| /* |
| * Functions related to segment and merge handling |
| */ |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/bio.h> |
| #include <linux/blkdev.h> |
| #include <linux/scatterlist.h> |
| |
| #include <trace/events/block.h> |
| |
| #include "blk.h" |
| |
| static struct bio *blk_bio_discard_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *nsegs) |
| { |
| unsigned int max_discard_sectors, granularity; |
| int alignment; |
| sector_t tmp; |
| unsigned split_sectors; |
| |
| *nsegs = 1; |
| |
| /* Zero-sector (unknown) and one-sector granularities are the same. */ |
| granularity = max(q->limits.discard_granularity >> 9, 1U); |
| |
| max_discard_sectors = min(q->limits.max_discard_sectors, UINT_MAX >> 9); |
| max_discard_sectors -= max_discard_sectors % granularity; |
| |
| if (unlikely(!max_discard_sectors)) { |
| /* XXX: warn */ |
| return NULL; |
| } |
| |
| if (bio_sectors(bio) <= max_discard_sectors) |
| return NULL; |
| |
| split_sectors = max_discard_sectors; |
| |
| /* |
| * If the next starting sector would be misaligned, stop the discard at |
| * the previous aligned sector. |
| */ |
| alignment = (q->limits.discard_alignment >> 9) % granularity; |
| |
| tmp = bio->bi_iter.bi_sector + split_sectors - alignment; |
| tmp = sector_div(tmp, granularity); |
| |
| if (split_sectors > tmp) |
| split_sectors -= tmp; |
| |
| return bio_split(bio, split_sectors, GFP_NOIO, bs); |
| } |
| |
| static struct bio *blk_bio_write_zeroes_split(struct request_queue *q, |
| struct bio *bio, struct bio_set *bs, unsigned *nsegs) |
| { |
| *nsegs = 1; |
| |
| if (!q->limits.max_write_zeroes_sectors) |
| return NULL; |
| |
| if (bio_sectors(bio) <= q->limits.max_write_zeroes_sectors) |
| return NULL; |
| |
| return bio_split(bio, q->limits.max_write_zeroes_sectors, GFP_NOIO, bs); |
| } |
| |
| static struct bio *blk_bio_write_same_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *nsegs) |
| { |
| *nsegs = 1; |
| |
| if (!q->limits.max_write_same_sectors) |
| return NULL; |
| |
| if (bio_sectors(bio) <= q->limits.max_write_same_sectors) |
| return NULL; |
| |
| return bio_split(bio, q->limits.max_write_same_sectors, GFP_NOIO, bs); |
| } |
| |
| static inline unsigned get_max_io_size(struct request_queue *q, |
| struct bio *bio) |
| { |
| unsigned sectors = blk_max_size_offset(q, bio->bi_iter.bi_sector); |
| unsigned mask = queue_logical_block_size(q) - 1; |
| |
| /* aligned to logical block size */ |
| sectors &= ~(mask >> 9); |
| |
| return sectors; |
| } |
| |
| static struct bio *blk_bio_segment_split(struct request_queue *q, |
| struct bio *bio, |
| struct bio_set *bs, |
| unsigned *segs) |
| { |
| struct bio_vec bv, bvprv, *bvprvp = NULL; |
| struct bvec_iter iter; |
| unsigned seg_size = 0, nsegs = 0, sectors = 0; |
| unsigned front_seg_size = bio->bi_seg_front_size; |
| bool do_split = true; |
| struct bio *new = NULL; |
| const unsigned max_sectors = get_max_io_size(q, bio); |
| |
| bio_for_each_segment(bv, bio, iter) { |
| /* |
| * If the queue doesn't support SG gaps and adding this |
| * offset would create a gap, disallow it. |
| */ |
| if (bvprvp && bvec_gap_to_prev(q, bvprvp, bv.bv_offset)) |
| goto split; |
| |
| if (sectors + (bv.bv_len >> 9) > max_sectors) { |
| /* |
| * Consider this a new segment if we're splitting in |
| * the middle of this vector. |
| */ |
| if (nsegs < queue_max_segments(q) && |
| sectors < max_sectors) { |
| nsegs++; |
| sectors = max_sectors; |
| } |
| if (sectors) |
| goto split; |
| /* Make this single bvec as the 1st segment */ |
| } |
| |
| if (bvprvp && blk_queue_cluster(q)) { |
| if (seg_size + bv.bv_len > queue_max_segment_size(q)) |
| goto new_segment; |
| if (!BIOVEC_PHYS_MERGEABLE(bvprvp, &bv)) |
| goto new_segment; |
| if (!BIOVEC_SEG_BOUNDARY(q, bvprvp, &bv)) |
| goto new_segment; |
| |
| seg_size += bv.bv_len; |
| bvprv = bv; |
| bvprvp = &bvprv; |
| sectors += bv.bv_len >> 9; |
| |
| if (nsegs == 1 && seg_size > front_seg_size) |
| front_seg_size = seg_size; |
| continue; |
| } |
| new_segment: |
| if (nsegs == queue_max_segments(q)) |
| goto split; |
| |
| nsegs++; |
| bvprv = bv; |
| bvprvp = &bvprv; |
| seg_size = bv.bv_len; |
| sectors += bv.bv_len >> 9; |
| |
| if (nsegs == 1 && seg_size > front_seg_size) |
| front_seg_size = seg_size; |
| } |
| |
| do_split = false; |
| split: |
| *segs = nsegs; |
| |
| if (do_split) { |
| new = bio_split(bio, sectors, GFP_NOIO, bs); |
| if (new) |
| bio = new; |
| } |
| |
| bio->bi_seg_front_size = front_seg_size; |
| if (seg_size > bio->bi_seg_back_size) |
| bio->bi_seg_back_size = seg_size; |
| |
| return do_split ? new : NULL; |
| } |
| |
| void blk_queue_split(struct request_queue *q, struct bio **bio) |
| { |
| struct bio *split, *res; |
| unsigned nsegs; |
| |
| switch (bio_op(*bio)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| split = blk_bio_discard_split(q, *bio, q->bio_split, &nsegs); |
| break; |
| case REQ_OP_WRITE_ZEROES: |
| split = blk_bio_write_zeroes_split(q, *bio, q->bio_split, &nsegs); |
| break; |
| case REQ_OP_WRITE_SAME: |
| split = blk_bio_write_same_split(q, *bio, q->bio_split, &nsegs); |
| break; |
| default: |
| split = blk_bio_segment_split(q, *bio, q->bio_split, &nsegs); |
| break; |
| } |
| |
| /* physical segments can be figured out during splitting */ |
| res = split ? split : *bio; |
| res->bi_phys_segments = nsegs; |
| bio_set_flag(res, BIO_SEG_VALID); |
| |
| if (split) { |
| /* there isn't chance to merge the splitted bio */ |
| split->bi_opf |= REQ_NOMERGE; |
| |
| bio_chain(split, *bio); |
| trace_block_split(q, split, (*bio)->bi_iter.bi_sector); |
| generic_make_request(*bio); |
| *bio = split; |
| } |
| } |
| EXPORT_SYMBOL(blk_queue_split); |
| |
| static unsigned int __blk_recalc_rq_segments(struct request_queue *q, |
| struct bio *bio, |
| bool no_sg_merge) |
| { |
| struct bio_vec bv, bvprv = { NULL }; |
| int cluster, prev = 0; |
| unsigned int seg_size, nr_phys_segs; |
| struct bio *fbio, *bbio; |
| struct bvec_iter iter; |
| |
| if (!bio) |
| return 0; |
| |
| switch (bio_op(bio)) { |
| case REQ_OP_DISCARD: |
| case REQ_OP_SECURE_ERASE: |
| case REQ_OP_WRITE_ZEROES: |
| return 0; |
| case REQ_OP_WRITE_SAME: |
| return 1; |
| } |
| |
| fbio = bio; |
| cluster = blk_queue_cluster(q); |
| seg_size = 0; |
| nr_phys_segs = 0; |
| for_each_bio(bio) { |
| bio_for_each_segment(bv, bio, iter) { |
| /* |
| * If SG merging is disabled, each bio vector is |
| * a segment |
| */ |
| if (no_sg_merge) |
| goto new_segment; |
| |
| if (prev && cluster) { |
| if (seg_size + bv.bv_len |
| > queue_max_segment_size(q)) |
| goto new_segment; |
| if (!BIOVEC_PHYS_MERGEABLE(&bvprv, &bv)) |
| goto new_segment; |
| if (!BIOVEC_SEG_BOUNDARY(q, &bvprv, &bv)) |
| goto new_segment; |
| |
| seg_size += bv.bv_len; |
| bvprv = bv; |
| continue; |
| } |
| new_segment: |
| if (nr_phys_segs == 1 && seg_size > |
| fbio->bi_seg_front_size) |
| fbio->bi_seg_front_size = seg_size; |
| |
| nr_phys_segs++; |
| bvprv = bv; |
| prev = 1; |
| seg_size = bv.bv_len; |
| } |
| bbio = bio; |
| } |
| |
| if (nr_phys_segs == 1 && seg_size > fbio->bi_seg_front_size) |
| fbio->bi_seg_front_size = seg_size; |
| if (seg_size > bbio->bi_seg_back_size) |
| bbio->bi_seg_back_size = seg_size; |
| |
| return nr_phys_segs; |
| } |
| |
| void blk_recalc_rq_segments(struct request *rq) |
| { |
| bool no_sg_merge = !!test_bit(QUEUE_FLAG_NO_SG_MERGE, |
| &rq->q->queue_flags); |
| |
| rq->nr_phys_segments = __blk_recalc_rq_segments(rq->q, rq->bio, |
| no_sg_merge); |
| } |
| |
| void blk_recount_segments(struct request_queue *q, struct bio *bio) |
| { |
| unsigned short seg_cnt; |
| |
| /* estimate segment number by bi_vcnt for non-cloned bio */ |
| if (bio_flagged(bio, BIO_CLONED)) |
| seg_cnt = bio_segments(bio); |
| else |
| seg_cnt = bio->bi_vcnt; |
| |
| if (test_bit(QUEUE_FLAG_NO_SG_MERGE, &q->queue_flags) && |
| (seg_cnt < queue_max_segments(q))) |
| bio->bi_phys_segments = seg_cnt; |
| else { |
| struct bio *nxt = bio->bi_next; |
| |
| bio->bi_next = NULL; |
| bio->bi_phys_segments = __blk_recalc_rq_segments(q, bio, false); |
| bio->bi_next = nxt; |
| } |
| |
| bio_set_flag(bio, BIO_SEG_VALID); |
| } |
| EXPORT_SYMBOL(blk_recount_segments); |
| |
| static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio, |
| struct bio *nxt) |
| { |
| struct bio_vec end_bv = { NULL }, nxt_bv; |
| |
| if (!blk_queue_cluster(q)) |
| return 0; |
| |
| if (bio->bi_seg_back_size + nxt->bi_seg_front_size > |
| queue_max_segment_size(q)) |
| return 0; |
| |
| if (!bio_has_data(bio)) |
| return 1; |
| |
| bio_get_last_bvec(bio, &end_bv); |
| bio_get_first_bvec(nxt, &nxt_bv); |
| |
| if (!BIOVEC_PHYS_MERGEABLE(&end_bv, &nxt_bv)) |
| return 0; |
| |
| /* |
| * bio and nxt are contiguous in memory; check if the queue allows |
| * these two to be merged into one |
| */ |
| if (BIOVEC_SEG_BOUNDARY(q, &end_bv, &nxt_bv)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static inline void |
| __blk_segment_map_sg(struct request_queue *q, struct bio_vec *bvec, |
| struct scatterlist *sglist, struct bio_vec *bvprv, |
| struct scatterlist **sg, int *nsegs, int *cluster) |
| { |
| |
| int nbytes = bvec->bv_len; |
| |
| if (*sg && *cluster) { |
| if ((*sg)->length + nbytes > queue_max_segment_size(q)) |
| goto new_segment; |
| |
| if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) |
| goto new_segment; |
| if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec)) |
| goto new_segment; |
| |
| (*sg)->length += nbytes; |
| } else { |
| new_segment: |
| if (!*sg) |
| *sg = sglist; |
| else { |
| /* |
| * If the driver previously mapped a shorter |
| * list, we could see a termination bit |
| * prematurely unless it fully inits the sg |
| * table on each mapping. We KNOW that there |
| * must be more entries here or the driver |
| * would be buggy, so force clear the |
| * termination bit to avoid doing a full |
| * sg_init_table() in drivers for each command. |
| */ |
| sg_unmark_end(*sg); |
| *sg = sg_next(*sg); |
| } |
| |
| sg_set_page(*sg, bvec->bv_page, nbytes, bvec->bv_offset); |
| (*nsegs)++; |
| } |
| *bvprv = *bvec; |
| } |
| |
| static inline int __blk_bvec_map_sg(struct request_queue *q, struct bio_vec bv, |
| struct scatterlist *sglist, struct scatterlist **sg) |
| { |
| *sg = sglist; |
| sg_set_page(*sg, bv.bv_page, bv.bv_len, bv.bv_offset); |
| return 1; |
| } |
| |
| static int __blk_bios_map_sg(struct request_queue *q, struct bio *bio, |
| struct scatterlist *sglist, |
| struct scatterlist **sg) |
| { |
| struct bio_vec bvec, bvprv = { NULL }; |
| struct bvec_iter iter; |
| int cluster = blk_queue_cluster(q), nsegs = 0; |
| |
| for_each_bio(bio) |
| bio_for_each_segment(bvec, bio, iter) |
| __blk_segment_map_sg(q, &bvec, sglist, &bvprv, sg, |
| &nsegs, &cluster); |
| |
| return nsegs; |
| } |
| |
| /* |
| * map a request to scatterlist, return number of sg entries setup. Caller |
| * must make sure sg can hold rq->nr_phys_segments entries |
| */ |
| int blk_rq_map_sg(struct request_queue *q, struct request *rq, |
| struct scatterlist *sglist) |
| { |
| struct scatterlist *sg = NULL; |
| int nsegs = 0; |
| |
| if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) |
| nsegs = __blk_bvec_map_sg(q, rq->special_vec, sglist, &sg); |
| else if (rq->bio && bio_op(rq->bio) == REQ_OP_WRITE_SAME) |
| nsegs = __blk_bvec_map_sg(q, bio_iovec(rq->bio), sglist, &sg); |
| else if (rq->bio) |
| nsegs = __blk_bios_map_sg(q, rq->bio, sglist, &sg); |
| |
| if (unlikely(rq->rq_flags & RQF_COPY_USER) && |
| (blk_rq_bytes(rq) & q->dma_pad_mask)) { |
| unsigned int pad_len = |
| (q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1; |
| |
| sg->length += pad_len; |
| rq->extra_len += pad_len; |
| } |
| |
| if (q->dma_drain_size && q->dma_drain_needed(rq)) { |
| if (op_is_write(req_op(rq))) |
| memset(q->dma_drain_buffer, 0, q->dma_drain_size); |
| |
| sg_unmark_end(sg); |
| sg = sg_next(sg); |
| sg_set_page(sg, virt_to_page(q->dma_drain_buffer), |
| q->dma_drain_size, |
| ((unsigned long)q->dma_drain_buffer) & |
| (PAGE_SIZE - 1)); |
| nsegs++; |
| rq->extra_len += q->dma_drain_size; |
| } |
| |
| if (sg) |
| sg_mark_end(sg); |
| |
| /* |
| * Something must have been wrong if the figured number of |
| * segment is bigger than number of req's physical segments |
| */ |
| WARN_ON(nsegs > blk_rq_nr_phys_segments(rq)); |
| |
| return nsegs; |
| } |
| EXPORT_SYMBOL(blk_rq_map_sg); |
| |
| static inline int ll_new_hw_segment(struct request_queue *q, |
| struct request *req, |
| struct bio *bio) |
| { |
| int nr_phys_segs = bio_phys_segments(q, bio); |
| |
| if (req->nr_phys_segments + nr_phys_segs > queue_max_segments(q)) |
| goto no_merge; |
| |
| if (blk_integrity_merge_bio(q, req, bio) == false) |
| goto no_merge; |
| |
| /* |
| * This will form the start of a new hw segment. Bump both |
| * counters. |
| */ |
| req->nr_phys_segments += nr_phys_segs; |
| return 1; |
| |
| no_merge: |
| req_set_nomerge(q, req); |
| return 0; |
| } |
| |
| int ll_back_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio) |
| { |
| if (req_gap_back_merge(req, bio)) |
| return 0; |
| if (blk_integrity_rq(req) && |
| integrity_req_gap_back_merge(req, bio)) |
| return 0; |
| if (blk_rq_sectors(req) + bio_sectors(bio) > |
| blk_rq_get_max_sectors(req, blk_rq_pos(req))) { |
| req_set_nomerge(q, req); |
| return 0; |
| } |
| if (!bio_flagged(req->biotail, BIO_SEG_VALID)) |
| blk_recount_segments(q, req->biotail); |
| if (!bio_flagged(bio, BIO_SEG_VALID)) |
| blk_recount_segments(q, bio); |
| |
| return ll_new_hw_segment(q, req, bio); |
| } |
| |
| int ll_front_merge_fn(struct request_queue *q, struct request *req, |
| struct bio *bio) |
| { |
| |
| if (req_gap_front_merge(req, bio)) |
| return 0; |
| if (blk_integrity_rq(req) && |
| integrity_req_gap_front_merge(req, bio)) |
| return 0; |
| if (blk_rq_sectors(req) + bio_sectors(bio) > |
| blk_rq_get_max_sectors(req, bio->bi_iter.bi_sector)) { |
| req_set_nomerge(q, req); |
| return 0; |
| } |
| if (!bio_flagged(bio, BIO_SEG_VALID)) |
| blk_recount_segments(q, bio); |
| if (!bio_flagged(req->bio, BIO_SEG_VALID)) |
| blk_recount_segments(q, req->bio); |
| |
| return ll_new_hw_segment(q, req, bio); |
| } |
| |
| /* |
| * blk-mq uses req->special to carry normal driver per-request payload, it |
| * does not indicate a prepared command that we cannot merge with. |
| */ |
| static bool req_no_special_merge(struct request *req) |
| { |
| struct request_queue *q = req->q; |
| |
| return !q->mq_ops && req->special; |
| } |
| |
| static int ll_merge_requests_fn(struct request_queue *q, struct request *req, |
| struct request *next) |
| { |
| int total_phys_segments; |
| unsigned int seg_size = |
| req->biotail->bi_seg_back_size + next->bio->bi_seg_front_size; |
| |
| /* |
| * First check if the either of the requests are re-queued |
| * requests. Can't merge them if they are. |
| */ |
| if (req_no_special_merge(req) || req_no_special_merge(next)) |
| return 0; |
| |
| if (req_gap_back_merge(req, next->bio)) |
| return 0; |
| |
| /* |
| * Will it become too large? |
| */ |
| if ((blk_rq_sectors(req) + blk_rq_sectors(next)) > |
| blk_rq_get_max_sectors(req, blk_rq_pos(req))) |
| return 0; |
| |
| total_phys_segments = req->nr_phys_segments + next->nr_phys_segments; |
| if (blk_phys_contig_segment(q, req->biotail, next->bio)) { |
| if (req->nr_phys_segments == 1) |
| req->bio->bi_seg_front_size = seg_size; |
| if (next->nr_phys_segments == 1) |
| next->biotail->bi_seg_back_size = seg_size; |
| total_phys_segments--; |
| } |
| |
| if (total_phys_segments > queue_max_segments(q)) |
| return 0; |
| |
| if (blk_integrity_merge_rq(q, req, next) == false) |
| return 0; |
| |
| /* Merge is OK... */ |
| req->nr_phys_segments = total_phys_segments; |
| return 1; |
| } |
| |
| /** |
| * blk_rq_set_mixed_merge - mark a request as mixed merge |
| * @rq: request to mark as mixed merge |
| * |
| * Description: |
| * @rq is about to be mixed merged. Make sure the attributes |
| * which can be mixed are set in each bio and mark @rq as mixed |
| * merged. |
| */ |
| void blk_rq_set_mixed_merge(struct request *rq) |
| { |
| unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; |
| struct bio *bio; |
| |
| if (rq->rq_flags & RQF_MIXED_MERGE) |
| return; |
| |
| /* |
| * @rq will no longer represent mixable attributes for all the |
| * contained bios. It will just track those of the first one. |
| * Distributes the attributs to each bio. |
| */ |
| for (bio = rq->bio; bio; bio = bio->bi_next) { |
| WARN_ON_ONCE((bio->bi_opf & REQ_FAILFAST_MASK) && |
| (bio->bi_opf & REQ_FAILFAST_MASK) != ff); |
| bio->bi_opf |= ff; |
| } |
| rq->rq_flags |= RQF_MIXED_MERGE; |
| } |
| |
| static void blk_account_io_merge(struct request *req) |
| { |
| if (blk_do_io_stat(req)) { |
| struct hd_struct *part; |
| int cpu; |
| |
| cpu = part_stat_lock(); |
| part = req->part; |
| |
| part_round_stats(cpu, part); |
| part_dec_in_flight(part, rq_data_dir(req)); |
| |
| hd_struct_put(part); |
| part_stat_unlock(); |
| } |
| } |
| |
| /* |
| * For non-mq, this has to be called with the request spinlock acquired. |
| * For mq with scheduling, the appropriate queue wide lock should be held. |
| */ |
| static struct request *attempt_merge(struct request_queue *q, |
| struct request *req, struct request *next) |
| { |
| if (!q->mq_ops) |
| lockdep_assert_held(q->queue_lock); |
| |
| if (!rq_mergeable(req) || !rq_mergeable(next)) |
| return NULL; |
| |
| if (req_op(req) != req_op(next)) |
| return NULL; |
| |
| /* |
| * not contiguous |
| */ |
| if (blk_rq_pos(req) + blk_rq_sectors(req) != blk_rq_pos(next)) |
| return NULL; |
| |
| if (rq_data_dir(req) != rq_data_dir(next) |
| || req->rq_disk != next->rq_disk |
| || req_no_special_merge(next)) |
| return NULL; |
| |
| if (req_op(req) == REQ_OP_WRITE_SAME && |
| !blk_write_same_mergeable(req->bio, next->bio)) |
| return NULL; |
| |
| /* |
| * If we are allowed to merge, then append bio list |
| * from next to rq and release next. merge_requests_fn |
| * will have updated segment counts, update sector |
| * counts here. |
| */ |
| if (!ll_merge_requests_fn(q, req, next)) |
| return NULL; |
| |
| /* |
| * If failfast settings disagree or any of the two is already |
| * a mixed merge, mark both as mixed before proceeding. This |
| * makes sure that all involved bios have mixable attributes |
| * set properly. |
| */ |
| if (((req->rq_flags | next->rq_flags) & RQF_MIXED_MERGE) || |
| (req->cmd_flags & REQ_FAILFAST_MASK) != |
| (next->cmd_flags & REQ_FAILFAST_MASK)) { |
| blk_rq_set_mixed_merge(req); |
| blk_rq_set_mixed_merge(next); |
| } |
| |
| /* |
| * At this point we have either done a back merge |
| * or front merge. We need the smaller start_time of |
| * the merged requests to be the current request |
| * for accounting purposes. |
| */ |
| if (time_after(req->start_time, next->start_time)) |
| req->start_time = next->start_time; |
| |
| req->biotail->bi_next = next->bio; |
| req->biotail = next->biotail; |
| |
| req->__data_len += blk_rq_bytes(next); |
| |
| elv_merge_requests(q, req, next); |
| |
| /* |
| * 'next' is going away, so update stats accordingly |
| */ |
| blk_account_io_merge(next); |
| |
| req->ioprio = ioprio_best(req->ioprio, next->ioprio); |
| if (blk_rq_cpu_valid(next)) |
| req->cpu = next->cpu; |
| |
| /* |
| * ownership of bio passed from next to req, return 'next' for |
| * the caller to free |
| */ |
| next->bio = NULL; |
| return next; |
| } |
| |
| struct request *attempt_back_merge(struct request_queue *q, struct request *rq) |
| { |
| struct request *next = elv_latter_request(q, rq); |
| |
| if (next) |
| return attempt_merge(q, rq, next); |
| |
| return NULL; |
| } |
| |
| struct request *attempt_front_merge(struct request_queue *q, struct request *rq) |
| { |
| struct request *prev = elv_former_request(q, rq); |
| |
| if (prev) |
| return attempt_merge(q, prev, rq); |
| |
| return NULL; |
| } |
| |
| int blk_attempt_req_merge(struct request_queue *q, struct request *rq, |
| struct request *next) |
| { |
| struct elevator_queue *e = q->elevator; |
| struct request *free; |
| |
| if (!e->uses_mq && e->type->ops.sq.elevator_allow_rq_merge_fn) |
| if (!e->type->ops.sq.elevator_allow_rq_merge_fn(q, rq, next)) |
| return 0; |
| |
| free = attempt_merge(q, rq, next); |
| if (free) { |
| __blk_put_request(q, free); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| bool blk_rq_merge_ok(struct request *rq, struct bio *bio) |
| { |
| if (!rq_mergeable(rq) || !bio_mergeable(bio)) |
| return false; |
| |
| if (req_op(rq) != bio_op(bio)) |
| return false; |
| |
| /* different data direction or already started, don't merge */ |
| if (bio_data_dir(bio) != rq_data_dir(rq)) |
| return false; |
| |
| /* must be same device and not a special request */ |
| if (rq->rq_disk != bio->bi_bdev->bd_disk || req_no_special_merge(rq)) |
| return false; |
| |
| /* only merge integrity protected bio into ditto rq */ |
| if (blk_integrity_merge_bio(rq->q, rq, bio) == false) |
| return false; |
| |
| /* must be using the same buffer */ |
| if (req_op(rq) == REQ_OP_WRITE_SAME && |
| !blk_write_same_mergeable(rq->bio, bio)) |
| return false; |
| |
| return true; |
| } |
| |
| enum elv_merge blk_try_merge(struct request *rq, struct bio *bio) |
| { |
| if (req_op(rq) == REQ_OP_DISCARD && |
| queue_max_discard_segments(rq->q) > 1) |
| return ELEVATOR_DISCARD_MERGE; |
| else if (blk_rq_pos(rq) + blk_rq_sectors(rq) == bio->bi_iter.bi_sector) |
| return ELEVATOR_BACK_MERGE; |
| else if (blk_rq_pos(rq) - bio_sectors(bio) == bio->bi_iter.bi_sector) |
| return ELEVATOR_FRONT_MERGE; |
| return ELEVATOR_NO_MERGE; |
| } |