blob: 6883153e8fc15e82684d4f06447de3e88168b9ae [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//
// Copyright (c) 2023, 2024 Pengutronix,
// Marc Kleine-Budde <kernel@pengutronix.de>
//
// Based on:
//
// Rockchip CANFD driver
//
// Copyright (c) 2020 Rockchip Electronics Co. Ltd.
//
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/string.h>
#include "rockchip_canfd.h"
static const struct rkcanfd_devtype_data rkcanfd_devtype_data_rk3568v2 = {
.model = RKCANFD_MODEL_RK3568V2,
.quirks = RKCANFD_QUIRK_RK3568_ERRATUM_1 | RKCANFD_QUIRK_RK3568_ERRATUM_2 |
RKCANFD_QUIRK_RK3568_ERRATUM_3 | RKCANFD_QUIRK_RK3568_ERRATUM_4 |
RKCANFD_QUIRK_RK3568_ERRATUM_5 | RKCANFD_QUIRK_RK3568_ERRATUM_6 |
RKCANFD_QUIRK_RK3568_ERRATUM_7 | RKCANFD_QUIRK_RK3568_ERRATUM_8 |
RKCANFD_QUIRK_RK3568_ERRATUM_9 | RKCANFD_QUIRK_RK3568_ERRATUM_10 |
RKCANFD_QUIRK_RK3568_ERRATUM_11 | RKCANFD_QUIRK_RK3568_ERRATUM_12 |
RKCANFD_QUIRK_CANFD_BROKEN,
};
/* The rk3568 CAN-FD errata sheet as of Tue 07 Nov 2023 11:25:31 +08:00
* states that only the rk3568v2 is affected by erratum 5, but tests
* with the rk3568v2 and rk3568v3 show that the RX_FIFO_CNT is
* sometimes too high. In contrast to the errata sheet mark rk3568v3
* as effected by erratum 5, too.
*/
static const struct rkcanfd_devtype_data rkcanfd_devtype_data_rk3568v3 = {
.model = RKCANFD_MODEL_RK3568V3,
.quirks = RKCANFD_QUIRK_RK3568_ERRATUM_1 | RKCANFD_QUIRK_RK3568_ERRATUM_2 |
RKCANFD_QUIRK_RK3568_ERRATUM_5 | RKCANFD_QUIRK_RK3568_ERRATUM_7 |
RKCANFD_QUIRK_RK3568_ERRATUM_8 | RKCANFD_QUIRK_RK3568_ERRATUM_10 |
RKCANFD_QUIRK_RK3568_ERRATUM_11 | RKCANFD_QUIRK_RK3568_ERRATUM_12 |
RKCANFD_QUIRK_CANFD_BROKEN,
};
static const char *__rkcanfd_get_model_str(enum rkcanfd_model model)
{
switch (model) {
case RKCANFD_MODEL_RK3568V2:
return "rk3568v2";
case RKCANFD_MODEL_RK3568V3:
return "rk3568v3";
}
return "<unknown>";
}
static inline const char *
rkcanfd_get_model_str(const struct rkcanfd_priv *priv)
{
return __rkcanfd_get_model_str(priv->devtype_data.model);
}
/* Note:
*
* The formula to calculate the CAN System Clock is:
*
* Tsclk = 2 x Tclk x (brp + 1)
*
* Double the data sheet's brp_min, brp_max and brp_inc values (both
* for the arbitration and data bit timing) to take the "2 x" into
* account.
*/
static const struct can_bittiming_const rkcanfd_bittiming_const = {
.name = DEVICE_NAME,
.tseg1_min = 1,
.tseg1_max = 256,
.tseg2_min = 1,
.tseg2_max = 128,
.sjw_max = 128,
.brp_min = 2, /* value from data sheet x2 */
.brp_max = 512, /* value from data sheet x2 */
.brp_inc = 2, /* value from data sheet x2 */
};
static const struct can_bittiming_const rkcanfd_data_bittiming_const = {
.name = DEVICE_NAME,
.tseg1_min = 1,
.tseg1_max = 32,
.tseg2_min = 1,
.tseg2_max = 16,
.sjw_max = 16,
.brp_min = 2, /* value from data sheet x2 */
.brp_max = 512, /* value from data sheet x2 */
.brp_inc = 2, /* value from data sheet x2 */
};
static void rkcanfd_chip_set_reset_mode(const struct rkcanfd_priv *priv)
{
reset_control_assert(priv->reset);
udelay(2);
reset_control_deassert(priv->reset);
rkcanfd_write(priv, RKCANFD_REG_MODE, 0x0);
}
static void rkcanfd_chip_set_work_mode(const struct rkcanfd_priv *priv)
{
rkcanfd_write(priv, RKCANFD_REG_MODE, priv->reg_mode_default);
}
static int rkcanfd_set_bittiming(struct rkcanfd_priv *priv)
{
const struct can_bittiming *dbt = &priv->can.data_bittiming;
const struct can_bittiming *bt = &priv->can.bittiming;
u32 reg_nbt, reg_dbt, reg_tdc;
u32 tdco;
reg_nbt = FIELD_PREP(RKCANFD_REG_FD_NOMINAL_BITTIMING_SJW,
bt->sjw - 1) |
FIELD_PREP(RKCANFD_REG_FD_NOMINAL_BITTIMING_BRP,
(bt->brp / 2) - 1) |
FIELD_PREP(RKCANFD_REG_FD_NOMINAL_BITTIMING_TSEG2,
bt->phase_seg2 - 1) |
FIELD_PREP(RKCANFD_REG_FD_NOMINAL_BITTIMING_TSEG1,
bt->prop_seg + bt->phase_seg1 - 1);
rkcanfd_write(priv, RKCANFD_REG_FD_NOMINAL_BITTIMING, reg_nbt);
if (!(priv->can.ctrlmode & CAN_CTRLMODE_FD))
return 0;
reg_dbt = FIELD_PREP(RKCANFD_REG_FD_DATA_BITTIMING_SJW,
dbt->sjw - 1) |
FIELD_PREP(RKCANFD_REG_FD_DATA_BITTIMING_BRP,
(dbt->brp / 2) - 1) |
FIELD_PREP(RKCANFD_REG_FD_DATA_BITTIMING_TSEG2,
dbt->phase_seg2 - 1) |
FIELD_PREP(RKCANFD_REG_FD_DATA_BITTIMING_TSEG1,
dbt->prop_seg + dbt->phase_seg1 - 1);
rkcanfd_write(priv, RKCANFD_REG_FD_DATA_BITTIMING, reg_dbt);
tdco = (priv->can.clock.freq / dbt->bitrate) * 2 / 3;
tdco = min(tdco, FIELD_MAX(RKCANFD_REG_TRANSMIT_DELAY_COMPENSATION_TDC_OFFSET));
reg_tdc = FIELD_PREP(RKCANFD_REG_TRANSMIT_DELAY_COMPENSATION_TDC_OFFSET, tdco) |
RKCANFD_REG_TRANSMIT_DELAY_COMPENSATION_TDC_ENABLE;
rkcanfd_write(priv, RKCANFD_REG_TRANSMIT_DELAY_COMPENSATION,
reg_tdc);
return 0;
}
static void rkcanfd_get_berr_counter_corrected(struct rkcanfd_priv *priv,
struct can_berr_counter *bec)
{
struct can_berr_counter bec_raw;
u32 reg_state;
bec->rxerr = rkcanfd_read(priv, RKCANFD_REG_RXERRORCNT);
bec->txerr = rkcanfd_read(priv, RKCANFD_REG_TXERRORCNT);
bec_raw = *bec;
/* Tests show that sometimes both CAN bus error counters read
* 0x0, even if the controller is in warning mode
* (RKCANFD_REG_STATE_ERROR_WARNING_STATE in RKCANFD_REG_STATE
* set).
*
* In case both error counters read 0x0, use the struct
* priv->bec, otherwise save the read value to priv->bec.
*
* rkcanfd_handle_rx_int_one() handles the decrementing of
* priv->bec.rxerr for successfully RX'ed CAN frames.
*
* Luckily the controller doesn't decrement the RX CAN bus
* error counter in hardware for self received TX'ed CAN
* frames (RKCANFD_REG_MODE_RXSTX_MODE), so RXSTX doesn't
* interfere with proper RX CAN bus error counters.
*
* rkcanfd_handle_tx_done_one() handles the decrementing of
* priv->bec.txerr for successfully TX'ed CAN frames.
*/
if (!bec->rxerr && !bec->txerr)
*bec = priv->bec;
else
priv->bec = *bec;
reg_state = rkcanfd_read(priv, RKCANFD_REG_STATE);
netdev_vdbg(priv->ndev,
"%s: Raw/Cor: txerr=%3u/%3u rxerr=%3u/%3u Bus Off=%u Warning=%u\n",
__func__,
bec_raw.txerr, bec->txerr, bec_raw.rxerr, bec->rxerr,
!!(reg_state & RKCANFD_REG_STATE_BUS_OFF_STATE),
!!(reg_state & RKCANFD_REG_STATE_ERROR_WARNING_STATE));
}
static int rkcanfd_get_berr_counter(const struct net_device *ndev,
struct can_berr_counter *bec)
{
struct rkcanfd_priv *priv = netdev_priv(ndev);
int err;
err = pm_runtime_resume_and_get(ndev->dev.parent);
if (err)
return err;
rkcanfd_get_berr_counter_corrected(priv, bec);
pm_runtime_put(ndev->dev.parent);
return 0;
}
static void rkcanfd_chip_interrupts_enable(const struct rkcanfd_priv *priv)
{
rkcanfd_write(priv, RKCANFD_REG_INT_MASK, priv->reg_int_mask_default);
netdev_dbg(priv->ndev, "%s: reg_int_mask=0x%08x\n", __func__,
rkcanfd_read(priv, RKCANFD_REG_INT_MASK));
}
static void rkcanfd_chip_interrupts_disable(const struct rkcanfd_priv *priv)
{
rkcanfd_write(priv, RKCANFD_REG_INT_MASK, RKCANFD_REG_INT_ALL);
}
static void rkcanfd_chip_fifo_setup(struct rkcanfd_priv *priv)
{
u32 reg;
/* TXE FIFO */
reg = rkcanfd_read(priv, RKCANFD_REG_RX_FIFO_CTRL);
reg |= RKCANFD_REG_RX_FIFO_CTRL_RX_FIFO_ENABLE;
rkcanfd_write(priv, RKCANFD_REG_RX_FIFO_CTRL, reg);
/* RX FIFO */
reg = rkcanfd_read(priv, RKCANFD_REG_RX_FIFO_CTRL);
reg |= RKCANFD_REG_RX_FIFO_CTRL_RX_FIFO_ENABLE;
rkcanfd_write(priv, RKCANFD_REG_RX_FIFO_CTRL, reg);
WRITE_ONCE(priv->tx_head, 0);
WRITE_ONCE(priv->tx_tail, 0);
netdev_reset_queue(priv->ndev);
}
static void rkcanfd_chip_start(struct rkcanfd_priv *priv)
{
u32 reg;
rkcanfd_chip_set_reset_mode(priv);
/* Receiving Filter: accept all */
rkcanfd_write(priv, RKCANFD_REG_IDCODE, 0x0);
rkcanfd_write(priv, RKCANFD_REG_IDMASK, RKCANFD_REG_IDCODE_EXTENDED_FRAME_ID);
/* enable:
* - CAN_FD: enable CAN-FD
* - AUTO_RETX_MODE: auto retransmission on TX error
* - COVER_MODE: RX-FIFO overwrite mode, do not send OVERLOAD frames
* - RXSTX_MODE: Receive Self Transmit data mode
* - WORK_MODE: transition from reset to working mode
*/
reg = rkcanfd_read(priv, RKCANFD_REG_MODE);
priv->reg_mode_default = reg |
RKCANFD_REG_MODE_CAN_FD_MODE_ENABLE |
RKCANFD_REG_MODE_AUTO_RETX_MODE |
RKCANFD_REG_MODE_COVER_MODE |
RKCANFD_REG_MODE_RXSTX_MODE |
RKCANFD_REG_MODE_WORK_MODE;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
priv->reg_mode_default |= RKCANFD_REG_MODE_LBACK_MODE |
RKCANFD_REG_MODE_SILENT_MODE |
RKCANFD_REG_MODE_SELF_TEST;
/* mask, i.e. ignore:
* - TIMESTAMP_COUNTER_OVERFLOW_INT - timestamp counter overflow interrupt
* - TX_ARBIT_FAIL_INT - TX arbitration fail interrupt
* - OVERLOAD_INT - CAN bus overload interrupt
* - TX_FINISH_INT - Transmit finish interrupt
*/
priv->reg_int_mask_default =
RKCANFD_REG_INT_TIMESTAMP_COUNTER_OVERFLOW_INT |
RKCANFD_REG_INT_TX_ARBIT_FAIL_INT |
RKCANFD_REG_INT_OVERLOAD_INT |
RKCANFD_REG_INT_TX_FINISH_INT;
/* Do not mask the bus error interrupt if the bus error
* reporting is requested.
*/
if (!(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
priv->reg_int_mask_default |= RKCANFD_REG_INT_ERROR_INT;
memset(&priv->bec, 0x0, sizeof(priv->bec));
rkcanfd_chip_fifo_setup(priv);
rkcanfd_timestamp_init(priv);
rkcanfd_timestamp_start(priv);
rkcanfd_set_bittiming(priv);
rkcanfd_chip_interrupts_disable(priv);
rkcanfd_chip_set_work_mode(priv);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
netdev_dbg(priv->ndev, "%s: reg_mode=0x%08x\n", __func__,
rkcanfd_read(priv, RKCANFD_REG_MODE));
}
static void __rkcanfd_chip_stop(struct rkcanfd_priv *priv, const enum can_state state)
{
priv->can.state = state;
rkcanfd_chip_set_reset_mode(priv);
rkcanfd_chip_interrupts_disable(priv);
}
static void rkcanfd_chip_stop(struct rkcanfd_priv *priv, const enum can_state state)
{
priv->can.state = state;
rkcanfd_timestamp_stop(priv);
__rkcanfd_chip_stop(priv, state);
}
static void rkcanfd_chip_stop_sync(struct rkcanfd_priv *priv, const enum can_state state)
{
priv->can.state = state;
rkcanfd_timestamp_stop_sync(priv);
__rkcanfd_chip_stop(priv, state);
}
static int rkcanfd_set_mode(struct net_device *ndev,
enum can_mode mode)
{
struct rkcanfd_priv *priv = netdev_priv(ndev);
switch (mode) {
case CAN_MODE_START:
rkcanfd_chip_start(priv);
rkcanfd_chip_interrupts_enable(priv);
netif_wake_queue(ndev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static struct sk_buff *
rkcanfd_alloc_can_err_skb(struct rkcanfd_priv *priv,
struct can_frame **cf, u32 *timestamp)
{
struct sk_buff *skb;
*timestamp = rkcanfd_get_timestamp(priv);
skb = alloc_can_err_skb(priv->ndev, cf);
if (skb)
rkcanfd_skb_set_timestamp(priv, skb, *timestamp);
return skb;
}
static const char *rkcanfd_get_error_type_str(unsigned int type)
{
switch (type) {
case RKCANFD_REG_ERROR_CODE_TYPE_BIT:
return "Bit";
case RKCANFD_REG_ERROR_CODE_TYPE_STUFF:
return "Stuff";
case RKCANFD_REG_ERROR_CODE_TYPE_FORM:
return "Form";
case RKCANFD_REG_ERROR_CODE_TYPE_ACK:
return "ACK";
case RKCANFD_REG_ERROR_CODE_TYPE_CRC:
return "CRC";
}
return "<unknown>";
}
#define RKCAN_ERROR_CODE(reg_ec, code) \
((reg_ec) & RKCANFD_REG_ERROR_CODE_##code ? __stringify(code) " " : "")
static void
rkcanfd_handle_error_int_reg_ec(struct rkcanfd_priv *priv, struct can_frame *cf,
const u32 reg_ec)
{
struct net_device_stats *stats = &priv->ndev->stats;
unsigned int type;
u32 reg_state, reg_cmd;
type = FIELD_GET(RKCANFD_REG_ERROR_CODE_TYPE, reg_ec);
reg_cmd = rkcanfd_read(priv, RKCANFD_REG_CMD);
reg_state = rkcanfd_read(priv, RKCANFD_REG_STATE);
netdev_dbg(priv->ndev, "%s Error in %s %s Phase: %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s(0x%08x) CMD=%u RX=%u TX=%u Error-Warning=%u Bus-Off=%u\n",
rkcanfd_get_error_type_str(type),
reg_ec & RKCANFD_REG_ERROR_CODE_DIRECTION_RX ? "RX" : "TX",
reg_ec & RKCANFD_REG_ERROR_CODE_PHASE ? "Data" : "Arbitration",
RKCAN_ERROR_CODE(reg_ec, TX_OVERLOAD),
RKCAN_ERROR_CODE(reg_ec, TX_ERROR),
RKCAN_ERROR_CODE(reg_ec, TX_ACK),
RKCAN_ERROR_CODE(reg_ec, TX_ACK_EOF),
RKCAN_ERROR_CODE(reg_ec, TX_CRC),
RKCAN_ERROR_CODE(reg_ec, TX_STUFF_COUNT),
RKCAN_ERROR_CODE(reg_ec, TX_DATA),
RKCAN_ERROR_CODE(reg_ec, TX_SOF_DLC),
RKCAN_ERROR_CODE(reg_ec, TX_IDLE),
RKCAN_ERROR_CODE(reg_ec, RX_BUF_INT),
RKCAN_ERROR_CODE(reg_ec, RX_SPACE),
RKCAN_ERROR_CODE(reg_ec, RX_EOF),
RKCAN_ERROR_CODE(reg_ec, RX_ACK_LIM),
RKCAN_ERROR_CODE(reg_ec, RX_ACK),
RKCAN_ERROR_CODE(reg_ec, RX_CRC_LIM),
RKCAN_ERROR_CODE(reg_ec, RX_CRC),
RKCAN_ERROR_CODE(reg_ec, RX_STUFF_COUNT),
RKCAN_ERROR_CODE(reg_ec, RX_DATA),
RKCAN_ERROR_CODE(reg_ec, RX_DLC),
RKCAN_ERROR_CODE(reg_ec, RX_BRS_ESI),
RKCAN_ERROR_CODE(reg_ec, RX_RES),
RKCAN_ERROR_CODE(reg_ec, RX_FDF),
RKCAN_ERROR_CODE(reg_ec, RX_ID2_RTR),
RKCAN_ERROR_CODE(reg_ec, RX_SOF_IDE),
RKCAN_ERROR_CODE(reg_ec, RX_IDLE),
reg_ec, reg_cmd,
!!(reg_state & RKCANFD_REG_STATE_RX_PERIOD),
!!(reg_state & RKCANFD_REG_STATE_TX_PERIOD),
!!(reg_state & RKCANFD_REG_STATE_ERROR_WARNING_STATE),
!!(reg_state & RKCANFD_REG_STATE_BUS_OFF_STATE));
priv->can.can_stats.bus_error++;
if (reg_ec & RKCANFD_REG_ERROR_CODE_DIRECTION_RX)
stats->rx_errors++;
else
stats->tx_errors++;
if (!cf)
return;
if (reg_ec & RKCANFD_REG_ERROR_CODE_DIRECTION_RX) {
if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_SOF_IDE)
cf->data[3] = CAN_ERR_PROT_LOC_SOF;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_ID2_RTR)
cf->data[3] = CAN_ERR_PROT_LOC_RTR;
/* RKCANFD_REG_ERROR_CODE_RX_FDF */
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_RES)
cf->data[3] = CAN_ERR_PROT_LOC_RES0;
/* RKCANFD_REG_ERROR_CODE_RX_BRS_ESI */
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_DLC)
cf->data[3] = CAN_ERR_PROT_LOC_DLC;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_DATA)
cf->data[3] = CAN_ERR_PROT_LOC_DATA;
/* RKCANFD_REG_ERROR_CODE_RX_STUFF_COUNT */
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_CRC)
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_CRC_LIM)
cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_ACK)
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_ACK_LIM)
cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_EOF)
cf->data[3] = CAN_ERR_PROT_LOC_EOF;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_SPACE)
cf->data[3] = CAN_ERR_PROT_LOC_EOF;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_RX_BUF_INT)
cf->data[3] = CAN_ERR_PROT_LOC_INTERM;
} else {
cf->data[2] |= CAN_ERR_PROT_TX;
if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_SOF_DLC)
cf->data[3] = CAN_ERR_PROT_LOC_SOF;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_DATA)
cf->data[3] = CAN_ERR_PROT_LOC_DATA;
/* RKCANFD_REG_ERROR_CODE_TX_STUFF_COUNT */
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_CRC)
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_ACK_EOF)
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_ACK)
cf->data[3] = CAN_ERR_PROT_LOC_ACK;
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_ACK_EOF)
cf->data[3] = CAN_ERR_PROT_LOC_ACK_DEL;
/* RKCANFD_REG_ERROR_CODE_TX_ERROR */
else if (reg_ec & RKCANFD_REG_ERROR_CODE_TX_OVERLOAD)
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
}
switch (reg_ec & RKCANFD_REG_ERROR_CODE_TYPE) {
case FIELD_PREP_CONST(RKCANFD_REG_ERROR_CODE_TYPE,
RKCANFD_REG_ERROR_CODE_TYPE_BIT):
cf->data[2] |= CAN_ERR_PROT_BIT;
break;
case FIELD_PREP_CONST(RKCANFD_REG_ERROR_CODE_TYPE,
RKCANFD_REG_ERROR_CODE_TYPE_STUFF):
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
case FIELD_PREP_CONST(RKCANFD_REG_ERROR_CODE_TYPE,
RKCANFD_REG_ERROR_CODE_TYPE_FORM):
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case FIELD_PREP_CONST(RKCANFD_REG_ERROR_CODE_TYPE,
RKCANFD_REG_ERROR_CODE_TYPE_ACK):
cf->can_id |= CAN_ERR_ACK;
break;
case FIELD_PREP_CONST(RKCANFD_REG_ERROR_CODE_TYPE,
RKCANFD_REG_ERROR_CODE_TYPE_CRC):
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
break;
}
}
static int rkcanfd_handle_error_int(struct rkcanfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct can_frame *cf = NULL;
u32 reg_ec, timestamp;
struct sk_buff *skb;
int err;
reg_ec = rkcanfd_read(priv, RKCANFD_REG_ERROR_CODE);
if (!reg_ec)
return 0;
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
skb = rkcanfd_alloc_can_err_skb(priv, &cf, &timestamp);
if (cf) {
struct can_berr_counter bec;
rkcanfd_get_berr_counter_corrected(priv, &bec);
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR | CAN_ERR_CNT;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
}
rkcanfd_handle_error_int_reg_ec(priv, cf, reg_ec);
if (!cf)
return 0;
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static int rkcanfd_handle_state_error_int(struct rkcanfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
enum can_state new_state, rx_state, tx_state;
struct net_device *ndev = priv->ndev;
struct can_berr_counter bec;
struct can_frame *cf = NULL;
struct sk_buff *skb;
u32 timestamp;
int err;
rkcanfd_get_berr_counter_corrected(priv, &bec);
can_state_get_by_berr_counter(ndev, &bec, &tx_state, &rx_state);
new_state = max(tx_state, rx_state);
if (new_state == priv->can.state)
return 0;
/* The skb allocation might fail, but can_change_state()
* handles cf == NULL.
*/
skb = rkcanfd_alloc_can_err_skb(priv, &cf, &timestamp);
can_change_state(ndev, cf, tx_state, rx_state);
if (new_state == CAN_STATE_BUS_OFF) {
rkcanfd_chip_stop(priv, CAN_STATE_BUS_OFF);
can_bus_off(ndev);
}
if (!skb)
return 0;
if (new_state != CAN_STATE_BUS_OFF) {
cf->can_id |= CAN_ERR_CNT;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
}
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
static int
rkcanfd_handle_rx_fifo_overflow_int(struct rkcanfd_priv *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct can_berr_counter bec;
struct can_frame *cf = NULL;
struct sk_buff *skb;
u32 timestamp;
int err;
stats->rx_over_errors++;
stats->rx_errors++;
netdev_dbg(priv->ndev, "RX-FIFO overflow\n");
skb = rkcanfd_alloc_can_err_skb(priv, &cf, &timestamp);
if (skb)
return 0;
rkcanfd_get_berr_counter_corrected(priv, &bec);
cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
cf->data[6] = bec.txerr;
cf->data[7] = bec.rxerr;
err = can_rx_offload_queue_timestamp(&priv->offload, skb, timestamp);
if (err)
stats->rx_fifo_errors++;
return 0;
}
#define rkcanfd_handle(priv, irq, ...) \
({ \
struct rkcanfd_priv *_priv = (priv); \
int err; \
\
err = rkcanfd_handle_##irq(_priv, ## __VA_ARGS__); \
if (err) \
netdev_err(_priv->ndev, \
"IRQ handler rkcanfd_handle_%s() returned error: %pe\n", \
__stringify(irq), ERR_PTR(err)); \
err; \
})
static irqreturn_t rkcanfd_irq(int irq, void *dev_id)
{
struct rkcanfd_priv *priv = dev_id;
u32 reg_int_unmasked, reg_int;
reg_int_unmasked = rkcanfd_read(priv, RKCANFD_REG_INT);
reg_int = reg_int_unmasked & ~priv->reg_int_mask_default;
if (!reg_int)
return IRQ_NONE;
/* First ACK then handle, to avoid lost-IRQ race condition on
* fast re-occurring interrupts.
*/
rkcanfd_write(priv, RKCANFD_REG_INT, reg_int);
if (reg_int & RKCANFD_REG_INT_RX_FINISH_INT)
rkcanfd_handle(priv, rx_int);
if (reg_int & RKCANFD_REG_INT_ERROR_INT)
rkcanfd_handle(priv, error_int);
if (reg_int & (RKCANFD_REG_INT_BUS_OFF_INT |
RKCANFD_REG_INT_PASSIVE_ERROR_INT |
RKCANFD_REG_INT_ERROR_WARNING_INT) ||
priv->can.state > CAN_STATE_ERROR_ACTIVE)
rkcanfd_handle(priv, state_error_int);
if (reg_int & RKCANFD_REG_INT_RX_FIFO_OVERFLOW_INT)
rkcanfd_handle(priv, rx_fifo_overflow_int);
if (reg_int & ~(RKCANFD_REG_INT_ALL_ERROR |
RKCANFD_REG_INT_RX_FIFO_OVERFLOW_INT |
RKCANFD_REG_INT_RX_FINISH_INT))
netdev_err(priv->ndev, "%s: int=0x%08x\n", __func__, reg_int);
if (reg_int & RKCANFD_REG_INT_WAKEUP_INT)
netdev_info(priv->ndev, "%s: WAKEUP_INT\n", __func__);
if (reg_int & RKCANFD_REG_INT_TXE_FIFO_FULL_INT)
netdev_info(priv->ndev, "%s: TXE_FIFO_FULL_INT\n", __func__);
if (reg_int & RKCANFD_REG_INT_TXE_FIFO_OV_INT)
netdev_info(priv->ndev, "%s: TXE_FIFO_OV_INT\n", __func__);
if (reg_int & RKCANFD_REG_INT_BUS_OFF_RECOVERY_INT)
netdev_info(priv->ndev, "%s: BUS_OFF_RECOVERY_INT\n", __func__);
if (reg_int & RKCANFD_REG_INT_RX_FIFO_FULL_INT)
netdev_info(priv->ndev, "%s: RX_FIFO_FULL_INT\n", __func__);
if (reg_int & RKCANFD_REG_INT_OVERLOAD_INT)
netdev_info(priv->ndev, "%s: OVERLOAD_INT\n", __func__);
can_rx_offload_irq_finish(&priv->offload);
return IRQ_HANDLED;
}
static int rkcanfd_open(struct net_device *ndev)
{
struct rkcanfd_priv *priv = netdev_priv(ndev);
int err;
err = open_candev(ndev);
if (err)
return err;
err = pm_runtime_resume_and_get(ndev->dev.parent);
if (err)
goto out_close_candev;
rkcanfd_chip_start(priv);
can_rx_offload_enable(&priv->offload);
err = request_irq(ndev->irq, rkcanfd_irq, IRQF_SHARED, ndev->name, priv);
if (err)
goto out_rkcanfd_chip_stop;
rkcanfd_chip_interrupts_enable(priv);
netif_start_queue(ndev);
return 0;
out_rkcanfd_chip_stop:
rkcanfd_chip_stop_sync(priv, CAN_STATE_STOPPED);
pm_runtime_put(ndev->dev.parent);
out_close_candev:
close_candev(ndev);
return err;
}
static int rkcanfd_stop(struct net_device *ndev)
{
struct rkcanfd_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
rkcanfd_chip_interrupts_disable(priv);
free_irq(ndev->irq, priv);
can_rx_offload_disable(&priv->offload);
rkcanfd_chip_stop_sync(priv, CAN_STATE_STOPPED);
close_candev(ndev);
pm_runtime_put(ndev->dev.parent);
return 0;
}
static const struct net_device_ops rkcanfd_netdev_ops = {
.ndo_open = rkcanfd_open,
.ndo_stop = rkcanfd_stop,
.ndo_start_xmit = rkcanfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int __maybe_unused rkcanfd_runtime_suspend(struct device *dev)
{
struct rkcanfd_priv *priv = dev_get_drvdata(dev);
clk_bulk_disable_unprepare(priv->clks_num, priv->clks);
return 0;
}
static int __maybe_unused rkcanfd_runtime_resume(struct device *dev)
{
struct rkcanfd_priv *priv = dev_get_drvdata(dev);
return clk_bulk_prepare_enable(priv->clks_num, priv->clks);
}
static void rkcanfd_register_done(const struct rkcanfd_priv *priv)
{
u32 dev_id;
dev_id = rkcanfd_read(priv, RKCANFD_REG_RTL_VERSION);
netdev_info(priv->ndev,
"Rockchip-CANFD %s rev%lu.%lu (errata 0x%04x) found\n",
rkcanfd_get_model_str(priv),
FIELD_GET(RKCANFD_REG_RTL_VERSION_MAJOR, dev_id),
FIELD_GET(RKCANFD_REG_RTL_VERSION_MINOR, dev_id),
priv->devtype_data.quirks);
if (priv->devtype_data.quirks & RKCANFD_QUIRK_RK3568_ERRATUM_5 &&
priv->can.clock.freq < RKCANFD_ERRATUM_5_SYSCLOCK_HZ_MIN)
netdev_info(priv->ndev,
"Erratum 5: CAN clock frequency (%luMHz) lower than known good (%luMHz), expect degraded performance\n",
priv->can.clock.freq / MEGA,
RKCANFD_ERRATUM_5_SYSCLOCK_HZ_MIN / MEGA);
}
static int rkcanfd_register(struct rkcanfd_priv *priv)
{
struct net_device *ndev = priv->ndev;
int err;
pm_runtime_enable(ndev->dev.parent);
err = pm_runtime_resume_and_get(ndev->dev.parent);
if (err)
goto out_pm_runtime_disable;
rkcanfd_ethtool_init(priv);
err = register_candev(ndev);
if (err)
goto out_pm_runtime_put_sync;
rkcanfd_register_done(priv);
pm_runtime_put(ndev->dev.parent);
return 0;
out_pm_runtime_put_sync:
pm_runtime_put_sync(ndev->dev.parent);
out_pm_runtime_disable:
pm_runtime_disable(ndev->dev.parent);
return err;
}
static inline void rkcanfd_unregister(struct rkcanfd_priv *priv)
{
struct net_device *ndev = priv->ndev;
unregister_candev(ndev);
pm_runtime_disable(ndev->dev.parent);
}
static const struct of_device_id rkcanfd_of_match[] = {
{
.compatible = "rockchip,rk3568v2-canfd",
.data = &rkcanfd_devtype_data_rk3568v2,
}, {
.compatible = "rockchip,rk3568v3-canfd",
.data = &rkcanfd_devtype_data_rk3568v3,
}, {
/* sentinel */
},
};
MODULE_DEVICE_TABLE(of, rkcanfd_of_match);
static int rkcanfd_probe(struct platform_device *pdev)
{
struct rkcanfd_priv *priv;
struct net_device *ndev;
const void *match;
int err;
ndev = alloc_candev(sizeof(struct rkcanfd_priv), RKCANFD_TXFIFO_DEPTH);
if (!ndev)
return -ENOMEM;
priv = netdev_priv(ndev);
ndev->irq = platform_get_irq(pdev, 0);
if (ndev->irq < 0) {
err = ndev->irq;
goto out_free_candev;
}
priv->clks_num = devm_clk_bulk_get_all(&pdev->dev, &priv->clks);
if (priv->clks_num < 0) {
err = priv->clks_num;
goto out_free_candev;
}
priv->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(priv->regs)) {
err = PTR_ERR(priv->regs);
goto out_free_candev;
}
priv->reset = devm_reset_control_array_get_exclusive(&pdev->dev);
if (IS_ERR(priv->reset)) {
err = dev_err_probe(&pdev->dev, PTR_ERR(priv->reset),
"Failed to get reset line\n");
goto out_free_candev;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &rkcanfd_netdev_ops;
ndev->flags |= IFF_ECHO;
platform_set_drvdata(pdev, priv);
priv->can.clock.freq = clk_get_rate(priv->clks[0].clk);
priv->can.bittiming_const = &rkcanfd_bittiming_const;
priv->can.data_bittiming_const = &rkcanfd_data_bittiming_const;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
CAN_CTRLMODE_BERR_REPORTING;
if (!(priv->devtype_data.quirks & RKCANFD_QUIRK_CANFD_BROKEN))
priv->can.ctrlmode_supported |= CAN_CTRLMODE_FD;
priv->can.do_set_mode = rkcanfd_set_mode;
priv->can.do_get_berr_counter = rkcanfd_get_berr_counter;
priv->ndev = ndev;
match = device_get_match_data(&pdev->dev);
if (match)
priv->devtype_data = *(struct rkcanfd_devtype_data *)match;
err = can_rx_offload_add_manual(ndev, &priv->offload,
RKCANFD_NAPI_WEIGHT);
if (err)
goto out_free_candev;
err = rkcanfd_register(priv);
if (err)
goto out_can_rx_offload_del;
return 0;
out_can_rx_offload_del:
can_rx_offload_del(&priv->offload);
out_free_candev:
free_candev(ndev);
return err;
}
static void rkcanfd_remove(struct platform_device *pdev)
{
struct rkcanfd_priv *priv = platform_get_drvdata(pdev);
struct net_device *ndev = priv->ndev;
can_rx_offload_del(&priv->offload);
rkcanfd_unregister(priv);
free_candev(ndev);
}
static const struct dev_pm_ops rkcanfd_pm_ops = {
SET_RUNTIME_PM_OPS(rkcanfd_runtime_suspend,
rkcanfd_runtime_resume, NULL)
};
static struct platform_driver rkcanfd_driver = {
.driver = {
.name = DEVICE_NAME,
.pm = &rkcanfd_pm_ops,
.of_match_table = rkcanfd_of_match,
},
.probe = rkcanfd_probe,
.remove = rkcanfd_remove,
};
module_platform_driver(rkcanfd_driver);
MODULE_AUTHOR("Marc Kleine-Budde <mkl@pengutronix.de>");
MODULE_DESCRIPTION("Rockchip CAN-FD Driver");
MODULE_LICENSE("GPL");