
pfault->bytes_committed);
}
/* A zero length data segment designates a length of 2GB. */
if (bcnt == 0)
bcnt = 1U << 31;
if (inline_segment || bcnt <= pfault->bytes_committed) {
pfault->bytes_committed -=
min_t(size_t, bcnt,
pfault->bytes_committed);
continue;
}
ret = pagefault_single_data_segment(dev, NULL, key,
io_virt, bcnt,
&pfault->bytes_committed,
bytes_mapped, 0);
if (ret < 0)
break;
npages += ret;
}
return ret < 0 ? ret : npages;
}
static const u32 mlx5_ib_odp_opcode_cap[] = {
[MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND,
[MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE,
[MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE,
[MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ,
[MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC,
[MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC,
};
/*
* Parse initiator WQE. Advances the wqe pointer to point at the
* scatter-gather list, and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_initiator_pfault_handler(
struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
{
struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
u16 wqe_index = pfault->wqe.wqe_index;
u32 transport_caps;
struct mlx5_base_av *av;
unsigned ds, opcode;
#if defined(DEBUG)
u32 ctrl_wqe_index, ctrl_qpn;
#endif
u32 qpn = qp->trans_qp.base.mqp.qpn;
ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
ds, wqe_length);
return -EFAULT;
}
if (ds == 0) {
mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
wqe_index, qpn);
return -EFAULT;
}
#if defined(DEBUG)
ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) &
MLX5_WQE_CTRL_WQE_INDEX_MASK) >>
MLX5_WQE_CTRL_WQE_INDEX_SHIFT;
if (wqe_index != ctrl_wqe_index) {
mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n",
wqe_index, qpn,
ctrl_wqe_index);
return -EFAULT;
}
ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >>
MLX5_WQE_CTRL_QPN_SHIFT;
if (qpn != ctrl_qpn) {
mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n",
wqe_index, qpn,
ctrl_qpn);
return -EFAULT;
}
#endif /* DEBUG */
*wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
*wqe += sizeof(*ctrl);
opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
MLX5_WQE_CTRL_OPCODE_MASK;
switch (qp->ibqp.qp_type) {
case IB_QPT_XRC_INI:
*wqe += sizeof(struct mlx5_wqe_xrc_seg);
transport_caps = dev->odp_caps.per_transport_caps.xrc_odp_caps;
break;
case IB_QPT_RC:
transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps;
break;
case IB_QPT_UD:
transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps;
break;
default:
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n",
qp->ibqp.qp_type);
return -EFAULT;
}
if (unlikely(opcode >= ARRAY_SIZE(mlx5_ib_odp_opcode_cap) ||
!(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) {
mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n",
opcode);
return -EFAULT;
}
if (qp->ibqp.qp_type == IB_QPT_UD) {
av = *wqe;
if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
*wqe += sizeof(struct mlx5_av);
else
*wqe += sizeof(struct mlx5_base_av);
}
switch (opcode) {
case MLX5_OPCODE_RDMA_WRITE:
case MLX5_OPCODE_RDMA_WRITE_IMM:
case MLX5_OPCODE_RDMA_READ:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
break;
case MLX5_OPCODE_ATOMIC_CS:
case MLX5_OPCODE_ATOMIC_FA:
*wqe += sizeof(struct mlx5_wqe_raddr_seg);
*wqe += sizeof(struct mlx5_wqe_atomic_seg);
break;
}
return 0;
}
/*
* Parse responder WQE and set wqe_end to the end of the WQE.
*/
static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
struct mlx5_ib_srq *srq,
void **wqe, void **wqe_end,
int wqe_length)
{
int wqe_size = 1 << srq->msrq.wqe_shift;
if (wqe_size > wqe_length) {
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
return -EFAULT;
}
*wqe_end = *wqe + wqe_size;
*wqe += sizeof(struct mlx5_wqe_srq_next_seg);
return 0;
}
static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
struct mlx5_ib_qp *qp,
void *wqe, void **wqe_end,
int wqe_length)
{
struct mlx5_ib_wq *wq = &qp->rq;
int wqe_size = 1 << wq->wqe_shift;
if (qp->wq_sig) {
mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
return -EFAULT;
}
if (wqe_size > wqe_length) {
mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
return -EFAULT;
}
switch (qp->ibqp.qp_type) {
case IB_QPT_RC:
if (!(dev->odp_caps.per_transport_caps.rc_odp_caps &
IB_ODP_SUPPORT_RECV))
goto invalid_transport_or_opcode;
break;
default:
invalid_transport_or_opcode:
mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n",
qp->ibqp.qp_type);
return -EFAULT;
}
*wqe_end = wqe + wqe_size;
return 0;
}
static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
u32 wq_num, int pf_type)
{
struct mlx5_core_rsc_common *common = NULL;
struct mlx5_core_srq *srq;
switch (pf_type) {
case MLX5_WQE_PF_TYPE_RMP:
srq = mlx5_cmd_get_srq(dev, wq_num);
if (srq)
common = &srq->common;
break;
case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
case MLX5_WQE_PF_TYPE_RESP:
case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
break;
default:
break;
}
return common;
}
static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
{
struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
return to_mibqp(mqp);
}
static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
{
struct mlx5_core_srq *msrq =
container_of(res, struct mlx5_core_srq, common);
return to_mibsrq(msrq);
}
static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
u16 wqe_index = pfault->wqe.wqe_index;
void *wqe = NULL, *wqe_end = NULL;
u32 bytes_mapped, total_wqe_bytes;
struct mlx5_core_rsc_common *res;
int resume_with_error = 1;
struct mlx5_ib_qp *qp;
size_t bytes_copied;
int ret = 0;
res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
if (!res) {
mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
return;
}
if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
res->res != MLX5_RES_XSRQ) {
mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
pfault->type);
goto resolve_page_fault;
}
wqe = (void *)__get_free_page(GFP_KERNEL);
if (!wqe) {
mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
goto resolve_page_fault;
}
qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
if (qp && sq) {
ret = mlx5_ib_read_user_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_initiator_pfault_handler(
dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
} else if (qp && !sq) {
ret = mlx5_ib_read_user_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_responder_pfault_handler_rq(
dev, qp, wqe, &wqe_end, bytes_copied);
} else if (!qp) {
struct mlx5_ib_srq *srq = res_to_srq(res);
ret = mlx5_ib_read_user_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
&bytes_copied);
if (ret)
goto read_user;
ret = mlx5_ib_mr_responder_pfault_handler_srq(
dev, srq, &wqe, &wqe_end, bytes_copied);
}
if (ret < 0 || wqe >= wqe_end)
goto resolve_page_fault;
ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
&total_wqe_bytes, !sq);
if (ret == -EAGAIN)
goto out;
if (ret < 0 || total_wqe_bytes > bytes_mapped)
goto resolve_page_fault;
out:
ret = 0;
resume_with_error = 0;
read_user:
if (ret)
mlx5_ib_err(
dev,
"Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
ret, wqe_index, pfault->token);
resolve_page_fault:
mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
pfault->wqe.wq_num, resume_with_error,
pfault->type);
mlx5_core_res_put(res);
free_page((unsigned long)wqe);
}
static int pages_in_range(u64 address, u32 length)
{
return (ALIGN(address + length, PAGE_SIZE) -
(address & PAGE_MASK)) >> PAGE_SHIFT;
}
static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
struct mlx5_pagefault *pfault)
{
u64 address;
u32 length;
u32 prefetch_len = pfault->bytes_committed;
int prefetch_activated = 0;
u32 rkey = pfault->rdma.r_key;
int ret;
/* The RDMA responder handler handles the page fault in two parts.
* First it brings the necessary pages for the current packet
* (and uses the pfault context), and then (after resuming the QP)
* prefetches more pages. The second operation cannot use the pfault
* context and therefore uses the dummy_pfault context allocated on
* the stack */
pfault->rdma.rdma_va += pfault->bytes_committed;
pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
pfault->rdma.rdma_op_len);
pfault->bytes_committed = 0;
address = pfault->rdma.rdma_va;
length = pfault->rdma.rdma_op_len;
/* For some operations, the hardware cannot tell the exact message
* length, and in those cases it reports zero. Use prefetch
* logic. */
if (length == 0) {
prefetch_activated = 1;
length = pfault->rdma.packet_size;
prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
}
ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
&pfault->bytes_committed, NULL,
0);
if (ret == -EAGAIN) {
/* We're racing with an invalidation, don't prefetch */
prefetch_activated = 0;
} else if (ret < 0 || pages_in_range(address, length) > ret) {
mlx5_ib_page_fault_resume(dev, pfault, 1);
if (ret != -ENOENT)
mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
ret, pfault->token, pfault->type);
return;
}
mlx5_ib_page_fault_resume(dev, pfault, 0);
mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
pfault->token, pfault->type,
prefetch_activated);
/* At this point, there might be a new pagefault already arriving in
* the eq, switch to the dummy pagefault for the rest of the
* processing. We're still OK with the objects being alive as the
* work-queue is being fenced. */
if (prefetch_activated) {
u32 bytes_committed = 0;
ret = pagefault_single_data_segment(dev, NULL, rkey, address,
prefetch_len,
&bytes_committed, NULL,
0);
if (ret < 0 && ret != -EAGAIN) {
mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
ret, pfault->token, address, prefetch_len);
}
}
}
static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
{
u8 event_subtype = pfault->event_subtype;
switch (event_subtype) {
case MLX5_PFAULT_SUBTYPE_WQE:
mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
break;
case MLX5_PFAULT_SUBTYPE_RDMA:
mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
break;
default:
mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
event_subtype);
mlx5_ib_page_fault_resume(dev, pfault, 1);
}
}
static void mlx5_ib_eqe_pf_action(struct work_struct *work)
{
struct mlx5_pagefault *pfault = container_of(work,
struct mlx5_pagefault,
work);
struct mlx5_ib_pf_eq *eq = pfault->eq;
mlx5_ib_pfault(eq->dev, pfault);
mempool_free(pfault, eq->pool);
}
static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
{
struct mlx5_eqe_page_fault *pf_eqe;
struct mlx5_pagefault *pfault;
struct mlx5_eqe *eqe;
int cc = 0;
while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
if (!pfault) {
schedule_work(&eq->work);
break;
}
pf_eqe = &eqe->data.page_fault;
pfault->event_subtype = eqe->sub_type;
pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
eqe->sub_type, pfault->bytes_committed);
switch (eqe->sub_type) {
case MLX5_PFAULT_SUBTYPE_RDMA:
/* RDMA based event */
pfault->type =
be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
pfault->token =
be32_to_cpu(pf_eqe->rdma.pftype_token) &
MLX5_24BIT_MASK;
pfault->rdma.r_key =
be32_to_cpu(pf_eqe->rdma.r_key);
pfault->rdma.packet_size =
be16_to_cpu(pf_eqe->rdma.packet_length);
pfault->rdma.rdma_op_len =
be32_to_cpu(pf_eqe->rdma.rdma_op_len);
pfault->rdma.rdma_va =
be64_to_cpu(pf_eqe->rdma.rdma_va);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
pfault->type, pfault->token,
pfault->rdma.r_key);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
pfault->rdma.rdma_op_len,
pfault->rdma.rdma_va);
break;
case MLX5_PFAULT_SUBTYPE_WQE:
/* WQE based event */
pfault->type =
(be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
pfault->token =
be32_to_cpu(pf_eqe->wqe.token);
pfault->wqe.wq_num =
be32_to_cpu(pf_eqe->wqe.pftype_wq) &
MLX5_24BIT_MASK;
pfault->wqe.wqe_index =
be16_to_cpu(pf_eqe->wqe.wqe_index);
pfault->wqe.packet_size =
be16_to_cpu(pf_eqe->wqe.packet_length);
mlx5_ib_dbg(eq->dev,
"PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
pfault->type, pfault->token,
pfault->wqe.wq_num,
pfault->wqe.wqe_index);
break;
default:
mlx5_ib_warn(eq->dev,
"Unsupported page fault event sub-type: 0x%02hhx\n",
eqe->sub_type);
/* Unsupported page faults should still be
* resolved by the page fault handler
*/
}
pfault->eq = eq;
INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
queue_work(eq->wq, &pfault->work);
cc = mlx5_eq_update_cc(eq->core, ++cc);
}
mlx5_eq_update_ci(eq->core, cc, 1);
}
static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
void *data)
{
struct mlx5_ib_pf_eq *eq =
container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
unsigned long flags;
if (spin_trylock_irqsave(&eq->lock, flags)) {
mlx5_ib_eq_pf_process(eq);
spin_unlock_irqrestore(&eq->lock, flags);
} else {
schedule_work(&eq->work);
}
return IRQ_HANDLED;
}
/* mempool_refill() was proposed but unfortunately wasn't accepted
* http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
* Cheap workaround.
*/
static void mempool_refill(mempool_t *pool)
{
while (pool->curr_nr < pool->min_nr)
mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
}
static void mlx5_ib_eq_pf_action(struct work_struct *work)
{
struct mlx5_ib_pf_eq *eq =
container_of(work, struct mlx5_ib_pf_eq, work);
mempool_refill(eq->pool);
spin_lock_irq(&eq->lock);
mlx5_ib_eq_pf_process(eq);
spin_unlock_irq(&eq->lock);
}
enum {
MLX5_IB_NUM_PF_EQE = 0x1000,
MLX5_IB_NUM_PF_DRAIN = 64,
};
static int
mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
{
struct mlx5_eq_param param = {};
int err;
INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
spin_lock_init(&eq->lock);
eq->dev = dev;
eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
sizeof(struct mlx5_pagefault));
if (!eq->pool)
return -ENOMEM;
eq->wq = alloc_workqueue("mlx5_ib_page_fault",
WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
MLX5_NUM_CMD_EQE);
if (!eq->wq) {
err = -ENOMEM;
goto err_mempool;
}
eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
param = (struct mlx5_eq_param) {
.irq_index = 0,
.nent = MLX5_IB_NUM_PF_EQE,
};
param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
eq->core = mlx5_eq_create_generic(dev->mdev, &param);
if (IS_ERR(eq->core)) {
err = PTR_ERR(eq->core);
goto err_wq;
}
err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
if (err) {
mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
goto err_eq;
}
return 0;
err_eq:
mlx5_eq_destroy_generic(dev->mdev, eq->core);
err_wq:
destroy_workqueue(eq->wq);
err_mempool:
mempool_destroy(eq->pool);
return err;
}
static int
mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
{
int err;
mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
cancel_work_sync(&eq->work);
destroy_workqueue(eq->wq);
mempool_destroy(eq->pool);
return err;
}
void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
{
if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
return;
switch (ent->order - 2) {
case MLX5_IMR_MTT_CACHE_ENTRY:
ent->page = PAGE_SHIFT;
ent->xlt = MLX5_IMR_MTT_ENTRIES *
sizeof(struct mlx5_mtt) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
ent->limit = 0;
break;
case MLX5_IMR_KSM_CACHE_ENTRY:
ent->page = MLX5_KSM_PAGE_SHIFT;
ent->xlt = mlx5_imr_ksm_entries *
sizeof(struct mlx5_klm) /
MLX5_IB_UMR_OCTOWORD;
ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
ent->limit = 0;
break;
}
}
static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
.advise_mr = mlx5_ib_advise_mr,
};
int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
{
int ret = 0;
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT)
ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
if (ret) {
mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
return ret;
}
}
if (!MLX5_CAP_GEN(dev->mdev, pg))
return ret;
ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
return ret;
}
void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
{
if (!MLX5_CAP_GEN(dev->mdev, pg))
return;
mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
}
int mlx5_ib_odp_init(void)
{
mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
MLX5_IMR_MTT_BITS);
return 0;
}
struct prefetch_mr_work {
struct work_struct work;
struct ib_pd *pd;
u32 pf_flags;
u32 num_sge;
struct ib_sge sg_list[0];
};
static void num_pending_prefetch_dec(struct mlx5_ib_dev *dev,
struct ib_sge *sg_list, u32 num_sge,
u32 from)
{
u32 i;
int srcu_key;
srcu_key = srcu_read_lock(&dev->mr_srcu);
for (i = from; i < num_sge; ++i) {
struct mlx5_core_mkey *mmkey;
struct mlx5_ib_mr *mr;
mmkey = xa_load(&dev->mdev->priv.mkey_table,
mlx5_base_mkey(sg_list[i].lkey));
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
atomic_dec(&mr->num_pending_prefetch);
}
srcu_read_unlock(&dev->mr_srcu, srcu_key);
}
static bool num_pending_prefetch_inc(struct ib_pd *pd,
struct ib_sge *sg_list, u32 num_sge)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
bool ret = true;
u32 i;
for (i = 0; i < num_sge; ++i) {
struct mlx5_core_mkey *mmkey;
struct mlx5_ib_mr *mr;
mmkey = xa_load(&dev->mdev->priv.mkey_table,
mlx5_base_mkey(sg_list[i].lkey));
if (!mmkey || mmkey->key != sg_list[i].lkey) {
ret = false;
break;
}
if (mmkey->type != MLX5_MKEY_MR) {
ret = false;
break;
}
mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
if (mr->ibmr.pd != pd) {
ret = false;
break;
}
if (!mr->live) {
ret = false;
break;
}
atomic_inc(&mr->num_pending_prefetch);
}
if (!ret)
num_pending_prefetch_dec(dev, sg_list, i, 0);
return ret;
}
static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd, u32 pf_flags,
struct ib_sge *sg_list, u32 num_sge)
{
u32 i;
int ret = 0;
struct mlx5_ib_dev *dev = to_mdev(pd->device);
for (i = 0; i < num_sge; ++i) {
struct ib_sge *sg = &sg_list[i];
int bytes_committed = 0;
ret = pagefault_single_data_segment(dev, pd, sg->lkey, sg->addr,
sg->length,
&bytes_committed, NULL,
pf_flags);
if (ret < 0)
break;
}
return ret < 0 ? ret : 0;
}
static void mlx5_ib_prefetch_mr_work(struct work_struct *work)
{
struct prefetch_mr_work *w =
container_of(work, struct prefetch_mr_work, work);
if (ib_device_try_get(w->pd->device)) {
mlx5_ib_prefetch_sg_list(w->pd, w->pf_flags, w->sg_list,
w->num_sge);
ib_device_put(w->pd->device);
}
num_pending_prefetch_dec(to_mdev(w->pd->device), w->sg_list,
w->num_sge, 0);
kfree(w);
}
int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
enum ib_uverbs_advise_mr_advice advice,
u32 flags, struct ib_sge *sg_list, u32 num_sge)
{
struct mlx5_ib_dev *dev = to_mdev(pd->device);
u32 pf_flags = MLX5_PF_FLAGS_PREFETCH;
struct prefetch_mr_work *work;
bool valid_req;
int srcu_key;
if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
return mlx5_ib_prefetch_sg_list(pd, pf_flags, sg_list,
num_sge);
work = kvzalloc(struct_size(work, sg_list, num_sge), GFP_KERNEL);
if (!work)
return -ENOMEM;
memcpy(work->sg_list, sg_list, num_sge * sizeof(struct ib_sge));
/* It is guaranteed that the pd when work is executed is the pd when
* work was queued since pd can't be destroyed while it holds MRs and
* destroying a MR leads to flushing the workquque
*/
work->pd = pd;
work->pf_flags = pf_flags;
work->num_sge = num_sge;
INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
srcu_key = srcu_read_lock(&dev->mr_srcu);
valid_req = num_pending_prefetch_inc(pd, sg_list, num_sge);
if (valid_req)
queue_work(system_unbound_wq, &work->work);
else
kfree(work);
srcu_read_unlock(&dev->mr_srcu, srcu_key);
return valid_req ? 0 : -EINVAL;
}