| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Driver for Silicon Labs Si5340, Si5341, Si5342, Si5344 and Si5345 |
| * Copyright (C) 2019 Topic Embedded Products |
| * Author: Mike Looijmans <mike.looijmans@topic.nl> |
| * |
| * The Si5341 has 10 outputs and 5 synthesizers. |
| * The Si5340 is a smaller version of the Si5341 with only 4 outputs. |
| * The Si5345 is similar to the Si5341, with the addition of fractional input |
| * dividers and automatic input selection. |
| * The Si5342 and Si5344 are smaller versions of the Si5345. |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/clk-provider.h> |
| #include <linux/delay.h> |
| #include <linux/gcd.h> |
| #include <linux/math64.h> |
| #include <linux/i2c.h> |
| #include <linux/module.h> |
| #include <linux/regmap.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| |
| #define SI5341_NUM_INPUTS 4 |
| |
| #define SI5340_MAX_NUM_OUTPUTS 4 |
| #define SI5341_MAX_NUM_OUTPUTS 10 |
| #define SI5342_MAX_NUM_OUTPUTS 2 |
| #define SI5344_MAX_NUM_OUTPUTS 4 |
| #define SI5345_MAX_NUM_OUTPUTS 10 |
| |
| #define SI5340_NUM_SYNTH 4 |
| #define SI5341_NUM_SYNTH 5 |
| #define SI5342_NUM_SYNTH 2 |
| #define SI5344_NUM_SYNTH 4 |
| #define SI5345_NUM_SYNTH 5 |
| |
| /* Range of the synthesizer fractional divider */ |
| #define SI5341_SYNTH_N_MIN 10 |
| #define SI5341_SYNTH_N_MAX 4095 |
| |
| /* The chip can get its input clock from 3 input pins or an XTAL */ |
| |
| /* There is one PLL running at 13500–14256 MHz */ |
| #define SI5341_PLL_VCO_MIN 13500000000ull |
| #define SI5341_PLL_VCO_MAX 14256000000ull |
| |
| /* The 5 frequency synthesizers obtain their input from the PLL */ |
| struct clk_si5341_synth { |
| struct clk_hw hw; |
| struct clk_si5341 *data; |
| u8 index; |
| }; |
| #define to_clk_si5341_synth(_hw) \ |
| container_of(_hw, struct clk_si5341_synth, hw) |
| |
| /* The output stages can be connected to any synth (full mux) */ |
| struct clk_si5341_output { |
| struct clk_hw hw; |
| struct clk_si5341 *data; |
| u8 index; |
| }; |
| #define to_clk_si5341_output(_hw) \ |
| container_of(_hw, struct clk_si5341_output, hw) |
| |
| struct clk_si5341 { |
| struct clk_hw hw; |
| struct regmap *regmap; |
| struct i2c_client *i2c_client; |
| struct clk_si5341_synth synth[SI5341_NUM_SYNTH]; |
| struct clk_si5341_output clk[SI5341_MAX_NUM_OUTPUTS]; |
| struct clk *input_clk[SI5341_NUM_INPUTS]; |
| const char *input_clk_name[SI5341_NUM_INPUTS]; |
| const u16 *reg_output_offset; |
| const u16 *reg_rdiv_offset; |
| u64 freq_vco; /* 13500–14256 MHz */ |
| u8 num_outputs; |
| u8 num_synth; |
| u16 chip_id; |
| }; |
| #define to_clk_si5341(_hw) container_of(_hw, struct clk_si5341, hw) |
| |
| struct clk_si5341_output_config { |
| u8 out_format_drv_bits; |
| u8 out_cm_ampl_bits; |
| bool synth_master; |
| bool always_on; |
| }; |
| |
| #define SI5341_PAGE 0x0001 |
| #define SI5341_PN_BASE 0x0002 |
| #define SI5341_DEVICE_REV 0x0005 |
| #define SI5341_STATUS 0x000C |
| #define SI5341_SOFT_RST 0x001C |
| #define SI5341_IN_SEL 0x0021 |
| #define SI5341_XAXB_CFG 0x090E |
| #define SI5341_IN_EN 0x0949 |
| #define SI5341_INX_TO_PFD_EN 0x094A |
| |
| /* Input selection */ |
| #define SI5341_IN_SEL_MASK 0x06 |
| #define SI5341_IN_SEL_SHIFT 1 |
| #define SI5341_IN_SEL_REGCTRL 0x01 |
| #define SI5341_INX_TO_PFD_SHIFT 4 |
| |
| /* XTAL config bits */ |
| #define SI5341_XAXB_CFG_EXTCLK_EN BIT(0) |
| #define SI5341_XAXB_CFG_PDNB BIT(1) |
| |
| /* Input dividers (48-bit) */ |
| #define SI5341_IN_PDIV(x) (0x0208 + ((x) * 10)) |
| #define SI5341_IN_PSET(x) (0x020E + ((x) * 10)) |
| #define SI5341_PX_UPD 0x0230 |
| |
| /* PLL configuration */ |
| #define SI5341_PLL_M_NUM 0x0235 |
| #define SI5341_PLL_M_DEN 0x023B |
| |
| /* Output configuration */ |
| #define SI5341_OUT_CONFIG(output) \ |
| ((output)->data->reg_output_offset[(output)->index]) |
| #define SI5341_OUT_FORMAT(output) (SI5341_OUT_CONFIG(output) + 1) |
| #define SI5341_OUT_CM(output) (SI5341_OUT_CONFIG(output) + 2) |
| #define SI5341_OUT_MUX_SEL(output) (SI5341_OUT_CONFIG(output) + 3) |
| #define SI5341_OUT_R_REG(output) \ |
| ((output)->data->reg_rdiv_offset[(output)->index]) |
| |
| /* Synthesize N divider */ |
| #define SI5341_SYNTH_N_NUM(x) (0x0302 + ((x) * 11)) |
| #define SI5341_SYNTH_N_DEN(x) (0x0308 + ((x) * 11)) |
| #define SI5341_SYNTH_N_UPD(x) (0x030C + ((x) * 11)) |
| |
| /* Synthesizer output enable, phase bypass, power mode */ |
| #define SI5341_SYNTH_N_CLK_TO_OUTX_EN 0x0A03 |
| #define SI5341_SYNTH_N_PIBYP 0x0A04 |
| #define SI5341_SYNTH_N_PDNB 0x0A05 |
| #define SI5341_SYNTH_N_CLK_DIS 0x0B4A |
| |
| #define SI5341_REGISTER_MAX 0xBFF |
| |
| /* SI5341_OUT_CONFIG bits */ |
| #define SI5341_OUT_CFG_PDN BIT(0) |
| #define SI5341_OUT_CFG_OE BIT(1) |
| #define SI5341_OUT_CFG_RDIV_FORCE2 BIT(2) |
| |
| /* Static configuration (to be moved to firmware) */ |
| struct si5341_reg_default { |
| u16 address; |
| u8 value; |
| }; |
| |
| static const char * const si5341_input_clock_names[] = { |
| "in0", "in1", "in2", "xtal" |
| }; |
| |
| /* Output configuration registers 0..9 are not quite logically organized */ |
| /* Also for si5345 */ |
| static const u16 si5341_reg_output_offset[] = { |
| 0x0108, |
| 0x010D, |
| 0x0112, |
| 0x0117, |
| 0x011C, |
| 0x0121, |
| 0x0126, |
| 0x012B, |
| 0x0130, |
| 0x013A, |
| }; |
| |
| /* for si5340, si5342 and si5344 */ |
| static const u16 si5340_reg_output_offset[] = { |
| 0x0112, |
| 0x0117, |
| 0x0126, |
| 0x012B, |
| }; |
| |
| /* The location of the R divider registers */ |
| static const u16 si5341_reg_rdiv_offset[] = { |
| 0x024A, |
| 0x024D, |
| 0x0250, |
| 0x0253, |
| 0x0256, |
| 0x0259, |
| 0x025C, |
| 0x025F, |
| 0x0262, |
| 0x0268, |
| }; |
| static const u16 si5340_reg_rdiv_offset[] = { |
| 0x0250, |
| 0x0253, |
| 0x025C, |
| 0x025F, |
| }; |
| |
| /* |
| * Programming sequence from ClockBuilder, settings to initialize the system |
| * using only the XTAL input, without pre-divider. |
| * This also contains settings that aren't mentioned anywhere in the datasheet. |
| * The "known" settings like synth and output configuration are done later. |
| */ |
| static const struct si5341_reg_default si5341_reg_defaults[] = { |
| { 0x0017, 0x3A }, /* INT mask (disable interrupts) */ |
| { 0x0018, 0xFF }, /* INT mask */ |
| { 0x0021, 0x0F }, /* Select XTAL as input */ |
| { 0x0022, 0x00 }, /* Not in datasheet */ |
| { 0x002B, 0x02 }, /* SPI config */ |
| { 0x002C, 0x20 }, /* LOS enable for XTAL */ |
| { 0x002D, 0x00 }, /* LOS timing */ |
| { 0x002E, 0x00 }, |
| { 0x002F, 0x00 }, |
| { 0x0030, 0x00 }, |
| { 0x0031, 0x00 }, |
| { 0x0032, 0x00 }, |
| { 0x0033, 0x00 }, |
| { 0x0034, 0x00 }, |
| { 0x0035, 0x00 }, |
| { 0x0036, 0x00 }, |
| { 0x0037, 0x00 }, |
| { 0x0038, 0x00 }, /* LOS setting (thresholds) */ |
| { 0x0039, 0x00 }, |
| { 0x003A, 0x00 }, |
| { 0x003B, 0x00 }, |
| { 0x003C, 0x00 }, |
| { 0x003D, 0x00 }, /* LOS setting (thresholds) end */ |
| { 0x0041, 0x00 }, /* LOS0_DIV_SEL */ |
| { 0x0042, 0x00 }, /* LOS1_DIV_SEL */ |
| { 0x0043, 0x00 }, /* LOS2_DIV_SEL */ |
| { 0x0044, 0x00 }, /* LOS3_DIV_SEL */ |
| { 0x009E, 0x00 }, /* Not in datasheet */ |
| { 0x0102, 0x01 }, /* Enable outputs */ |
| { 0x013F, 0x00 }, /* Not in datasheet */ |
| { 0x0140, 0x00 }, /* Not in datasheet */ |
| { 0x0141, 0x40 }, /* OUT LOS */ |
| { 0x0202, 0x00 }, /* XAXB_FREQ_OFFSET (=0)*/ |
| { 0x0203, 0x00 }, |
| { 0x0204, 0x00 }, |
| { 0x0205, 0x00 }, |
| { 0x0206, 0x00 }, /* PXAXB (2^x) */ |
| { 0x0208, 0x00 }, /* Px divider setting (usually 0) */ |
| { 0x0209, 0x00 }, |
| { 0x020A, 0x00 }, |
| { 0x020B, 0x00 }, |
| { 0x020C, 0x00 }, |
| { 0x020D, 0x00 }, |
| { 0x020E, 0x00 }, |
| { 0x020F, 0x00 }, |
| { 0x0210, 0x00 }, |
| { 0x0211, 0x00 }, |
| { 0x0212, 0x00 }, |
| { 0x0213, 0x00 }, |
| { 0x0214, 0x00 }, |
| { 0x0215, 0x00 }, |
| { 0x0216, 0x00 }, |
| { 0x0217, 0x00 }, |
| { 0x0218, 0x00 }, |
| { 0x0219, 0x00 }, |
| { 0x021A, 0x00 }, |
| { 0x021B, 0x00 }, |
| { 0x021C, 0x00 }, |
| { 0x021D, 0x00 }, |
| { 0x021E, 0x00 }, |
| { 0x021F, 0x00 }, |
| { 0x0220, 0x00 }, |
| { 0x0221, 0x00 }, |
| { 0x0222, 0x00 }, |
| { 0x0223, 0x00 }, |
| { 0x0224, 0x00 }, |
| { 0x0225, 0x00 }, |
| { 0x0226, 0x00 }, |
| { 0x0227, 0x00 }, |
| { 0x0228, 0x00 }, |
| { 0x0229, 0x00 }, |
| { 0x022A, 0x00 }, |
| { 0x022B, 0x00 }, |
| { 0x022C, 0x00 }, |
| { 0x022D, 0x00 }, |
| { 0x022E, 0x00 }, |
| { 0x022F, 0x00 }, /* Px divider setting (usually 0) end */ |
| { 0x026B, 0x00 }, /* DESIGN_ID (ASCII string) */ |
| { 0x026C, 0x00 }, |
| { 0x026D, 0x00 }, |
| { 0x026E, 0x00 }, |
| { 0x026F, 0x00 }, |
| { 0x0270, 0x00 }, |
| { 0x0271, 0x00 }, |
| { 0x0272, 0x00 }, /* DESIGN_ID (ASCII string) end */ |
| { 0x0339, 0x1F }, /* N_FSTEP_MSK */ |
| { 0x033B, 0x00 }, /* Nx_FSTEPW (Frequency step) */ |
| { 0x033C, 0x00 }, |
| { 0x033D, 0x00 }, |
| { 0x033E, 0x00 }, |
| { 0x033F, 0x00 }, |
| { 0x0340, 0x00 }, |
| { 0x0341, 0x00 }, |
| { 0x0342, 0x00 }, |
| { 0x0343, 0x00 }, |
| { 0x0344, 0x00 }, |
| { 0x0345, 0x00 }, |
| { 0x0346, 0x00 }, |
| { 0x0347, 0x00 }, |
| { 0x0348, 0x00 }, |
| { 0x0349, 0x00 }, |
| { 0x034A, 0x00 }, |
| { 0x034B, 0x00 }, |
| { 0x034C, 0x00 }, |
| { 0x034D, 0x00 }, |
| { 0x034E, 0x00 }, |
| { 0x034F, 0x00 }, |
| { 0x0350, 0x00 }, |
| { 0x0351, 0x00 }, |
| { 0x0352, 0x00 }, |
| { 0x0353, 0x00 }, |
| { 0x0354, 0x00 }, |
| { 0x0355, 0x00 }, |
| { 0x0356, 0x00 }, |
| { 0x0357, 0x00 }, |
| { 0x0358, 0x00 }, /* Nx_FSTEPW (Frequency step) end */ |
| { 0x0359, 0x00 }, /* Nx_DELAY */ |
| { 0x035A, 0x00 }, |
| { 0x035B, 0x00 }, |
| { 0x035C, 0x00 }, |
| { 0x035D, 0x00 }, |
| { 0x035E, 0x00 }, |
| { 0x035F, 0x00 }, |
| { 0x0360, 0x00 }, |
| { 0x0361, 0x00 }, |
| { 0x0362, 0x00 }, /* Nx_DELAY end */ |
| { 0x0802, 0x00 }, /* Not in datasheet */ |
| { 0x0803, 0x00 }, /* Not in datasheet */ |
| { 0x0804, 0x00 }, /* Not in datasheet */ |
| { 0x090E, 0x02 }, /* XAXB_EXTCLK_EN=0 XAXB_PDNB=1 (use XTAL) */ |
| { 0x091C, 0x04 }, /* ZDM_EN=4 (Normal mode) */ |
| { 0x0943, 0x00 }, /* IO_VDD_SEL=0 (0=1v8, use 1=3v3) */ |
| { 0x0949, 0x00 }, /* IN_EN (disable input clocks) */ |
| { 0x094A, 0x00 }, /* INx_TO_PFD_EN (disabled) */ |
| { 0x0A02, 0x00 }, /* Not in datasheet */ |
| { 0x0B44, 0x0F }, /* PDIV_ENB (datasheet does not mention what it is) */ |
| }; |
| |
| /* Read and interpret a 44-bit followed by a 32-bit value in the regmap */ |
| static int si5341_decode_44_32(struct regmap *regmap, unsigned int reg, |
| u64 *val1, u32 *val2) |
| { |
| int err; |
| u8 r[10]; |
| |
| err = regmap_bulk_read(regmap, reg, r, 10); |
| if (err < 0) |
| return err; |
| |
| *val1 = ((u64)((r[5] & 0x0f) << 8 | r[4]) << 32) | |
| (get_unaligned_le32(r)); |
| *val2 = get_unaligned_le32(&r[6]); |
| |
| return 0; |
| } |
| |
| static int si5341_encode_44_32(struct regmap *regmap, unsigned int reg, |
| u64 n_num, u32 n_den) |
| { |
| u8 r[10]; |
| |
| /* Shift left as far as possible without overflowing */ |
| while (!(n_num & BIT_ULL(43)) && !(n_den & BIT(31))) { |
| n_num <<= 1; |
| n_den <<= 1; |
| } |
| |
| /* 44 bits (6 bytes) numerator */ |
| put_unaligned_le32(n_num, r); |
| r[4] = (n_num >> 32) & 0xff; |
| r[5] = (n_num >> 40) & 0x0f; |
| /* 32 bits denominator */ |
| put_unaligned_le32(n_den, &r[6]); |
| |
| /* Program the fraction */ |
| return regmap_bulk_write(regmap, reg, r, sizeof(r)); |
| } |
| |
| /* VCO, we assume it runs at a constant frequency */ |
| static unsigned long si5341_clk_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_si5341 *data = to_clk_si5341(hw); |
| int err; |
| u64 res; |
| u64 m_num; |
| u32 m_den; |
| unsigned int shift; |
| |
| /* Assume that PDIV is not being used, just read the PLL setting */ |
| err = si5341_decode_44_32(data->regmap, SI5341_PLL_M_NUM, |
| &m_num, &m_den); |
| if (err < 0) |
| return 0; |
| |
| if (!m_num || !m_den) |
| return 0; |
| |
| /* |
| * Though m_num is 64-bit, only the upper bits are actually used. While |
| * calculating m_num and m_den, they are shifted as far as possible to |
| * the left. To avoid 96-bit division here, we just shift them back so |
| * we can do with just 64 bits. |
| */ |
| shift = 0; |
| res = m_num; |
| while (res & 0xffff00000000ULL) { |
| ++shift; |
| res >>= 1; |
| } |
| res *= parent_rate; |
| do_div(res, (m_den >> shift)); |
| |
| /* We cannot return the actual frequency in 32 bit, store it locally */ |
| data->freq_vco = res; |
| |
| /* Report kHz since the value is out of range */ |
| do_div(res, 1000); |
| |
| return (unsigned long)res; |
| } |
| |
| static int si5341_clk_get_selected_input(struct clk_si5341 *data) |
| { |
| int err; |
| u32 val; |
| |
| err = regmap_read(data->regmap, SI5341_IN_SEL, &val); |
| if (err < 0) |
| return err; |
| |
| return (val & SI5341_IN_SEL_MASK) >> SI5341_IN_SEL_SHIFT; |
| } |
| |
| static u8 si5341_clk_get_parent(struct clk_hw *hw) |
| { |
| struct clk_si5341 *data = to_clk_si5341(hw); |
| int res = si5341_clk_get_selected_input(data); |
| |
| if (res < 0) |
| return 0; /* Apparently we cannot report errors */ |
| |
| return res; |
| } |
| |
| static int si5341_clk_reparent(struct clk_si5341 *data, u8 index) |
| { |
| int err; |
| u8 val; |
| |
| val = (index << SI5341_IN_SEL_SHIFT) & SI5341_IN_SEL_MASK; |
| /* Enable register-based input selection */ |
| val |= SI5341_IN_SEL_REGCTRL; |
| |
| err = regmap_update_bits(data->regmap, |
| SI5341_IN_SEL, SI5341_IN_SEL_REGCTRL | SI5341_IN_SEL_MASK, val); |
| if (err < 0) |
| return err; |
| |
| if (index < 3) { |
| /* Enable input buffer for selected input */ |
| err = regmap_update_bits(data->regmap, |
| SI5341_IN_EN, 0x07, BIT(index)); |
| if (err < 0) |
| return err; |
| |
| /* Enables the input to phase detector */ |
| err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, |
| 0x7 << SI5341_INX_TO_PFD_SHIFT, |
| BIT(index + SI5341_INX_TO_PFD_SHIFT)); |
| if (err < 0) |
| return err; |
| |
| /* Power down XTAL oscillator and buffer */ |
| err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, |
| SI5341_XAXB_CFG_PDNB, 0); |
| if (err < 0) |
| return err; |
| |
| /* |
| * Set the P divider to "1". There's no explanation in the |
| * datasheet of these registers, but the clockbuilder software |
| * programs a "1" when the input is being used. |
| */ |
| err = regmap_write(data->regmap, SI5341_IN_PDIV(index), 1); |
| if (err < 0) |
| return err; |
| |
| err = regmap_write(data->regmap, SI5341_IN_PSET(index), 1); |
| if (err < 0) |
| return err; |
| |
| /* Set update PDIV bit */ |
| err = regmap_write(data->regmap, SI5341_PX_UPD, BIT(index)); |
| if (err < 0) |
| return err; |
| } else { |
| /* Disable all input buffers */ |
| err = regmap_update_bits(data->regmap, SI5341_IN_EN, 0x07, 0); |
| if (err < 0) |
| return err; |
| |
| /* Disable input to phase detector */ |
| err = regmap_update_bits(data->regmap, SI5341_INX_TO_PFD_EN, |
| 0x7 << SI5341_INX_TO_PFD_SHIFT, 0); |
| if (err < 0) |
| return err; |
| |
| /* Power up XTAL oscillator and buffer */ |
| err = regmap_update_bits(data->regmap, SI5341_XAXB_CFG, |
| SI5341_XAXB_CFG_PDNB, SI5341_XAXB_CFG_PDNB); |
| if (err < 0) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int si5341_clk_set_parent(struct clk_hw *hw, u8 index) |
| { |
| struct clk_si5341 *data = to_clk_si5341(hw); |
| |
| return si5341_clk_reparent(data, index); |
| } |
| |
| static const struct clk_ops si5341_clk_ops = { |
| .set_parent = si5341_clk_set_parent, |
| .get_parent = si5341_clk_get_parent, |
| .recalc_rate = si5341_clk_recalc_rate, |
| }; |
| |
| /* Synthesizers, there are 5 synthesizers that connect to any of the outputs */ |
| |
| /* The synthesizer is on if all power and enable bits are set */ |
| static int si5341_synth_clk_is_on(struct clk_hw *hw) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| int err; |
| u32 val; |
| u8 index = synth->index; |
| |
| err = regmap_read(synth->data->regmap, |
| SI5341_SYNTH_N_CLK_TO_OUTX_EN, &val); |
| if (err < 0) |
| return 0; |
| |
| if (!(val & BIT(index))) |
| return 0; |
| |
| err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_PDNB, &val); |
| if (err < 0) |
| return 0; |
| |
| if (!(val & BIT(index))) |
| return 0; |
| |
| /* This bit must be 0 for the synthesizer to receive clock input */ |
| err = regmap_read(synth->data->regmap, SI5341_SYNTH_N_CLK_DIS, &val); |
| if (err < 0) |
| return 0; |
| |
| return !(val & BIT(index)); |
| } |
| |
| static void si5341_synth_clk_unprepare(struct clk_hw *hw) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| u8 index = synth->index; /* In range 0..5 */ |
| u8 mask = BIT(index); |
| |
| /* Disable output */ |
| regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, 0); |
| /* Power down */ |
| regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_PDNB, mask, 0); |
| /* Disable clock input to synth (set to 1 to disable) */ |
| regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_CLK_DIS, mask, mask); |
| } |
| |
| static int si5341_synth_clk_prepare(struct clk_hw *hw) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| int err; |
| u8 index = synth->index; |
| u8 mask = BIT(index); |
| |
| /* Power up */ |
| err = regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_PDNB, mask, mask); |
| if (err < 0) |
| return err; |
| |
| /* Enable clock input to synth (set bit to 0 to enable) */ |
| err = regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_CLK_DIS, mask, 0); |
| if (err < 0) |
| return err; |
| |
| /* Enable output */ |
| return regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_CLK_TO_OUTX_EN, mask, mask); |
| } |
| |
| /* Synth clock frequency: Fvco * n_den / n_den, with Fvco in 13500-14256 MHz */ |
| static unsigned long si5341_synth_clk_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| u64 f; |
| u64 n_num; |
| u32 n_den; |
| int err; |
| |
| err = si5341_decode_44_32(synth->data->regmap, |
| SI5341_SYNTH_N_NUM(synth->index), &n_num, &n_den); |
| if (err < 0) |
| return err; |
| |
| /* |
| * n_num and n_den are shifted left as much as possible, so to prevent |
| * overflow in 64-bit math, we shift n_den 4 bits to the right |
| */ |
| f = synth->data->freq_vco; |
| f *= n_den >> 4; |
| |
| /* Now we need to to 64-bit division: f/n_num */ |
| /* And compensate for the 4 bits we dropped */ |
| f = div64_u64(f, (n_num >> 4)); |
| |
| return f; |
| } |
| |
| static long si5341_synth_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| u64 f; |
| |
| /* The synthesizer accuracy is such that anything in range will work */ |
| f = synth->data->freq_vco; |
| do_div(f, SI5341_SYNTH_N_MAX); |
| if (rate < f) |
| return f; |
| |
| f = synth->data->freq_vco; |
| do_div(f, SI5341_SYNTH_N_MIN); |
| if (rate > f) |
| return f; |
| |
| return rate; |
| } |
| |
| static int si5341_synth_program(struct clk_si5341_synth *synth, |
| u64 n_num, u32 n_den, bool is_integer) |
| { |
| int err; |
| u8 index = synth->index; |
| |
| err = si5341_encode_44_32(synth->data->regmap, |
| SI5341_SYNTH_N_NUM(index), n_num, n_den); |
| |
| err = regmap_update_bits(synth->data->regmap, |
| SI5341_SYNTH_N_PIBYP, BIT(index), is_integer ? BIT(index) : 0); |
| if (err < 0) |
| return err; |
| |
| return regmap_write(synth->data->regmap, |
| SI5341_SYNTH_N_UPD(index), 0x01); |
| } |
| |
| |
| static int si5341_synth_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_si5341_synth *synth = to_clk_si5341_synth(hw); |
| u64 n_num; |
| u32 n_den; |
| u32 r; |
| u32 g; |
| bool is_integer; |
| |
| n_num = synth->data->freq_vco; |
| |
| /* see if there's an integer solution */ |
| r = do_div(n_num, rate); |
| is_integer = (r == 0); |
| if (is_integer) { |
| /* Integer divider equal to n_num */ |
| n_den = 1; |
| } else { |
| /* Calculate a fractional solution */ |
| g = gcd(r, rate); |
| n_den = rate / g; |
| n_num *= n_den; |
| n_num += r / g; |
| } |
| |
| dev_dbg(&synth->data->i2c_client->dev, |
| "%s(%u): n=0x%llx d=0x%x %s\n", __func__, |
| synth->index, n_num, n_den, |
| is_integer ? "int" : "frac"); |
| |
| return si5341_synth_program(synth, n_num, n_den, is_integer); |
| } |
| |
| static const struct clk_ops si5341_synth_clk_ops = { |
| .is_prepared = si5341_synth_clk_is_on, |
| .prepare = si5341_synth_clk_prepare, |
| .unprepare = si5341_synth_clk_unprepare, |
| .recalc_rate = si5341_synth_clk_recalc_rate, |
| .round_rate = si5341_synth_clk_round_rate, |
| .set_rate = si5341_synth_clk_set_rate, |
| }; |
| |
| static int si5341_output_clk_is_on(struct clk_hw *hw) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| int err; |
| u32 val; |
| |
| err = regmap_read(output->data->regmap, |
| SI5341_OUT_CONFIG(output), &val); |
| if (err < 0) |
| return err; |
| |
| /* Bit 0=PDN, 1=OE so only a value of 0x2 enables the output */ |
| return (val & 0x03) == SI5341_OUT_CFG_OE; |
| } |
| |
| /* Disables and then powers down the output */ |
| static void si5341_output_clk_unprepare(struct clk_hw *hw) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| |
| regmap_update_bits(output->data->regmap, |
| SI5341_OUT_CONFIG(output), |
| SI5341_OUT_CFG_OE, 0); |
| regmap_update_bits(output->data->regmap, |
| SI5341_OUT_CONFIG(output), |
| SI5341_OUT_CFG_PDN, SI5341_OUT_CFG_PDN); |
| } |
| |
| /* Powers up and then enables the output */ |
| static int si5341_output_clk_prepare(struct clk_hw *hw) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| int err; |
| |
| err = regmap_update_bits(output->data->regmap, |
| SI5341_OUT_CONFIG(output), |
| SI5341_OUT_CFG_PDN, 0); |
| if (err < 0) |
| return err; |
| |
| return regmap_update_bits(output->data->regmap, |
| SI5341_OUT_CONFIG(output), |
| SI5341_OUT_CFG_OE, SI5341_OUT_CFG_OE); |
| } |
| |
| static unsigned long si5341_output_clk_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| int err; |
| u32 val; |
| u32 r_divider; |
| u8 r[3]; |
| |
| err = regmap_bulk_read(output->data->regmap, |
| SI5341_OUT_R_REG(output), r, 3); |
| if (err < 0) |
| return err; |
| |
| /* Calculate value as 24-bit integer*/ |
| r_divider = r[2] << 16 | r[1] << 8 | r[0]; |
| |
| /* If Rx_REG is zero, the divider is disabled, so return a "0" rate */ |
| if (!r_divider) |
| return 0; |
| |
| /* Divider is 2*(Rx_REG+1) */ |
| r_divider += 1; |
| r_divider <<= 1; |
| |
| err = regmap_read(output->data->regmap, |
| SI5341_OUT_CONFIG(output), &val); |
| if (err < 0) |
| return err; |
| |
| if (val & SI5341_OUT_CFG_RDIV_FORCE2) |
| r_divider = 2; |
| |
| return parent_rate / r_divider; |
| } |
| |
| static long si5341_output_clk_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *parent_rate) |
| { |
| unsigned long r; |
| |
| r = *parent_rate >> 1; |
| |
| /* If rate is an even divisor, no changes to parent required */ |
| if (r && !(r % rate)) |
| return (long)rate; |
| |
| if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) { |
| if (rate > 200000000) { |
| /* minimum r-divider is 2 */ |
| r = 2; |
| } else { |
| /* Take a parent frequency near 400 MHz */ |
| r = (400000000u / rate) & ~1; |
| } |
| *parent_rate = r * rate; |
| } else { |
| /* We cannot change our parent's rate, report what we can do */ |
| r /= rate; |
| rate = *parent_rate / (r << 1); |
| } |
| |
| return rate; |
| } |
| |
| static int si5341_output_clk_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| /* Frequency divider is (r_div + 1) * 2 */ |
| u32 r_div = (parent_rate / rate) >> 1; |
| int err; |
| u8 r[3]; |
| |
| if (r_div <= 1) |
| r_div = 0; |
| else if (r_div >= BIT(24)) |
| r_div = BIT(24) - 1; |
| else |
| --r_div; |
| |
| /* For a value of "2", we set the "OUT0_RDIV_FORCE2" bit */ |
| err = regmap_update_bits(output->data->regmap, |
| SI5341_OUT_CONFIG(output), |
| SI5341_OUT_CFG_RDIV_FORCE2, |
| (r_div == 0) ? SI5341_OUT_CFG_RDIV_FORCE2 : 0); |
| if (err < 0) |
| return err; |
| |
| /* Always write Rx_REG, because a zero value disables the divider */ |
| r[0] = r_div ? (r_div & 0xff) : 1; |
| r[1] = (r_div >> 8) & 0xff; |
| r[2] = (r_div >> 16) & 0xff; |
| err = regmap_bulk_write(output->data->regmap, |
| SI5341_OUT_R_REG(output), r, 3); |
| |
| return 0; |
| } |
| |
| static int si5341_output_reparent(struct clk_si5341_output *output, u8 index) |
| { |
| return regmap_update_bits(output->data->regmap, |
| SI5341_OUT_MUX_SEL(output), 0x07, index); |
| } |
| |
| static int si5341_output_set_parent(struct clk_hw *hw, u8 index) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| |
| if (index >= output->data->num_synth) |
| return -EINVAL; |
| |
| return si5341_output_reparent(output, index); |
| } |
| |
| static u8 si5341_output_get_parent(struct clk_hw *hw) |
| { |
| struct clk_si5341_output *output = to_clk_si5341_output(hw); |
| u32 val; |
| |
| regmap_read(output->data->regmap, SI5341_OUT_MUX_SEL(output), &val); |
| |
| return val & 0x7; |
| } |
| |
| static const struct clk_ops si5341_output_clk_ops = { |
| .is_prepared = si5341_output_clk_is_on, |
| .prepare = si5341_output_clk_prepare, |
| .unprepare = si5341_output_clk_unprepare, |
| .recalc_rate = si5341_output_clk_recalc_rate, |
| .round_rate = si5341_output_clk_round_rate, |
| .set_rate = si5341_output_clk_set_rate, |
| .set_parent = si5341_output_set_parent, |
| .get_parent = si5341_output_get_parent, |
| }; |
| |
| /* |
| * The chip can be bought in a pre-programmed version, or one can program the |
| * NVM in the chip to boot up in a preset mode. This routine tries to determine |
| * if that's the case, or if we need to reset and program everything from |
| * scratch. Returns negative error, or true/false. |
| */ |
| static int si5341_is_programmed_already(struct clk_si5341 *data) |
| { |
| int err; |
| u8 r[4]; |
| |
| /* Read the PLL divider value, it must have a non-zero value */ |
| err = regmap_bulk_read(data->regmap, SI5341_PLL_M_DEN, |
| r, ARRAY_SIZE(r)); |
| if (err < 0) |
| return err; |
| |
| return !!get_unaligned_le32(r); |
| } |
| |
| static struct clk_hw * |
| of_clk_si5341_get(struct of_phandle_args *clkspec, void *_data) |
| { |
| struct clk_si5341 *data = _data; |
| unsigned int idx = clkspec->args[1]; |
| unsigned int group = clkspec->args[0]; |
| |
| switch (group) { |
| case 0: |
| if (idx >= data->num_outputs) { |
| dev_err(&data->i2c_client->dev, |
| "invalid output index %u\n", idx); |
| return ERR_PTR(-EINVAL); |
| } |
| return &data->clk[idx].hw; |
| case 1: |
| if (idx >= data->num_synth) { |
| dev_err(&data->i2c_client->dev, |
| "invalid synthesizer index %u\n", idx); |
| return ERR_PTR(-EINVAL); |
| } |
| return &data->synth[idx].hw; |
| case 2: |
| if (idx > 0) { |
| dev_err(&data->i2c_client->dev, |
| "invalid PLL index %u\n", idx); |
| return ERR_PTR(-EINVAL); |
| } |
| return &data->hw; |
| default: |
| dev_err(&data->i2c_client->dev, "invalid group %u\n", group); |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| |
| static int si5341_probe_chip_id(struct clk_si5341 *data) |
| { |
| int err; |
| u8 reg[4]; |
| u16 model; |
| |
| err = regmap_bulk_read(data->regmap, SI5341_PN_BASE, reg, |
| ARRAY_SIZE(reg)); |
| if (err < 0) { |
| dev_err(&data->i2c_client->dev, "Failed to read chip ID\n"); |
| return err; |
| } |
| |
| model = get_unaligned_le16(reg); |
| |
| dev_info(&data->i2c_client->dev, "Chip: %x Grade: %u Rev: %u\n", |
| model, reg[2], reg[3]); |
| |
| switch (model) { |
| case 0x5340: |
| data->num_outputs = SI5340_MAX_NUM_OUTPUTS; |
| data->num_synth = SI5340_NUM_SYNTH; |
| data->reg_output_offset = si5340_reg_output_offset; |
| data->reg_rdiv_offset = si5340_reg_rdiv_offset; |
| break; |
| case 0x5341: |
| data->num_outputs = SI5341_MAX_NUM_OUTPUTS; |
| data->num_synth = SI5341_NUM_SYNTH; |
| data->reg_output_offset = si5341_reg_output_offset; |
| data->reg_rdiv_offset = si5341_reg_rdiv_offset; |
| break; |
| case 0x5342: |
| data->num_outputs = SI5342_MAX_NUM_OUTPUTS; |
| data->num_synth = SI5342_NUM_SYNTH; |
| data->reg_output_offset = si5340_reg_output_offset; |
| data->reg_rdiv_offset = si5340_reg_rdiv_offset; |
| break; |
| case 0x5344: |
| data->num_outputs = SI5344_MAX_NUM_OUTPUTS; |
| data->num_synth = SI5344_NUM_SYNTH; |
| data->reg_output_offset = si5340_reg_output_offset; |
| data->reg_rdiv_offset = si5340_reg_rdiv_offset; |
| break; |
| case 0x5345: |
| data->num_outputs = SI5345_MAX_NUM_OUTPUTS; |
| data->num_synth = SI5345_NUM_SYNTH; |
| data->reg_output_offset = si5341_reg_output_offset; |
| data->reg_rdiv_offset = si5341_reg_rdiv_offset; |
| break; |
| default: |
| dev_err(&data->i2c_client->dev, "Model '%x' not supported\n", |
| model); |
| return -EINVAL; |
| } |
| |
| data->chip_id = model; |
| |
| return 0; |
| } |
| |
| /* Read active settings into the regmap cache for later reference */ |
| static int si5341_read_settings(struct clk_si5341 *data) |
| { |
| int err; |
| u8 i; |
| u8 r[10]; |
| |
| err = regmap_bulk_read(data->regmap, SI5341_PLL_M_NUM, r, 10); |
| if (err < 0) |
| return err; |
| |
| err = regmap_bulk_read(data->regmap, |
| SI5341_SYNTH_N_CLK_TO_OUTX_EN, r, 3); |
| if (err < 0) |
| return err; |
| |
| err = regmap_bulk_read(data->regmap, |
| SI5341_SYNTH_N_CLK_DIS, r, 1); |
| if (err < 0) |
| return err; |
| |
| for (i = 0; i < data->num_synth; ++i) { |
| err = regmap_bulk_read(data->regmap, |
| SI5341_SYNTH_N_NUM(i), r, 10); |
| if (err < 0) |
| return err; |
| } |
| |
| for (i = 0; i < data->num_outputs; ++i) { |
| err = regmap_bulk_read(data->regmap, |
| data->reg_output_offset[i], r, 4); |
| if (err < 0) |
| return err; |
| |
| err = regmap_bulk_read(data->regmap, |
| data->reg_rdiv_offset[i], r, 3); |
| if (err < 0) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int si5341_write_multiple(struct clk_si5341 *data, |
| const struct si5341_reg_default *values, unsigned int num_values) |
| { |
| unsigned int i; |
| int res; |
| |
| for (i = 0; i < num_values; ++i) { |
| res = regmap_write(data->regmap, |
| values[i].address, values[i].value); |
| if (res < 0) { |
| dev_err(&data->i2c_client->dev, |
| "Failed to write %#x:%#x\n", |
| values[i].address, values[i].value); |
| return res; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static const struct si5341_reg_default si5341_preamble[] = { |
| { 0x0B25, 0x00 }, |
| { 0x0502, 0x01 }, |
| { 0x0505, 0x03 }, |
| { 0x0957, 0x1F }, |
| { 0x0B4E, 0x1A }, |
| }; |
| |
| static const struct si5341_reg_default si5345_preamble[] = { |
| { 0x0B25, 0x00 }, |
| { 0x0540, 0x01 }, |
| }; |
| |
| static int si5341_send_preamble(struct clk_si5341 *data) |
| { |
| int res; |
| u32 revision; |
| |
| /* For revision 2 and up, the values are slightly different */ |
| res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); |
| if (res < 0) |
| return res; |
| |
| /* Write "preamble" as specified by datasheet */ |
| res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xD8 : 0xC0); |
| if (res < 0) |
| return res; |
| |
| /* The si5342..si5345 require a different preamble */ |
| if (data->chip_id > 0x5341) |
| res = si5341_write_multiple(data, |
| si5345_preamble, ARRAY_SIZE(si5345_preamble)); |
| else |
| res = si5341_write_multiple(data, |
| si5341_preamble, ARRAY_SIZE(si5341_preamble)); |
| if (res < 0) |
| return res; |
| |
| /* Datasheet specifies a 300ms wait after sending the preamble */ |
| msleep(300); |
| |
| return 0; |
| } |
| |
| /* Perform a soft reset and write post-amble */ |
| static int si5341_finalize_defaults(struct clk_si5341 *data) |
| { |
| int res; |
| u32 revision; |
| |
| res = regmap_read(data->regmap, SI5341_DEVICE_REV, &revision); |
| if (res < 0) |
| return res; |
| |
| dev_dbg(&data->i2c_client->dev, "%s rev=%u\n", __func__, revision); |
| |
| res = regmap_write(data->regmap, SI5341_SOFT_RST, 0x01); |
| if (res < 0) |
| return res; |
| |
| /* The si5342..si5345 have an additional post-amble */ |
| if (data->chip_id > 0x5341) { |
| res = regmap_write(data->regmap, 0x540, 0x0); |
| if (res < 0) |
| return res; |
| } |
| |
| /* Datasheet does not explain these nameless registers */ |
| res = regmap_write(data->regmap, 0xB24, revision < 2 ? 0xDB : 0xC3); |
| if (res < 0) |
| return res; |
| res = regmap_write(data->regmap, 0x0B25, 0x02); |
| if (res < 0) |
| return res; |
| |
| return 0; |
| } |
| |
| |
| static const struct regmap_range si5341_regmap_volatile_range[] = { |
| regmap_reg_range(0x000C, 0x0012), /* Status */ |
| regmap_reg_range(0x001C, 0x001E), /* reset, finc/fdec */ |
| regmap_reg_range(0x00E2, 0x00FE), /* NVM, interrupts, device ready */ |
| /* Update bits for P divider and synth config */ |
| regmap_reg_range(SI5341_PX_UPD, SI5341_PX_UPD), |
| regmap_reg_range(SI5341_SYNTH_N_UPD(0), SI5341_SYNTH_N_UPD(0)), |
| regmap_reg_range(SI5341_SYNTH_N_UPD(1), SI5341_SYNTH_N_UPD(1)), |
| regmap_reg_range(SI5341_SYNTH_N_UPD(2), SI5341_SYNTH_N_UPD(2)), |
| regmap_reg_range(SI5341_SYNTH_N_UPD(3), SI5341_SYNTH_N_UPD(3)), |
| regmap_reg_range(SI5341_SYNTH_N_UPD(4), SI5341_SYNTH_N_UPD(4)), |
| }; |
| |
| static const struct regmap_access_table si5341_regmap_volatile = { |
| .yes_ranges = si5341_regmap_volatile_range, |
| .n_yes_ranges = ARRAY_SIZE(si5341_regmap_volatile_range), |
| }; |
| |
| /* Pages 0, 1, 2, 3, 9, A, B are valid, so there are 12 pages */ |
| static const struct regmap_range_cfg si5341_regmap_ranges[] = { |
| { |
| .range_min = 0, |
| .range_max = SI5341_REGISTER_MAX, |
| .selector_reg = SI5341_PAGE, |
| .selector_mask = 0xff, |
| .selector_shift = 0, |
| .window_start = 0, |
| .window_len = 256, |
| }, |
| }; |
| |
| static const struct regmap_config si5341_regmap_config = { |
| .reg_bits = 8, |
| .val_bits = 8, |
| .cache_type = REGCACHE_RBTREE, |
| .ranges = si5341_regmap_ranges, |
| .num_ranges = ARRAY_SIZE(si5341_regmap_ranges), |
| .max_register = SI5341_REGISTER_MAX, |
| .volatile_table = &si5341_regmap_volatile, |
| }; |
| |
| static int si5341_dt_parse_dt(struct i2c_client *client, |
| struct clk_si5341_output_config *config) |
| { |
| struct device_node *child; |
| struct device_node *np = client->dev.of_node; |
| u32 num; |
| u32 val; |
| |
| memset(config, 0, sizeof(struct clk_si5341_output_config) * |
| SI5341_MAX_NUM_OUTPUTS); |
| |
| for_each_child_of_node(np, child) { |
| if (of_property_read_u32(child, "reg", &num)) { |
| dev_err(&client->dev, "missing reg property of %s\n", |
| child->name); |
| goto put_child; |
| } |
| |
| if (num >= SI5341_MAX_NUM_OUTPUTS) { |
| dev_err(&client->dev, "invalid clkout %d\n", num); |
| goto put_child; |
| } |
| |
| if (!of_property_read_u32(child, "silabs,format", &val)) { |
| /* Set cm and ampl conservatively to 3v3 settings */ |
| switch (val) { |
| case 1: /* normal differential */ |
| config[num].out_cm_ampl_bits = 0x33; |
| break; |
| case 2: /* low-power differential */ |
| config[num].out_cm_ampl_bits = 0x13; |
| break; |
| case 4: /* LVCMOS */ |
| config[num].out_cm_ampl_bits = 0x33; |
| /* Set SI recommended impedance for LVCMOS */ |
| config[num].out_format_drv_bits |= 0xc0; |
| break; |
| default: |
| dev_err(&client->dev, |
| "invalid silabs,format %u for %u\n", |
| val, num); |
| goto put_child; |
| } |
| config[num].out_format_drv_bits &= ~0x07; |
| config[num].out_format_drv_bits |= val & 0x07; |
| /* Always enable the SYNC feature */ |
| config[num].out_format_drv_bits |= 0x08; |
| } |
| |
| if (!of_property_read_u32(child, "silabs,common-mode", &val)) { |
| if (val > 0xf) { |
| dev_err(&client->dev, |
| "invalid silabs,common-mode %u\n", |
| val); |
| goto put_child; |
| } |
| config[num].out_cm_ampl_bits &= 0xf0; |
| config[num].out_cm_ampl_bits |= val & 0x0f; |
| } |
| |
| if (!of_property_read_u32(child, "silabs,amplitude", &val)) { |
| if (val > 0xf) { |
| dev_err(&client->dev, |
| "invalid silabs,amplitude %u\n", |
| val); |
| goto put_child; |
| } |
| config[num].out_cm_ampl_bits &= 0x0f; |
| config[num].out_cm_ampl_bits |= (val << 4) & 0xf0; |
| } |
| |
| if (of_property_read_bool(child, "silabs,disable-high")) |
| config[num].out_format_drv_bits |= 0x10; |
| |
| config[num].synth_master = |
| of_property_read_bool(child, "silabs,synth-master"); |
| |
| config[num].always_on = |
| of_property_read_bool(child, "always-on"); |
| } |
| |
| return 0; |
| |
| put_child: |
| of_node_put(child); |
| return -EINVAL; |
| } |
| |
| /* |
| * If not pre-configured, calculate and set the PLL configuration manually. |
| * For low-jitter performance, the PLL should be set such that the synthesizers |
| * only need integer division. |
| * Without any user guidance, we'll set the PLL to 14GHz, which still allows |
| * the chip to generate any frequency on its outputs, but jitter performance |
| * may be sub-optimal. |
| */ |
| static int si5341_initialize_pll(struct clk_si5341 *data) |
| { |
| struct device_node *np = data->i2c_client->dev.of_node; |
| u32 m_num = 0; |
| u32 m_den = 0; |
| int sel; |
| |
| if (of_property_read_u32(np, "silabs,pll-m-num", &m_num)) { |
| dev_err(&data->i2c_client->dev, |
| "PLL configuration requires silabs,pll-m-num\n"); |
| } |
| if (of_property_read_u32(np, "silabs,pll-m-den", &m_den)) { |
| dev_err(&data->i2c_client->dev, |
| "PLL configuration requires silabs,pll-m-den\n"); |
| } |
| |
| if (!m_num || !m_den) { |
| dev_err(&data->i2c_client->dev, |
| "PLL configuration invalid, assume 14GHz\n"); |
| sel = si5341_clk_get_selected_input(data); |
| if (sel < 0) |
| return sel; |
| |
| m_den = clk_get_rate(data->input_clk[sel]) / 10; |
| m_num = 1400000000; |
| } |
| |
| return si5341_encode_44_32(data->regmap, |
| SI5341_PLL_M_NUM, m_num, m_den); |
| } |
| |
| static int si5341_clk_select_active_input(struct clk_si5341 *data) |
| { |
| int res; |
| int err; |
| int i; |
| |
| res = si5341_clk_get_selected_input(data); |
| if (res < 0) |
| return res; |
| |
| /* If the current register setting is invalid, pick the first input */ |
| if (!data->input_clk[res]) { |
| dev_dbg(&data->i2c_client->dev, |
| "Input %d not connected, rerouting\n", res); |
| res = -ENODEV; |
| for (i = 0; i < SI5341_NUM_INPUTS; ++i) { |
| if (data->input_clk[i]) { |
| res = i; |
| break; |
| } |
| } |
| if (res < 0) { |
| dev_err(&data->i2c_client->dev, |
| "No clock input available\n"); |
| return res; |
| } |
| } |
| |
| /* Make sure the selected clock is also enabled and routed */ |
| err = si5341_clk_reparent(data, res); |
| if (err < 0) |
| return err; |
| |
| err = clk_prepare_enable(data->input_clk[res]); |
| if (err < 0) |
| return err; |
| |
| return res; |
| } |
| |
| static int si5341_probe(struct i2c_client *client, |
| const struct i2c_device_id *id) |
| { |
| struct clk_si5341 *data; |
| struct clk_init_data init; |
| struct clk *input; |
| const char *root_clock_name; |
| const char *synth_clock_names[SI5341_NUM_SYNTH]; |
| int err; |
| unsigned int i; |
| struct clk_si5341_output_config config[SI5341_MAX_NUM_OUTPUTS]; |
| bool initialization_required; |
| |
| data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); |
| if (!data) |
| return -ENOMEM; |
| |
| data->i2c_client = client; |
| |
| for (i = 0; i < SI5341_NUM_INPUTS; ++i) { |
| input = devm_clk_get(&client->dev, si5341_input_clock_names[i]); |
| if (IS_ERR(input)) { |
| if (PTR_ERR(input) == -EPROBE_DEFER) |
| return -EPROBE_DEFER; |
| data->input_clk_name[i] = si5341_input_clock_names[i]; |
| } else { |
| data->input_clk[i] = input; |
| data->input_clk_name[i] = __clk_get_name(input); |
| } |
| } |
| |
| err = si5341_dt_parse_dt(client, config); |
| if (err) |
| return err; |
| |
| if (of_property_read_string(client->dev.of_node, "clock-output-names", |
| &init.name)) |
| init.name = client->dev.of_node->name; |
| root_clock_name = init.name; |
| |
| data->regmap = devm_regmap_init_i2c(client, &si5341_regmap_config); |
| if (IS_ERR(data->regmap)) |
| return PTR_ERR(data->regmap); |
| |
| i2c_set_clientdata(client, data); |
| |
| err = si5341_probe_chip_id(data); |
| if (err < 0) |
| return err; |
| |
| if (of_property_read_bool(client->dev.of_node, "silabs,reprogram")) { |
| initialization_required = true; |
| } else { |
| err = si5341_is_programmed_already(data); |
| if (err < 0) |
| return err; |
| |
| initialization_required = !err; |
| } |
| |
| if (initialization_required) { |
| /* Populate the regmap cache in preparation for "cache only" */ |
| err = si5341_read_settings(data); |
| if (err < 0) |
| return err; |
| |
| err = si5341_send_preamble(data); |
| if (err < 0) |
| return err; |
| |
| /* |
| * We intend to send all 'final' register values in a single |
| * transaction. So cache all register writes until we're done |
| * configuring. |
| */ |
| regcache_cache_only(data->regmap, true); |
| |
| /* Write the configuration pairs from the firmware blob */ |
| err = si5341_write_multiple(data, si5341_reg_defaults, |
| ARRAY_SIZE(si5341_reg_defaults)); |
| if (err < 0) |
| return err; |
| } |
| |
| /* Input must be up and running at this point */ |
| err = si5341_clk_select_active_input(data); |
| if (err < 0) |
| return err; |
| |
| if (initialization_required) { |
| /* PLL configuration is required */ |
| err = si5341_initialize_pll(data); |
| if (err < 0) |
| return err; |
| } |
| |
| /* Register the PLL */ |
| init.parent_names = data->input_clk_name; |
| init.num_parents = SI5341_NUM_INPUTS; |
| init.ops = &si5341_clk_ops; |
| init.flags = 0; |
| data->hw.init = &init; |
| |
| err = devm_clk_hw_register(&client->dev, &data->hw); |
| if (err) { |
| dev_err(&client->dev, "clock registration failed\n"); |
| return err; |
| } |
| |
| init.num_parents = 1; |
| init.parent_names = &root_clock_name; |
| init.ops = &si5341_synth_clk_ops; |
| for (i = 0; i < data->num_synth; ++i) { |
| synth_clock_names[i] = devm_kasprintf(&client->dev, GFP_KERNEL, |
| "%s.N%u", client->dev.of_node->name, i); |
| init.name = synth_clock_names[i]; |
| data->synth[i].index = i; |
| data->synth[i].data = data; |
| data->synth[i].hw.init = &init; |
| err = devm_clk_hw_register(&client->dev, &data->synth[i].hw); |
| if (err) { |
| dev_err(&client->dev, |
| "synth N%u registration failed\n", i); |
| } |
| } |
| |
| init.num_parents = data->num_synth; |
| init.parent_names = synth_clock_names; |
| init.ops = &si5341_output_clk_ops; |
| for (i = 0; i < data->num_outputs; ++i) { |
| init.name = kasprintf(GFP_KERNEL, "%s.%d", |
| client->dev.of_node->name, i); |
| init.flags = config[i].synth_master ? CLK_SET_RATE_PARENT : 0; |
| data->clk[i].index = i; |
| data->clk[i].data = data; |
| data->clk[i].hw.init = &init; |
| if (config[i].out_format_drv_bits & 0x07) { |
| regmap_write(data->regmap, |
| SI5341_OUT_FORMAT(&data->clk[i]), |
| config[i].out_format_drv_bits); |
| regmap_write(data->regmap, |
| SI5341_OUT_CM(&data->clk[i]), |
| config[i].out_cm_ampl_bits); |
| } |
| err = devm_clk_hw_register(&client->dev, &data->clk[i].hw); |
| kfree(init.name); /* clock framework made a copy of the name */ |
| if (err) { |
| dev_err(&client->dev, |
| "output %u registration failed\n", i); |
| return err; |
| } |
| if (config[i].always_on) |
| clk_prepare(data->clk[i].hw.clk); |
| } |
| |
| err = of_clk_add_hw_provider(client->dev.of_node, of_clk_si5341_get, |
| data); |
| if (err) { |
| dev_err(&client->dev, "unable to add clk provider\n"); |
| return err; |
| } |
| |
| if (initialization_required) { |
| /* Synchronize */ |
| regcache_cache_only(data->regmap, false); |
| err = regcache_sync(data->regmap); |
| if (err < 0) |
| return err; |
| |
| err = si5341_finalize_defaults(data); |
| if (err < 0) |
| return err; |
| } |
| |
| /* Free the names, clk framework makes copies */ |
| for (i = 0; i < data->num_synth; ++i) |
| devm_kfree(&client->dev, (void *)synth_clock_names[i]); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id si5341_id[] = { |
| { "si5340", 0 }, |
| { "si5341", 1 }, |
| { "si5342", 2 }, |
| { "si5344", 4 }, |
| { "si5345", 5 }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(i2c, si5341_id); |
| |
| static const struct of_device_id clk_si5341_of_match[] = { |
| { .compatible = "silabs,si5340" }, |
| { .compatible = "silabs,si5341" }, |
| { .compatible = "silabs,si5342" }, |
| { .compatible = "silabs,si5344" }, |
| { .compatible = "silabs,si5345" }, |
| { } |
| }; |
| MODULE_DEVICE_TABLE(of, clk_si5341_of_match); |
| |
| static struct i2c_driver si5341_driver = { |
| .driver = { |
| .name = "si5341", |
| .of_match_table = clk_si5341_of_match, |
| }, |
| .probe = si5341_probe, |
| .id_table = si5341_id, |
| }; |
| module_i2c_driver(si5341_driver); |
| |
| MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>"); |
| MODULE_DESCRIPTION("Si5341 driver"); |
| MODULE_LICENSE("GPL"); |