| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. |
| * |
| * Copyright (C) 2018-2020 Xilinx Inc. |
| * |
| * Author: Anurag Kumar Vulisha <anuragku@xilinx.com> |
| * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com> |
| * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> |
| * |
| * This driver is tested for USB, SGMII, SATA and Display Port currently. |
| * PCIe should also work but that is experimental as of now. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/debugfs.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/phy/phy.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/slab.h> |
| |
| #include <dt-bindings/phy/phy.h> |
| |
| /* |
| * Lane Registers |
| */ |
| |
| /* TX De-emphasis parameters */ |
| #define L0_TX_ANA_TM_18 0x0048 |
| #define L0_TX_ANA_TM_118 0x01d8 |
| #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) |
| |
| /* DN Resistor calibration code parameters */ |
| #define L0_TXPMA_ST_3 0x0b0c |
| #define L0_DN_CALIB_CODE 0x3f |
| |
| /* PMA control parameters */ |
| #define L0_TXPMD_TM_45 0x0cb4 |
| #define L0_TXPMD_TM_48 0x0cc0 |
| #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) |
| #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) |
| #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) |
| #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) |
| #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) |
| #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) |
| |
| /* PCS control parameters */ |
| #define L0_TM_DIG_6 0x106c |
| #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f |
| #define L0_TX_DIG_61 0x00f4 |
| #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f |
| |
| /* PLL Test Mode register parameters */ |
| #define L0_TM_PLL_DIG_37 0x2094 |
| #define L0_TM_COARSE_CODE_LIMIT 0x10 |
| |
| /* PLL SSC step size offsets */ |
| #define L0_PLL_SS_STEPS_0_LSB 0x2368 |
| #define L0_PLL_SS_STEPS_1_MSB 0x236c |
| #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 |
| #define L0_PLL_SS_STEP_SIZE_1 0x2374 |
| #define L0_PLL_SS_STEP_SIZE_2 0x2378 |
| #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c |
| #define L0_PLL_STATUS_READ_1 0x23e4 |
| |
| /* SSC step size parameters */ |
| #define STEP_SIZE_0_MASK 0xff |
| #define STEP_SIZE_1_MASK 0xff |
| #define STEP_SIZE_2_MASK 0xff |
| #define STEP_SIZE_3_MASK 0x3 |
| #define STEP_SIZE_SHIFT 8 |
| #define FORCE_STEP_SIZE 0x10 |
| #define FORCE_STEPS 0x20 |
| #define STEPS_0_MASK 0xff |
| #define STEPS_1_MASK 0x07 |
| |
| /* Reference clock selection parameters */ |
| #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) |
| #define L0_REF_CLK_LCL_SEL BIT(7) |
| #define L0_REF_CLK_SEL_MASK 0x9f |
| |
| /* Calibration digital logic parameters */ |
| #define L3_TM_CALIB_DIG19 0xec4c |
| #define L3_CALIB_DONE_STATUS 0xef14 |
| #define L3_TM_CALIB_DIG18 0xec48 |
| #define L3_TM_CALIB_DIG19_NSW 0x07 |
| #define L3_TM_CALIB_DIG18_NSW 0xe0 |
| #define L3_TM_OVERRIDE_NSW_CODE 0x20 |
| #define L3_CALIB_DONE 0x02 |
| #define L3_NSW_SHIFT 5 |
| #define L3_NSW_PIPE_SHIFT 4 |
| #define L3_NSW_CALIB_SHIFT 3 |
| |
| #define PHY_REG_OFFSET 0x4000 |
| |
| /* |
| * Global Registers |
| */ |
| |
| /* Refclk selection parameters */ |
| #define PLL_REF_SEL(n) (0x10000 + (n) * 4) |
| #define PLL_FREQ_MASK 0x1f |
| #define PLL_STATUS_LOCKED 0x10 |
| |
| /* Inter Connect Matrix parameters */ |
| #define ICM_CFG0 0x10010 |
| #define ICM_CFG1 0x10014 |
| #define ICM_CFG0_L0_MASK 0x07 |
| #define ICM_CFG0_L1_MASK 0x70 |
| #define ICM_CFG1_L2_MASK 0x07 |
| #define ICM_CFG2_L3_MASK 0x70 |
| #define ICM_CFG_SHIFT 4 |
| |
| /* Inter Connect Matrix allowed protocols */ |
| #define ICM_PROTOCOL_PD 0x0 |
| #define ICM_PROTOCOL_PCIE 0x1 |
| #define ICM_PROTOCOL_SATA 0x2 |
| #define ICM_PROTOCOL_USB 0x3 |
| #define ICM_PROTOCOL_DP 0x4 |
| #define ICM_PROTOCOL_SGMII 0x5 |
| |
| static const char *const xpsgtr_icm_str[] = { |
| [ICM_PROTOCOL_PD] = "none", |
| [ICM_PROTOCOL_PCIE] = "PCIe", |
| [ICM_PROTOCOL_SATA] = "SATA", |
| [ICM_PROTOCOL_USB] = "USB", |
| [ICM_PROTOCOL_DP] = "DisplayPort", |
| [ICM_PROTOCOL_SGMII] = "SGMII", |
| }; |
| |
| /* Test Mode common reset control parameters */ |
| #define TM_CMN_RST 0x10018 |
| #define TM_CMN_RST_EN 0x1 |
| #define TM_CMN_RST_SET 0x2 |
| #define TM_CMN_RST_MASK 0x3 |
| |
| /* Bus width parameters */ |
| #define TX_PROT_BUS_WIDTH 0x10040 |
| #define RX_PROT_BUS_WIDTH 0x10044 |
| #define PROT_BUS_WIDTH_10 0x0 |
| #define PROT_BUS_WIDTH_20 0x1 |
| #define PROT_BUS_WIDTH_40 0x2 |
| #define PROT_BUS_WIDTH_SHIFT(n) ((n) * 2) |
| #define PROT_BUS_WIDTH_MASK(n) GENMASK((n) * 2 + 1, (n) * 2) |
| |
| /* Number of GT lanes */ |
| #define NUM_LANES 4 |
| |
| /* SIOU SATA control register */ |
| #define SATA_CONTROL_OFFSET 0x0100 |
| |
| /* Total number of controllers */ |
| #define CONTROLLERS_PER_LANE 5 |
| |
| /* Timeout values */ |
| #define TIMEOUT_US 1000 |
| |
| struct xpsgtr_dev; |
| |
| /** |
| * struct xpsgtr_ssc - structure to hold SSC settings for a lane |
| * @refclk_rate: PLL reference clock frequency |
| * @pll_ref_clk: value to be written to register for corresponding ref clk rate |
| * @steps: number of steps of SSC (Spread Spectrum Clock) |
| * @step_size: step size of each step |
| */ |
| struct xpsgtr_ssc { |
| u32 refclk_rate; |
| u8 pll_ref_clk; |
| u32 steps; |
| u32 step_size; |
| }; |
| |
| /** |
| * struct xpsgtr_phy - representation of a lane |
| * @phy: pointer to the kernel PHY device |
| * @instance: instance of the protocol type (such as the lane within a |
| * protocol, or the USB/Ethernet controller) |
| * @lane: lane number |
| * @protocol: protocol in which the lane operates |
| * @skip_phy_init: skip phy_init() if true |
| * @dev: pointer to the xpsgtr_dev instance |
| * @refclk: reference clock index |
| */ |
| struct xpsgtr_phy { |
| struct phy *phy; |
| u8 instance; |
| u8 lane; |
| u8 protocol; |
| bool skip_phy_init; |
| struct xpsgtr_dev *dev; |
| unsigned int refclk; |
| }; |
| |
| /** |
| * struct xpsgtr_dev - representation of a ZynMP GT device |
| * @dev: pointer to device |
| * @serdes: serdes base address |
| * @siou: siou base address |
| * @gtr_mutex: mutex for locking |
| * @phys: PHY lanes |
| * @refclk_sscs: spread spectrum settings for the reference clocks |
| * @clk: reference clocks |
| * @tx_term_fix: fix for GT issue |
| * @saved_icm_cfg0: stored value of ICM CFG0 register |
| * @saved_icm_cfg1: stored value of ICM CFG1 register |
| */ |
| struct xpsgtr_dev { |
| struct device *dev; |
| void __iomem *serdes; |
| void __iomem *siou; |
| struct mutex gtr_mutex; /* mutex for locking */ |
| struct xpsgtr_phy phys[NUM_LANES]; |
| const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; |
| struct clk *clk[NUM_LANES]; |
| bool tx_term_fix; |
| unsigned int saved_icm_cfg0; |
| unsigned int saved_icm_cfg1; |
| }; |
| |
| /* |
| * Configuration Data |
| */ |
| |
| /* lookup table to hold all settings needed for a ref clock frequency */ |
| static const struct xpsgtr_ssc ssc_lookup[] = { |
| { 19200000, 0x05, 608, 264020 }, |
| { 20000000, 0x06, 634, 243454 }, |
| { 24000000, 0x07, 760, 168973 }, |
| { 26000000, 0x08, 824, 143860 }, |
| { 27000000, 0x09, 856, 86551 }, |
| { 38400000, 0x0a, 1218, 65896 }, |
| { 40000000, 0x0b, 634, 243454 }, |
| { 52000000, 0x0c, 824, 143860 }, |
| { 100000000, 0x0d, 1058, 87533 }, |
| { 108000000, 0x0e, 856, 86551 }, |
| { 125000000, 0x0f, 992, 119497 }, |
| { 135000000, 0x10, 1070, 55393 }, |
| { 150000000, 0x11, 792, 187091 } |
| }; |
| |
| /* |
| * I/O Accessors |
| */ |
| |
| static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) |
| { |
| return readl(gtr_dev->serdes + reg); |
| } |
| |
| static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) |
| { |
| writel(value, gtr_dev->serdes + reg); |
| } |
| |
| static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, |
| u32 clr, u32 set) |
| { |
| u32 value = xpsgtr_read(gtr_dev, reg); |
| |
| value &= ~clr; |
| value |= set; |
| xpsgtr_write(gtr_dev, reg, value); |
| } |
| |
| static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) |
| { |
| void __iomem *addr = gtr_phy->dev->serdes |
| + gtr_phy->lane * PHY_REG_OFFSET + reg; |
| |
| return readl(addr); |
| } |
| |
| static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, |
| u32 reg, u32 value) |
| { |
| void __iomem *addr = gtr_phy->dev->serdes |
| + gtr_phy->lane * PHY_REG_OFFSET + reg; |
| |
| writel(value, addr); |
| } |
| |
| static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, |
| u32 reg, u32 clr, u32 set) |
| { |
| void __iomem *addr = gtr_phy->dev->serdes |
| + gtr_phy->lane * PHY_REG_OFFSET + reg; |
| |
| writel((readl(addr) & ~clr) | set, addr); |
| } |
| |
| /* |
| * Hardware Configuration |
| */ |
| |
| /* Wait for the PLL to lock (with a timeout). */ |
| static int xpsgtr_wait_pll_lock(struct phy *phy) |
| { |
| struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| unsigned int timeout = TIMEOUT_US; |
| u8 protocol = gtr_phy->protocol; |
| int ret; |
| |
| dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); |
| |
| /* |
| * For DP and PCIe, only the instance 0 PLL is used. Switch to that phy |
| * so we wait on the right PLL. |
| */ |
| if ((protocol == ICM_PROTOCOL_DP || protocol == ICM_PROTOCOL_PCIE) && |
| gtr_phy->instance) { |
| int i; |
| |
| for (i = 0; i < NUM_LANES; i++) { |
| gtr_phy = >r_dev->phys[i]; |
| |
| if (gtr_phy->protocol == protocol && !gtr_phy->instance) |
| goto got_phy; |
| } |
| |
| return -EBUSY; |
| } |
| |
| got_phy: |
| while (1) { |
| u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); |
| |
| if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { |
| ret = 0; |
| break; |
| } |
| |
| if (--timeout == 0) { |
| ret = -ETIMEDOUT; |
| break; |
| } |
| |
| udelay(1); |
| } |
| |
| if (ret == -ETIMEDOUT) |
| dev_err(gtr_dev->dev, |
| "lane %u (protocol %u, instance %u): PLL lock timeout\n", |
| gtr_phy->lane, gtr_phy->protocol, gtr_phy->instance); |
| |
| return ret; |
| } |
| |
| /* Configure PLL and spread-sprectrum clock. */ |
| static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) |
| { |
| const struct xpsgtr_ssc *ssc; |
| u32 step_size; |
| |
| ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; |
| step_size = ssc->step_size; |
| |
| xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), |
| PLL_FREQ_MASK, ssc->pll_ref_clk); |
| |
| /* Enable lane clock sharing, if required */ |
| if (gtr_phy->refclk == gtr_phy->lane) |
| xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), |
| L0_REF_CLK_SEL_MASK, L0_REF_CLK_LCL_SEL); |
| else |
| xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), |
| L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); |
| |
| /* SSC step size [7:0] */ |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, |
| STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); |
| |
| /* SSC step size [15:8] */ |
| step_size >>= STEP_SIZE_SHIFT; |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, |
| STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); |
| |
| /* SSC step size [23:16] */ |
| step_size >>= STEP_SIZE_SHIFT; |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, |
| STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); |
| |
| /* SSC steps [7:0] */ |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, |
| STEPS_0_MASK, ssc->steps & STEPS_0_MASK); |
| |
| /* SSC steps [10:8] */ |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, |
| STEPS_1_MASK, |
| (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); |
| |
| /* SSC step size [24:25] */ |
| step_size >>= STEP_SIZE_SHIFT; |
| xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, |
| STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | |
| FORCE_STEP_SIZE | FORCE_STEPS); |
| } |
| |
| /* Configure the lane protocol. */ |
| static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) |
| { |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| u8 protocol = gtr_phy->protocol; |
| |
| switch (gtr_phy->lane) { |
| case 0: |
| xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); |
| break; |
| case 1: |
| xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, |
| protocol << ICM_CFG_SHIFT); |
| break; |
| case 2: |
| xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); |
| break; |
| case 3: |
| xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, |
| protocol << ICM_CFG_SHIFT); |
| break; |
| default: |
| /* We already checked 0 <= lane <= 3 */ |
| break; |
| } |
| } |
| |
| /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ |
| static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) |
| { |
| xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); |
| xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); |
| } |
| |
| /* DP-specific initialization. */ |
| static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) |
| { |
| xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, |
| L0_TXPMD_TM_45_OVER_DP_MAIN | |
| L0_TXPMD_TM_45_ENABLE_DP_MAIN | |
| L0_TXPMD_TM_45_OVER_DP_POST1 | |
| L0_TXPMD_TM_45_OVER_DP_POST2 | |
| L0_TXPMD_TM_45_ENABLE_DP_POST2); |
| xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, |
| L0_TX_ANA_TM_118_FORCE_17_0); |
| } |
| |
| /* SATA-specific initialization. */ |
| static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) |
| { |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| |
| xpsgtr_bypass_scrambler_8b10b(gtr_phy); |
| |
| writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); |
| } |
| |
| /* SGMII-specific initialization. */ |
| static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) |
| { |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane); |
| u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane); |
| |
| /* Set SGMII protocol TX and RX bus width to 10 bits. */ |
| xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val); |
| xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val); |
| |
| xpsgtr_bypass_scrambler_8b10b(gtr_phy); |
| } |
| |
| /* Configure TX de-emphasis and margining for DP. */ |
| static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, |
| unsigned int voltage) |
| { |
| static const u8 voltage_swing[4][4] = { |
| { 0x2a, 0x27, 0x24, 0x20 }, |
| { 0x27, 0x23, 0x20, 0xff }, |
| { 0x24, 0x20, 0xff, 0xff }, |
| { 0xff, 0xff, 0xff, 0xff } |
| }; |
| static const u8 pre_emphasis[4][4] = { |
| { 0x02, 0x02, 0x02, 0x02 }, |
| { 0x01, 0x01, 0x01, 0xff }, |
| { 0x00, 0x00, 0xff, 0xff }, |
| { 0xff, 0xff, 0xff, 0xff } |
| }; |
| |
| xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); |
| xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); |
| } |
| |
| /* |
| * PHY Operations |
| */ |
| |
| static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) |
| { |
| /* |
| * As USB may save the snapshot of the states during hibernation, doing |
| * phy_init() will put the USB controller into reset, resulting in the |
| * losing of the saved snapshot. So try to avoid phy_init() for USB |
| * except when gtr_phy->skip_phy_init is false (this happens when FPD is |
| * shutdown during suspend or when gt lane is changed from current one) |
| */ |
| if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) |
| return false; |
| else |
| return true; |
| } |
| |
| /* |
| * There is a functional issue in the GT. The TX termination resistance can be |
| * out of spec due to a issue in the calibration logic. This is the workaround |
| * to fix it, required for XCZU9EG silicon. |
| */ |
| static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) |
| { |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| u32 timeout = TIMEOUT_US; |
| u32 nsw; |
| |
| /* Enabling Test Mode control for CMN Rest */ |
| xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); |
| |
| /* Set Test Mode reset */ |
| xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); |
| |
| xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); |
| xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); |
| |
| /* |
| * As a part of work around sequence for PMOS calibration fix, |
| * we need to configure any lane ICM_CFG to valid protocol. This |
| * will deassert the CMN_Resetn signal. |
| */ |
| xpsgtr_lane_set_protocol(gtr_phy); |
| |
| /* Clear Test Mode reset */ |
| xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); |
| |
| dev_dbg(gtr_dev->dev, "calibrating...\n"); |
| |
| do { |
| u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); |
| |
| if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) |
| break; |
| |
| if (!--timeout) { |
| dev_err(gtr_dev->dev, "calibration time out\n"); |
| return -ETIMEDOUT; |
| } |
| |
| udelay(1); |
| } while (timeout > 0); |
| |
| dev_dbg(gtr_dev->dev, "calibration done\n"); |
| |
| /* Reading NMOS Register Code */ |
| nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; |
| |
| /* Set Test Mode reset */ |
| xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); |
| |
| /* Writing NMOS register values back [5:3] */ |
| xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); |
| |
| /* Writing NMOS register value [2:0] */ |
| xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, |
| ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | |
| (1 << L3_NSW_PIPE_SHIFT)); |
| |
| /* Clear Test Mode reset */ |
| xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); |
| |
| return 0; |
| } |
| |
| static int xpsgtr_phy_init(struct phy *phy) |
| { |
| struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| int ret = 0; |
| |
| mutex_lock(>r_dev->gtr_mutex); |
| |
| /* Configure and enable the clock when peripheral phy_init call */ |
| if (clk_prepare_enable(gtr_dev->clk[gtr_phy->refclk])) |
| goto out; |
| |
| /* Skip initialization if not required. */ |
| if (!xpsgtr_phy_init_required(gtr_phy)) |
| goto out; |
| |
| if (gtr_dev->tx_term_fix) { |
| ret = xpsgtr_phy_tx_term_fix(gtr_phy); |
| if (ret < 0) |
| goto out; |
| |
| gtr_dev->tx_term_fix = false; |
| } |
| |
| /* Enable coarse code saturation limiting logic. */ |
| xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); |
| |
| /* |
| * Configure the PLL, the lane protocol, and perform protocol-specific |
| * initialization. |
| */ |
| xpsgtr_configure_pll(gtr_phy); |
| xpsgtr_lane_set_protocol(gtr_phy); |
| |
| switch (gtr_phy->protocol) { |
| case ICM_PROTOCOL_DP: |
| xpsgtr_phy_init_dp(gtr_phy); |
| break; |
| |
| case ICM_PROTOCOL_SATA: |
| xpsgtr_phy_init_sata(gtr_phy); |
| break; |
| |
| case ICM_PROTOCOL_SGMII: |
| xpsgtr_phy_init_sgmii(gtr_phy); |
| break; |
| } |
| |
| out: |
| mutex_unlock(>r_dev->gtr_mutex); |
| return ret; |
| } |
| |
| static int xpsgtr_phy_exit(struct phy *phy) |
| { |
| struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); |
| struct xpsgtr_dev *gtr_dev = gtr_phy->dev; |
| |
| gtr_phy->skip_phy_init = false; |
| |
| /* Ensure that disable clock only, which configure for lane */ |
| clk_disable_unprepare(gtr_dev->clk[gtr_phy->refclk]); |
| |
| return 0; |
| } |
| |
| static int xpsgtr_phy_power_on(struct phy *phy) |
| { |
| struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); |
| int ret = 0; |
| |
| /* Skip initialization if not required. */ |
| if (!xpsgtr_phy_init_required(gtr_phy)) |
| return ret; |
| return xpsgtr_wait_pll_lock(phy); |
| } |
| |
| static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) |
| { |
| struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); |
| |
| if (gtr_phy->protocol != ICM_PROTOCOL_DP) |
| return 0; |
| |
| xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); |
| |
| return 0; |
| } |
| |
| static const struct phy_ops xpsgtr_phyops = { |
| .init = xpsgtr_phy_init, |
| .exit = xpsgtr_phy_exit, |
| .power_on = xpsgtr_phy_power_on, |
| .configure = xpsgtr_phy_configure, |
| .owner = THIS_MODULE, |
| }; |
| |
| /* |
| * OF Xlate Support |
| */ |
| |
| /* Set the lane protocol and instance based on the PHY type and instance number. */ |
| static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, |
| unsigned int phy_instance) |
| { |
| unsigned int num_phy_types; |
| |
| switch (phy_type) { |
| case PHY_TYPE_SATA: |
| num_phy_types = 2; |
| gtr_phy->protocol = ICM_PROTOCOL_SATA; |
| break; |
| case PHY_TYPE_USB3: |
| num_phy_types = 2; |
| gtr_phy->protocol = ICM_PROTOCOL_USB; |
| break; |
| case PHY_TYPE_DP: |
| num_phy_types = 2; |
| gtr_phy->protocol = ICM_PROTOCOL_DP; |
| break; |
| case PHY_TYPE_PCIE: |
| num_phy_types = 4; |
| gtr_phy->protocol = ICM_PROTOCOL_PCIE; |
| break; |
| case PHY_TYPE_SGMII: |
| num_phy_types = 4; |
| gtr_phy->protocol = ICM_PROTOCOL_SGMII; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (phy_instance >= num_phy_types) |
| return -EINVAL; |
| |
| gtr_phy->instance = phy_instance; |
| return 0; |
| } |
| |
| /* |
| * Valid combinations of controllers and lanes (Interconnect Matrix). Each |
| * "instance" represents one controller for a lane. For PCIe and DP, the |
| * "instance" is the logical lane in the link. For SATA, USB, and SGMII, |
| * the instance is the index of the controller. |
| * |
| * This information is only used to validate the devicetree reference, and is |
| * not used when programming the hardware. |
| */ |
| static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { |
| /* PCIe, SATA, USB, DP, SGMII */ |
| { 0, 0, 0, 1, 0 }, /* Lane 0 */ |
| { 1, 1, 0, 0, 1 }, /* Lane 1 */ |
| { 2, 0, 0, 1, 2 }, /* Lane 2 */ |
| { 3, 1, 1, 0, 3 }, /* Lane 3 */ |
| }; |
| |
| /* Translate OF phandle and args to PHY instance. */ |
| static struct phy *xpsgtr_xlate(struct device *dev, |
| const struct of_phandle_args *args) |
| { |
| struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); |
| struct xpsgtr_phy *gtr_phy; |
| unsigned int phy_instance; |
| unsigned int phy_lane; |
| unsigned int phy_type; |
| unsigned int refclk; |
| unsigned int i; |
| int ret; |
| |
| if (args->args_count != 4) { |
| dev_err(dev, "Invalid number of cells in 'phy' property\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* |
| * Get the PHY parameters from the OF arguments and derive the lane |
| * type. |
| */ |
| phy_lane = args->args[0]; |
| if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { |
| dev_err(dev, "Invalid lane number %u\n", phy_lane); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| gtr_phy = >r_dev->phys[phy_lane]; |
| phy_type = args->args[1]; |
| phy_instance = args->args[2]; |
| |
| guard(mutex)(>r_phy->phy->mutex); |
| ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); |
| if (ret < 0) { |
| dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); |
| return ERR_PTR(ret); |
| } |
| |
| refclk = args->args[3]; |
| if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || |
| !gtr_dev->refclk_sscs[refclk]) { |
| dev_err(dev, "Invalid reference clock number %u\n", refclk); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| gtr_phy->refclk = refclk; |
| |
| /* |
| * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type |
| * is allowed to operate on the lane. |
| */ |
| for (i = 0; i < CONTROLLERS_PER_LANE; i++) { |
| if (icm_matrix[phy_lane][i] == gtr_phy->instance) |
| return gtr_phy->phy; |
| } |
| |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* |
| * DebugFS |
| */ |
| |
| static int xpsgtr_status_read(struct seq_file *seq, void *data) |
| { |
| struct device *dev = seq->private; |
| struct xpsgtr_phy *gtr_phy = dev_get_drvdata(dev); |
| struct clk *clk; |
| u32 pll_status; |
| |
| mutex_lock(>r_phy->phy->mutex); |
| pll_status = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); |
| clk = gtr_phy->dev->clk[gtr_phy->refclk]; |
| |
| seq_printf(seq, "Lane: %u\n", gtr_phy->lane); |
| seq_printf(seq, "Protocol: %s\n", |
| xpsgtr_icm_str[gtr_phy->protocol]); |
| seq_printf(seq, "Instance: %u\n", gtr_phy->instance); |
| seq_printf(seq, "Reference clock: %u (%pC)\n", gtr_phy->refclk, clk); |
| seq_printf(seq, "Reference rate: %lu\n", clk_get_rate(clk)); |
| seq_printf(seq, "PLL locked: %s\n", |
| pll_status & PLL_STATUS_LOCKED ? "yes" : "no"); |
| |
| mutex_unlock(>r_phy->phy->mutex); |
| return 0; |
| } |
| |
| /* |
| * Power Management |
| */ |
| |
| static int xpsgtr_runtime_suspend(struct device *dev) |
| { |
| struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); |
| |
| /* Save the snapshot ICM_CFG registers. */ |
| gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); |
| gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); |
| |
| return 0; |
| } |
| |
| static int xpsgtr_runtime_resume(struct device *dev) |
| { |
| struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); |
| unsigned int icm_cfg0, icm_cfg1; |
| unsigned int i; |
| bool skip_phy_init; |
| |
| icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); |
| icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); |
| |
| /* Return if no GT lanes got configured before suspend. */ |
| if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) |
| return 0; |
| |
| /* Check if the ICM configurations changed after suspend. */ |
| if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && |
| icm_cfg1 == gtr_dev->saved_icm_cfg1) |
| skip_phy_init = true; |
| else |
| skip_phy_init = false; |
| |
| /* Update the skip_phy_init for all gtr_phy instances. */ |
| for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) |
| gtr_dev->phys[i].skip_phy_init = skip_phy_init; |
| |
| return 0; |
| } |
| |
| static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend, |
| xpsgtr_runtime_resume, NULL); |
| /* |
| * Probe & Platform Driver |
| */ |
| |
| static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) |
| { |
| unsigned int refclk; |
| |
| for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { |
| unsigned long rate; |
| unsigned int i; |
| struct clk *clk; |
| char name[8]; |
| |
| snprintf(name, sizeof(name), "ref%u", refclk); |
| clk = devm_clk_get_optional(gtr_dev->dev, name); |
| if (IS_ERR(clk)) { |
| return dev_err_probe(gtr_dev->dev, PTR_ERR(clk), |
| "Failed to get ref clock %u\n", |
| refclk); |
| } |
| |
| if (!clk) |
| continue; |
| |
| gtr_dev->clk[refclk] = clk; |
| |
| /* |
| * Get the spread spectrum (SSC) settings for the reference |
| * clock rate. |
| */ |
| rate = clk_get_rate(clk); |
| |
| for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { |
| /* Allow an error of 100 ppm */ |
| unsigned long error = ssc_lookup[i].refclk_rate / 10000; |
| |
| if (abs(rate - ssc_lookup[i].refclk_rate) < error) { |
| gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; |
| break; |
| } |
| } |
| |
| if (i == ARRAY_SIZE(ssc_lookup)) { |
| dev_err(gtr_dev->dev, |
| "Invalid rate %lu for reference clock %u\n", |
| rate, refclk); |
| return -EINVAL; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int xpsgtr_probe(struct platform_device *pdev) |
| { |
| struct device_node *np = pdev->dev.of_node; |
| struct xpsgtr_dev *gtr_dev; |
| struct phy_provider *provider; |
| unsigned int port; |
| int ret; |
| |
| gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); |
| if (!gtr_dev) |
| return -ENOMEM; |
| |
| gtr_dev->dev = &pdev->dev; |
| platform_set_drvdata(pdev, gtr_dev); |
| |
| mutex_init(>r_dev->gtr_mutex); |
| |
| if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) |
| gtr_dev->tx_term_fix = |
| of_property_read_bool(np, "xlnx,tx-termination-fix"); |
| |
| /* Acquire resources. */ |
| gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); |
| if (IS_ERR(gtr_dev->serdes)) |
| return PTR_ERR(gtr_dev->serdes); |
| |
| gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); |
| if (IS_ERR(gtr_dev->siou)) |
| return PTR_ERR(gtr_dev->siou); |
| |
| ret = xpsgtr_get_ref_clocks(gtr_dev); |
| if (ret) |
| return ret; |
| |
| /* Create PHYs. */ |
| for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { |
| struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; |
| struct phy *phy; |
| |
| gtr_phy->lane = port; |
| gtr_phy->dev = gtr_dev; |
| |
| phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); |
| if (IS_ERR(phy)) { |
| dev_err(&pdev->dev, "failed to create PHY\n"); |
| return PTR_ERR(phy); |
| } |
| |
| gtr_phy->phy = phy; |
| phy_set_drvdata(phy, gtr_phy); |
| debugfs_create_devm_seqfile(&phy->dev, "status", phy->debugfs, |
| xpsgtr_status_read); |
| } |
| |
| /* Register the PHY provider. */ |
| provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); |
| if (IS_ERR(provider)) { |
| dev_err(&pdev->dev, "registering provider failed\n"); |
| return PTR_ERR(provider); |
| } |
| |
| pm_runtime_set_active(gtr_dev->dev); |
| pm_runtime_enable(gtr_dev->dev); |
| |
| ret = pm_runtime_resume_and_get(gtr_dev->dev); |
| if (ret < 0) { |
| pm_runtime_disable(gtr_dev->dev); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void xpsgtr_remove(struct platform_device *pdev) |
| { |
| struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev); |
| |
| pm_runtime_disable(gtr_dev->dev); |
| pm_runtime_put_noidle(gtr_dev->dev); |
| pm_runtime_set_suspended(gtr_dev->dev); |
| } |
| |
| static const struct of_device_id xpsgtr_of_match[] = { |
| { .compatible = "xlnx,zynqmp-psgtr", }, |
| { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, xpsgtr_of_match); |
| |
| static struct platform_driver xpsgtr_driver = { |
| .probe = xpsgtr_probe, |
| .remove_new = xpsgtr_remove, |
| .driver = { |
| .name = "xilinx-psgtr", |
| .of_match_table = xpsgtr_of_match, |
| .pm = pm_ptr(&xpsgtr_pm_ops), |
| }, |
| }; |
| |
| module_platform_driver(xpsgtr_driver); |
| |
| MODULE_AUTHOR("Xilinx Inc."); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver"); |