| // SPDX-License-Identifier: GPL-2.0 |
| |
| #include "bcachefs.h" |
| #include "btree_cache.h" |
| #include "btree_iter.h" |
| #include "btree_key_cache.h" |
| #include "btree_locking.h" |
| #include "btree_update.h" |
| #include "errcode.h" |
| #include "error.h" |
| #include "journal.h" |
| #include "journal_reclaim.h" |
| #include "trace.h" |
| |
| #include <linux/sched/mm.h> |
| |
| static inline bool btree_uses_pcpu_readers(enum btree_id id) |
| { |
| return id == BTREE_ID_subvolumes; |
| } |
| |
| static struct kmem_cache *bch2_key_cache; |
| |
| static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, |
| const void *obj) |
| { |
| const struct bkey_cached *ck = obj; |
| const struct bkey_cached_key *key = arg->key; |
| |
| return ck->key.btree_id != key->btree_id || |
| !bpos_eq(ck->key.pos, key->pos); |
| } |
| |
| static const struct rhashtable_params bch2_btree_key_cache_params = { |
| .head_offset = offsetof(struct bkey_cached, hash), |
| .key_offset = offsetof(struct bkey_cached, key), |
| .key_len = sizeof(struct bkey_cached_key), |
| .obj_cmpfn = bch2_btree_key_cache_cmp_fn, |
| .automatic_shrinking = true, |
| }; |
| |
| static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path, |
| struct bkey_cached *ck, |
| enum btree_node_locked_type lock_held) |
| { |
| path->l[0].lock_seq = six_lock_seq(&ck->c.lock); |
| path->l[0].b = (void *) ck; |
| mark_btree_node_locked(trans, path, 0, lock_held); |
| } |
| |
| __flatten |
| inline struct bkey_cached * |
| bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) |
| { |
| struct bkey_cached_key key = { |
| .btree_id = btree_id, |
| .pos = pos, |
| }; |
| |
| return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, |
| bch2_btree_key_cache_params); |
| } |
| |
| static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) |
| { |
| if (!six_trylock_intent(&ck->c.lock)) |
| return false; |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| six_unlock_intent(&ck->c.lock); |
| return false; |
| } |
| |
| if (!six_trylock_write(&ck->c.lock)) { |
| six_unlock_intent(&ck->c.lock); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static void bkey_cached_evict(struct btree_key_cache *c, |
| struct bkey_cached *ck) |
| { |
| BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, |
| bch2_btree_key_cache_params)); |
| memset(&ck->key, ~0, sizeof(ck->key)); |
| |
| atomic_long_dec(&c->nr_keys); |
| } |
| |
| static void bkey_cached_free(struct btree_key_cache *bc, |
| struct bkey_cached *ck) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| |
| BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); |
| |
| ck->btree_trans_barrier_seq = |
| start_poll_synchronize_srcu(&c->btree_trans_barrier); |
| |
| if (ck->c.lock.readers) { |
| list_move_tail(&ck->list, &bc->freed_pcpu); |
| bc->nr_freed_pcpu++; |
| } else { |
| list_move_tail(&ck->list, &bc->freed_nonpcpu); |
| bc->nr_freed_nonpcpu++; |
| } |
| atomic_long_inc(&bc->nr_freed); |
| |
| kfree(ck->k); |
| ck->k = NULL; |
| ck->u64s = 0; |
| |
| six_unlock_write(&ck->c.lock); |
| six_unlock_intent(&ck->c.lock); |
| } |
| |
| #ifdef __KERNEL__ |
| static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc, |
| struct bkey_cached *ck) |
| { |
| struct bkey_cached *pos; |
| |
| bc->nr_freed_nonpcpu++; |
| |
| list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) { |
| if (ULONG_CMP_GE(ck->btree_trans_barrier_seq, |
| pos->btree_trans_barrier_seq)) { |
| list_move(&ck->list, &pos->list); |
| return; |
| } |
| } |
| |
| list_move(&ck->list, &bc->freed_nonpcpu); |
| } |
| #endif |
| |
| static void bkey_cached_move_to_freelist(struct btree_key_cache *bc, |
| struct bkey_cached *ck) |
| { |
| BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); |
| |
| if (!ck->c.lock.readers) { |
| #ifdef __KERNEL__ |
| struct btree_key_cache_freelist *f; |
| bool freed = false; |
| |
| preempt_disable(); |
| f = this_cpu_ptr(bc->pcpu_freed); |
| |
| if (f->nr < ARRAY_SIZE(f->objs)) { |
| f->objs[f->nr++] = ck; |
| freed = true; |
| } |
| preempt_enable(); |
| |
| if (!freed) { |
| mutex_lock(&bc->lock); |
| preempt_disable(); |
| f = this_cpu_ptr(bc->pcpu_freed); |
| |
| while (f->nr > ARRAY_SIZE(f->objs) / 2) { |
| struct bkey_cached *ck2 = f->objs[--f->nr]; |
| |
| __bkey_cached_move_to_freelist_ordered(bc, ck2); |
| } |
| preempt_enable(); |
| |
| __bkey_cached_move_to_freelist_ordered(bc, ck); |
| mutex_unlock(&bc->lock); |
| } |
| #else |
| mutex_lock(&bc->lock); |
| list_move_tail(&ck->list, &bc->freed_nonpcpu); |
| bc->nr_freed_nonpcpu++; |
| mutex_unlock(&bc->lock); |
| #endif |
| } else { |
| mutex_lock(&bc->lock); |
| list_move_tail(&ck->list, &bc->freed_pcpu); |
| bc->nr_freed_pcpu++; |
| mutex_unlock(&bc->lock); |
| } |
| } |
| |
| static void bkey_cached_free_fast(struct btree_key_cache *bc, |
| struct bkey_cached *ck) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| |
| ck->btree_trans_barrier_seq = |
| start_poll_synchronize_srcu(&c->btree_trans_barrier); |
| |
| list_del_init(&ck->list); |
| atomic_long_inc(&bc->nr_freed); |
| |
| kfree(ck->k); |
| ck->k = NULL; |
| ck->u64s = 0; |
| |
| bkey_cached_move_to_freelist(bc, ck); |
| |
| six_unlock_write(&ck->c.lock); |
| six_unlock_intent(&ck->c.lock); |
| } |
| |
| static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp) |
| { |
| struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp); |
| if (unlikely(!ck)) |
| return NULL; |
| ck->k = kmalloc(key_u64s * sizeof(u64), gfp); |
| if (unlikely(!ck->k)) { |
| kmem_cache_free(bch2_key_cache, ck); |
| return NULL; |
| } |
| ck->u64s = key_u64s; |
| return ck; |
| } |
| |
| static struct bkey_cached * |
| bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| struct bkey_cached *ck = NULL; |
| bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id); |
| int ret; |
| |
| if (!pcpu_readers) { |
| #ifdef __KERNEL__ |
| struct btree_key_cache_freelist *f; |
| |
| preempt_disable(); |
| f = this_cpu_ptr(bc->pcpu_freed); |
| if (f->nr) |
| ck = f->objs[--f->nr]; |
| preempt_enable(); |
| |
| if (!ck) { |
| mutex_lock(&bc->lock); |
| preempt_disable(); |
| f = this_cpu_ptr(bc->pcpu_freed); |
| |
| while (!list_empty(&bc->freed_nonpcpu) && |
| f->nr < ARRAY_SIZE(f->objs) / 2) { |
| ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); |
| list_del_init(&ck->list); |
| bc->nr_freed_nonpcpu--; |
| f->objs[f->nr++] = ck; |
| } |
| |
| ck = f->nr ? f->objs[--f->nr] : NULL; |
| preempt_enable(); |
| mutex_unlock(&bc->lock); |
| } |
| #else |
| mutex_lock(&bc->lock); |
| if (!list_empty(&bc->freed_nonpcpu)) { |
| ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); |
| list_del_init(&ck->list); |
| bc->nr_freed_nonpcpu--; |
| } |
| mutex_unlock(&bc->lock); |
| #endif |
| } else { |
| mutex_lock(&bc->lock); |
| if (!list_empty(&bc->freed_pcpu)) { |
| ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list); |
| list_del_init(&ck->list); |
| bc->nr_freed_pcpu--; |
| } |
| mutex_unlock(&bc->lock); |
| } |
| |
| if (ck) { |
| ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_); |
| if (unlikely(ret)) { |
| bkey_cached_move_to_freelist(bc, ck); |
| return ERR_PTR(ret); |
| } |
| |
| btree_path_cached_set(trans, path, ck, BTREE_NODE_INTENT_LOCKED); |
| |
| ret = bch2_btree_node_lock_write(trans, path, &ck->c); |
| if (unlikely(ret)) { |
| btree_node_unlock(trans, path, 0); |
| bkey_cached_move_to_freelist(bc, ck); |
| return ERR_PTR(ret); |
| } |
| |
| return ck; |
| } |
| |
| ck = allocate_dropping_locks(trans, ret, |
| __bkey_cached_alloc(key_u64s, _gfp)); |
| if (ret) { |
| if (ck) |
| kfree(ck->k); |
| kmem_cache_free(bch2_key_cache, ck); |
| return ERR_PTR(ret); |
| } |
| |
| if (!ck) |
| return NULL; |
| |
| INIT_LIST_HEAD(&ck->list); |
| bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0); |
| |
| ck->c.cached = true; |
| BUG_ON(!six_trylock_intent(&ck->c.lock)); |
| BUG_ON(!six_trylock_write(&ck->c.lock)); |
| return ck; |
| } |
| |
| static struct bkey_cached * |
| bkey_cached_reuse(struct btree_key_cache *c) |
| { |
| struct bucket_table *tbl; |
| struct rhash_head *pos; |
| struct bkey_cached *ck; |
| unsigned i; |
| |
| mutex_lock(&c->lock); |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(c->table.tbl, &c->table); |
| for (i = 0; i < tbl->size; i++) |
| rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && |
| bkey_cached_lock_for_evict(ck)) { |
| bkey_cached_evict(c, ck); |
| goto out; |
| } |
| } |
| ck = NULL; |
| out: |
| rcu_read_unlock(); |
| mutex_unlock(&c->lock); |
| return ck; |
| } |
| |
| static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path, |
| struct bkey_s_c k) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| |
| /* |
| * bch2_varint_decode can read past the end of the buffer by at |
| * most 7 bytes (it won't be used): |
| */ |
| unsigned key_u64s = k.k->u64s + 1; |
| |
| /* |
| * Allocate some extra space so that the transaction commit path is less |
| * likely to have to reallocate, since that requires a transaction |
| * restart: |
| */ |
| key_u64s = min(256U, (key_u64s * 3) / 2); |
| key_u64s = roundup_pow_of_two(key_u64s); |
| |
| struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s); |
| int ret = PTR_ERR_OR_ZERO(ck); |
| if (ret) |
| return ret; |
| |
| if (unlikely(!ck)) { |
| ck = bkey_cached_reuse(bc); |
| if (unlikely(!ck)) { |
| bch_err(c, "error allocating memory for key cache item, btree %s", |
| bch2_btree_id_str(path->btree_id)); |
| return -BCH_ERR_ENOMEM_btree_key_cache_create; |
| } |
| } |
| |
| ck->c.level = 0; |
| ck->c.btree_id = path->btree_id; |
| ck->key.btree_id = path->btree_id; |
| ck->key.pos = path->pos; |
| ck->flags = 1U << BKEY_CACHED_ACCESSED; |
| |
| if (unlikely(key_u64s > ck->u64s)) { |
| mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); |
| |
| struct bkey_i *new_k = allocate_dropping_locks(trans, ret, |
| kmalloc(key_u64s * sizeof(u64), _gfp)); |
| if (unlikely(!new_k)) { |
| bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", |
| bch2_btree_id_str(ck->key.btree_id), key_u64s); |
| ret = -BCH_ERR_ENOMEM_btree_key_cache_fill; |
| } else if (ret) { |
| kfree(new_k); |
| goto err; |
| } |
| |
| kfree(ck->k); |
| ck->k = new_k; |
| ck->u64s = key_u64s; |
| } |
| |
| bkey_reassemble(ck->k, k); |
| |
| ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params); |
| if (unlikely(ret)) /* raced with another fill? */ |
| goto err; |
| |
| atomic_long_inc(&bc->nr_keys); |
| six_unlock_write(&ck->c.lock); |
| |
| enum six_lock_type lock_want = __btree_lock_want(path, 0); |
| if (lock_want == SIX_LOCK_read) |
| six_lock_downgrade(&ck->c.lock); |
| btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); |
| path->uptodate = BTREE_ITER_UPTODATE; |
| return 0; |
| err: |
| bkey_cached_free_fast(bc, ck); |
| mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); |
| |
| return ret; |
| } |
| |
| static noinline int btree_key_cache_fill(struct btree_trans *trans, |
| struct btree_path *ck_path, |
| unsigned flags) |
| { |
| if (flags & BTREE_ITER_cached_nofill) { |
| ck_path->uptodate = BTREE_ITER_UPTODATE; |
| return 0; |
| } |
| |
| struct bch_fs *c = trans->c; |
| struct btree_iter iter; |
| struct bkey_s_c k; |
| int ret; |
| |
| bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos, |
| BTREE_ITER_key_cache_fill| |
| BTREE_ITER_cached_nofill); |
| iter.flags &= ~BTREE_ITER_with_journal; |
| k = bch2_btree_iter_peek_slot(&iter); |
| ret = bkey_err(k); |
| if (ret) |
| goto err; |
| |
| /* Recheck after btree lookup, before allocating: */ |
| ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0; |
| if (unlikely(ret)) |
| goto out; |
| |
| ret = btree_key_cache_create(trans, ck_path, k); |
| if (ret) |
| goto err; |
| out: |
| /* We're not likely to need this iterator again: */ |
| bch2_set_btree_iter_dontneed(&iter); |
| err: |
| bch2_trans_iter_exit(trans, &iter); |
| return ret; |
| } |
| |
| static inline int btree_path_traverse_cached_fast(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_cached *ck; |
| retry: |
| ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); |
| if (!ck) |
| return -ENOENT; |
| |
| enum six_lock_type lock_want = __btree_lock_want(path, 0); |
| |
| int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_); |
| if (ret) |
| return ret; |
| |
| if (ck->key.btree_id != path->btree_id || |
| !bpos_eq(ck->key.pos, path->pos)) { |
| six_unlock_type(&ck->c.lock, lock_want); |
| goto retry; |
| } |
| |
| if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) |
| set_bit(BKEY_CACHED_ACCESSED, &ck->flags); |
| |
| btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want); |
| path->uptodate = BTREE_ITER_UPTODATE; |
| return 0; |
| } |
| |
| int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, |
| unsigned flags) |
| { |
| EBUG_ON(path->level); |
| |
| path->l[1].b = NULL; |
| |
| int ret; |
| do { |
| ret = btree_path_traverse_cached_fast(trans, path); |
| if (unlikely(ret == -ENOENT)) |
| ret = btree_key_cache_fill(trans, path, flags); |
| } while (ret == -EEXIST); |
| |
| if (unlikely(ret)) { |
| path->uptodate = BTREE_ITER_NEED_TRAVERSE; |
| if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) { |
| btree_node_unlock(trans, path, 0); |
| path->l[0].b = ERR_PTR(ret); |
| } |
| } |
| return ret; |
| } |
| |
| static int btree_key_cache_flush_pos(struct btree_trans *trans, |
| struct bkey_cached_key key, |
| u64 journal_seq, |
| unsigned commit_flags, |
| bool evict) |
| { |
| struct bch_fs *c = trans->c; |
| struct journal *j = &c->journal; |
| struct btree_iter c_iter, b_iter; |
| struct bkey_cached *ck = NULL; |
| int ret; |
| |
| bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, |
| BTREE_ITER_slots| |
| BTREE_ITER_intent| |
| BTREE_ITER_all_snapshots); |
| bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, |
| BTREE_ITER_cached| |
| BTREE_ITER_intent); |
| b_iter.flags &= ~BTREE_ITER_with_key_cache; |
| |
| ret = bch2_btree_iter_traverse(&c_iter); |
| if (ret) |
| goto out; |
| |
| ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b; |
| if (!ck) |
| goto out; |
| |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| if (evict) |
| goto evict; |
| goto out; |
| } |
| |
| if (journal_seq && ck->journal.seq != journal_seq) |
| goto out; |
| |
| trans->journal_res.seq = ck->journal.seq; |
| |
| /* |
| * If we're at the end of the journal, we really want to free up space |
| * in the journal right away - we don't want to pin that old journal |
| * sequence number with a new btree node write, we want to re-journal |
| * the update |
| */ |
| if (ck->journal.seq == journal_last_seq(j)) |
| commit_flags |= BCH_WATERMARK_reclaim; |
| |
| if (ck->journal.seq != journal_last_seq(j) || |
| !test_bit(JOURNAL_space_low, &c->journal.flags)) |
| commit_flags |= BCH_TRANS_COMMIT_no_journal_res; |
| |
| ret = bch2_btree_iter_traverse(&b_iter) ?: |
| bch2_trans_update(trans, &b_iter, ck->k, |
| BTREE_UPDATE_key_cache_reclaim| |
| BTREE_UPDATE_internal_snapshot_node| |
| BTREE_TRIGGER_norun) ?: |
| bch2_trans_commit(trans, NULL, NULL, |
| BCH_TRANS_COMMIT_no_check_rw| |
| BCH_TRANS_COMMIT_no_enospc| |
| commit_flags); |
| |
| bch2_fs_fatal_err_on(ret && |
| !bch2_err_matches(ret, BCH_ERR_transaction_restart) && |
| !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) && |
| !bch2_journal_error(j), c, |
| "flushing key cache: %s", bch2_err_str(ret)); |
| if (ret) |
| goto out; |
| |
| bch2_journal_pin_drop(j, &ck->journal); |
| |
| struct btree_path *path = btree_iter_path(trans, &c_iter); |
| BUG_ON(!btree_node_locked(path, 0)); |
| |
| if (!evict) { |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| clear_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_dec(&c->btree_key_cache.nr_dirty); |
| } |
| } else { |
| struct btree_path *path2; |
| unsigned i; |
| evict: |
| trans_for_each_path(trans, path2, i) |
| if (path2 != path) |
| __bch2_btree_path_unlock(trans, path2); |
| |
| bch2_btree_node_lock_write_nofail(trans, path, &ck->c); |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| clear_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_dec(&c->btree_key_cache.nr_dirty); |
| } |
| |
| mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED); |
| bkey_cached_evict(&c->btree_key_cache, ck); |
| bkey_cached_free_fast(&c->btree_key_cache, ck); |
| } |
| out: |
| bch2_trans_iter_exit(trans, &b_iter); |
| bch2_trans_iter_exit(trans, &c_iter); |
| return ret; |
| } |
| |
| int bch2_btree_key_cache_journal_flush(struct journal *j, |
| struct journal_entry_pin *pin, u64 seq) |
| { |
| struct bch_fs *c = container_of(j, struct bch_fs, journal); |
| struct bkey_cached *ck = |
| container_of(pin, struct bkey_cached, journal); |
| struct bkey_cached_key key; |
| struct btree_trans *trans = bch2_trans_get(c); |
| int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); |
| int ret = 0; |
| |
| btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read); |
| key = ck->key; |
| |
| if (ck->journal.seq != seq || |
| !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| six_unlock_read(&ck->c.lock); |
| goto unlock; |
| } |
| |
| if (ck->seq != seq) { |
| bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, |
| bch2_btree_key_cache_journal_flush); |
| six_unlock_read(&ck->c.lock); |
| goto unlock; |
| } |
| six_unlock_read(&ck->c.lock); |
| |
| ret = lockrestart_do(trans, |
| btree_key_cache_flush_pos(trans, key, seq, |
| BCH_TRANS_COMMIT_journal_reclaim, false)); |
| unlock: |
| srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); |
| |
| bch2_trans_put(trans); |
| return ret; |
| } |
| |
| bool bch2_btree_insert_key_cached(struct btree_trans *trans, |
| unsigned flags, |
| struct btree_insert_entry *insert_entry) |
| { |
| struct bch_fs *c = trans->c; |
| struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b; |
| struct bkey_i *insert = insert_entry->k; |
| bool kick_reclaim = false; |
| |
| BUG_ON(insert->k.u64s > ck->u64s); |
| |
| bkey_copy(ck->k, insert); |
| |
| if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags)); |
| set_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_inc(&c->btree_key_cache.nr_dirty); |
| |
| if (bch2_nr_btree_keys_need_flush(c)) |
| kick_reclaim = true; |
| } |
| |
| /* |
| * To minimize lock contention, we only add the journal pin here and |
| * defer pin updates to the flush callback via ->seq. Be careful not to |
| * update ->seq on nojournal commits because we don't want to update the |
| * pin to a seq that doesn't include journal updates on disk. Otherwise |
| * we risk losing the update after a crash. |
| * |
| * The only exception is if the pin is not active in the first place. We |
| * have to add the pin because journal reclaim drives key cache |
| * flushing. The flush callback will not proceed unless ->seq matches |
| * the latest pin, so make sure it starts with a consistent value. |
| */ |
| if (!(insert_entry->flags & BTREE_UPDATE_nojournal) || |
| !journal_pin_active(&ck->journal)) { |
| ck->seq = trans->journal_res.seq; |
| } |
| bch2_journal_pin_add(&c->journal, trans->journal_res.seq, |
| &ck->journal, bch2_btree_key_cache_journal_flush); |
| |
| if (kick_reclaim) |
| journal_reclaim_kick(&c->journal); |
| return true; |
| } |
| |
| void bch2_btree_key_cache_drop(struct btree_trans *trans, |
| struct btree_path *path) |
| { |
| struct bch_fs *c = trans->c; |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| struct bkey_cached *ck = (void *) path->l[0].b; |
| |
| /* |
| * We just did an update to the btree, bypassing the key cache: the key |
| * cache key is now stale and must be dropped, even if dirty: |
| */ |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| clear_bit(BKEY_CACHED_DIRTY, &ck->flags); |
| atomic_long_dec(&c->btree_key_cache.nr_dirty); |
| bch2_journal_pin_drop(&c->journal, &ck->journal); |
| } |
| |
| bkey_cached_evict(bc, ck); |
| bkey_cached_free_fast(bc, ck); |
| |
| mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED); |
| btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); |
| path->should_be_locked = false; |
| } |
| |
| static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = shrink->private_data; |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| struct bucket_table *tbl; |
| struct bkey_cached *ck, *t; |
| size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; |
| unsigned start, flags; |
| int srcu_idx; |
| |
| mutex_lock(&bc->lock); |
| bc->requested_to_free += sc->nr_to_scan; |
| |
| srcu_idx = srcu_read_lock(&c->btree_trans_barrier); |
| flags = memalloc_nofs_save(); |
| |
| /* |
| * Newest freed entries are at the end of the list - once we hit one |
| * that's too new to be freed, we can bail out: |
| */ |
| list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) { |
| if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, |
| ck->btree_trans_barrier_seq)) |
| break; |
| |
| list_del(&ck->list); |
| six_lock_exit(&ck->c.lock); |
| kmem_cache_free(bch2_key_cache, ck); |
| atomic_long_dec(&bc->nr_freed); |
| bc->nr_freed_nonpcpu--; |
| bc->freed++; |
| } |
| |
| list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) { |
| if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, |
| ck->btree_trans_barrier_seq)) |
| break; |
| |
| list_del(&ck->list); |
| six_lock_exit(&ck->c.lock); |
| kmem_cache_free(bch2_key_cache, ck); |
| atomic_long_dec(&bc->nr_freed); |
| bc->nr_freed_pcpu--; |
| bc->freed++; |
| } |
| |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); |
| |
| /* |
| * Scanning is expensive while a rehash is in progress - most elements |
| * will be on the new hashtable, if it's in progress |
| * |
| * A rehash could still start while we're scanning - that's ok, we'll |
| * still see most elements. |
| */ |
| if (unlikely(tbl->nest)) { |
| rcu_read_unlock(); |
| srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); |
| return SHRINK_STOP; |
| } |
| |
| if (bc->shrink_iter >= tbl->size) |
| bc->shrink_iter = 0; |
| start = bc->shrink_iter; |
| |
| do { |
| struct rhash_head *pos, *next; |
| |
| pos = rht_ptr_rcu(&tbl->buckets[bc->shrink_iter]); |
| |
| while (!rht_is_a_nulls(pos)) { |
| next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter); |
| ck = container_of(pos, struct bkey_cached, hash); |
| |
| if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { |
| bc->skipped_dirty++; |
| } else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) { |
| clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); |
| bc->skipped_accessed++; |
| } else if (!bkey_cached_lock_for_evict(ck)) { |
| bc->skipped_lock_fail++; |
| } else { |
| bkey_cached_evict(bc, ck); |
| bkey_cached_free(bc, ck); |
| bc->moved_to_freelist++; |
| freed++; |
| } |
| |
| scanned++; |
| if (scanned >= nr) |
| break; |
| |
| pos = next; |
| } |
| |
| bc->shrink_iter++; |
| if (bc->shrink_iter >= tbl->size) |
| bc->shrink_iter = 0; |
| } while (scanned < nr && bc->shrink_iter != start); |
| |
| rcu_read_unlock(); |
| memalloc_nofs_restore(flags); |
| srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); |
| mutex_unlock(&bc->lock); |
| |
| return freed; |
| } |
| |
| static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, |
| struct shrink_control *sc) |
| { |
| struct bch_fs *c = shrink->private_data; |
| struct btree_key_cache *bc = &c->btree_key_cache; |
| long nr = atomic_long_read(&bc->nr_keys) - |
| atomic_long_read(&bc->nr_dirty); |
| |
| /* |
| * Avoid hammering our shrinker too much if it's nearly empty - the |
| * shrinker code doesn't take into account how big our cache is, if it's |
| * mostly empty but the system is under memory pressure it causes nasty |
| * lock contention: |
| */ |
| nr -= 128; |
| |
| return max(0L, nr); |
| } |
| |
| void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| struct bucket_table *tbl; |
| struct bkey_cached *ck, *n; |
| struct rhash_head *pos; |
| LIST_HEAD(items); |
| unsigned i; |
| #ifdef __KERNEL__ |
| int cpu; |
| #endif |
| |
| shrinker_free(bc->shrink); |
| |
| mutex_lock(&bc->lock); |
| |
| /* |
| * The loop is needed to guard against racing with rehash: |
| */ |
| while (atomic_long_read(&bc->nr_keys)) { |
| rcu_read_lock(); |
| tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); |
| if (tbl) { |
| if (tbl->nest) { |
| /* wait for in progress rehash */ |
| rcu_read_unlock(); |
| mutex_lock(&bc->table.mutex); |
| mutex_unlock(&bc->table.mutex); |
| rcu_read_lock(); |
| continue; |
| } |
| for (i = 0; i < tbl->size; i++) |
| while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) { |
| ck = container_of(pos, struct bkey_cached, hash); |
| bkey_cached_evict(bc, ck); |
| list_add(&ck->list, &items); |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| #ifdef __KERNEL__ |
| if (bc->pcpu_freed) { |
| for_each_possible_cpu(cpu) { |
| struct btree_key_cache_freelist *f = |
| per_cpu_ptr(bc->pcpu_freed, cpu); |
| |
| for (i = 0; i < f->nr; i++) { |
| ck = f->objs[i]; |
| list_add(&ck->list, &items); |
| } |
| } |
| } |
| #endif |
| |
| BUG_ON(list_count_nodes(&bc->freed_pcpu) != bc->nr_freed_pcpu); |
| BUG_ON(list_count_nodes(&bc->freed_nonpcpu) != bc->nr_freed_nonpcpu); |
| |
| list_splice(&bc->freed_pcpu, &items); |
| list_splice(&bc->freed_nonpcpu, &items); |
| |
| mutex_unlock(&bc->lock); |
| |
| list_for_each_entry_safe(ck, n, &items, list) { |
| cond_resched(); |
| |
| list_del(&ck->list); |
| kfree(ck->k); |
| six_lock_exit(&ck->c.lock); |
| kmem_cache_free(bch2_key_cache, ck); |
| } |
| |
| if (atomic_long_read(&bc->nr_dirty) && |
| !bch2_journal_error(&c->journal) && |
| test_bit(BCH_FS_was_rw, &c->flags)) |
| panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n", |
| atomic_long_read(&bc->nr_dirty)); |
| |
| if (atomic_long_read(&bc->nr_keys)) |
| panic("btree key cache shutdown error: nr_keys nonzero (%li)\n", |
| atomic_long_read(&bc->nr_keys)); |
| |
| if (bc->table_init_done) |
| rhashtable_destroy(&bc->table); |
| |
| free_percpu(bc->pcpu_freed); |
| } |
| |
| void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) |
| { |
| mutex_init(&c->lock); |
| INIT_LIST_HEAD(&c->freed_pcpu); |
| INIT_LIST_HEAD(&c->freed_nonpcpu); |
| } |
| |
| int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| struct shrinker *shrink; |
| |
| #ifdef __KERNEL__ |
| bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist); |
| if (!bc->pcpu_freed) |
| return -BCH_ERR_ENOMEM_fs_btree_cache_init; |
| #endif |
| |
| if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params)) |
| return -BCH_ERR_ENOMEM_fs_btree_cache_init; |
| |
| bc->table_init_done = true; |
| |
| shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name); |
| if (!shrink) |
| return -BCH_ERR_ENOMEM_fs_btree_cache_init; |
| bc->shrink = shrink; |
| shrink->count_objects = bch2_btree_key_cache_count; |
| shrink->scan_objects = bch2_btree_key_cache_scan; |
| shrink->batch = 1 << 14; |
| shrink->seeks = 0; |
| shrink->private_data = c; |
| shrinker_register(shrink); |
| return 0; |
| } |
| |
| void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc) |
| { |
| struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); |
| |
| printbuf_tabstop_push(out, 24); |
| printbuf_tabstop_push(out, 12); |
| |
| unsigned flags = memalloc_nofs_save(); |
| mutex_lock(&bc->lock); |
| prt_printf(out, "keys:\t%lu\r\n", atomic_long_read(&bc->nr_keys)); |
| prt_printf(out, "dirty:\t%lu\r\n", atomic_long_read(&bc->nr_dirty)); |
| prt_printf(out, "freelist:\t%lu\r\n", atomic_long_read(&bc->nr_freed)); |
| prt_printf(out, "nonpcpu freelist:\t%zu\r\n", bc->nr_freed_nonpcpu); |
| prt_printf(out, "pcpu freelist:\t%zu\r\n", bc->nr_freed_pcpu); |
| |
| prt_printf(out, "\nshrinker:\n"); |
| prt_printf(out, "requested_to_free:\t%lu\r\n", bc->requested_to_free); |
| prt_printf(out, "freed:\t%lu\r\n", bc->freed); |
| prt_printf(out, "moved_to_freelist:\t%lu\r\n", bc->moved_to_freelist); |
| prt_printf(out, "skipped_dirty:\t%lu\r\n", bc->skipped_dirty); |
| prt_printf(out, "skipped_accessed:\t%lu\r\n", bc->skipped_accessed); |
| prt_printf(out, "skipped_lock_fail:\t%lu\r\n", bc->skipped_lock_fail); |
| |
| prt_printf(out, "srcu seq:\t%lu\r\n", get_state_synchronize_srcu(&c->btree_trans_barrier)); |
| |
| struct bkey_cached *ck; |
| unsigned iter = 0; |
| list_for_each_entry(ck, &bc->freed_nonpcpu, list) { |
| prt_printf(out, "freed_nonpcpu:\t%lu\r\n", ck->btree_trans_barrier_seq); |
| if (++iter > 10) |
| break; |
| } |
| |
| iter = 0; |
| list_for_each_entry(ck, &bc->freed_pcpu, list) { |
| prt_printf(out, "freed_pcpu:\t%lu\r\n", ck->btree_trans_barrier_seq); |
| if (++iter > 10) |
| break; |
| } |
| mutex_unlock(&bc->lock); |
| memalloc_flags_restore(flags); |
| } |
| |
| void bch2_btree_key_cache_exit(void) |
| { |
| kmem_cache_destroy(bch2_key_cache); |
| } |
| |
| int __init bch2_btree_key_cache_init(void) |
| { |
| bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT); |
| if (!bch2_key_cache) |
| return -ENOMEM; |
| |
| return 0; |
| } |