| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. |
| */ |
| #include <linux/scatterlist.h> |
| #include <linux/memregion.h> |
| #include <linux/highmem.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/hash.h> |
| #include <linux/sort.h> |
| #include <linux/io.h> |
| #include <linux/nd.h> |
| #include "nd-core.h" |
| #include "nd.h" |
| |
| /* |
| * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is |
| * irrelevant. |
| */ |
| #include <linux/io-64-nonatomic-hi-lo.h> |
| |
| static DEFINE_PER_CPU(int, flush_idx); |
| |
| static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm, |
| struct nd_region_data *ndrd) |
| { |
| int i, j; |
| |
| dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm), |
| nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es"); |
| for (i = 0; i < (1 << ndrd->hints_shift); i++) { |
| struct resource *res = &nvdimm->flush_wpq[i]; |
| unsigned long pfn = PHYS_PFN(res->start); |
| void __iomem *flush_page; |
| |
| /* check if flush hints share a page */ |
| for (j = 0; j < i; j++) { |
| struct resource *res_j = &nvdimm->flush_wpq[j]; |
| unsigned long pfn_j = PHYS_PFN(res_j->start); |
| |
| if (pfn == pfn_j) |
| break; |
| } |
| |
| if (j < i) |
| flush_page = (void __iomem *) ((unsigned long) |
| ndrd_get_flush_wpq(ndrd, dimm, j) |
| & PAGE_MASK); |
| else |
| flush_page = devm_nvdimm_ioremap(dev, |
| PFN_PHYS(pfn), PAGE_SIZE); |
| if (!flush_page) |
| return -ENXIO; |
| ndrd_set_flush_wpq(ndrd, dimm, i, flush_page |
| + (res->start & ~PAGE_MASK)); |
| } |
| |
| return 0; |
| } |
| |
| int nd_region_activate(struct nd_region *nd_region) |
| { |
| int i, j, num_flush = 0; |
| struct nd_region_data *ndrd; |
| struct device *dev = &nd_region->dev; |
| size_t flush_data_size = sizeof(void *); |
| |
| nvdimm_bus_lock(&nd_region->dev); |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| |
| if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) { |
| nvdimm_bus_unlock(&nd_region->dev); |
| return -EBUSY; |
| } |
| |
| /* at least one null hint slot per-dimm for the "no-hint" case */ |
| flush_data_size += sizeof(void *); |
| num_flush = min_not_zero(num_flush, nvdimm->num_flush); |
| if (!nvdimm->num_flush) |
| continue; |
| flush_data_size += nvdimm->num_flush * sizeof(void *); |
| } |
| nvdimm_bus_unlock(&nd_region->dev); |
| |
| ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL); |
| if (!ndrd) |
| return -ENOMEM; |
| dev_set_drvdata(dev, ndrd); |
| |
| if (!num_flush) |
| return 0; |
| |
| ndrd->hints_shift = ilog2(num_flush); |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd); |
| |
| if (rc) |
| return rc; |
| } |
| |
| /* |
| * Clear out entries that are duplicates. This should prevent the |
| * extra flushings. |
| */ |
| for (i = 0; i < nd_region->ndr_mappings - 1; i++) { |
| /* ignore if NULL already */ |
| if (!ndrd_get_flush_wpq(ndrd, i, 0)) |
| continue; |
| |
| for (j = i + 1; j < nd_region->ndr_mappings; j++) |
| if (ndrd_get_flush_wpq(ndrd, i, 0) == |
| ndrd_get_flush_wpq(ndrd, j, 0)) |
| ndrd_set_flush_wpq(ndrd, j, 0, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static void nd_region_release(struct device *dev) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| u16 i; |
| |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| |
| put_device(&nvdimm->dev); |
| } |
| free_percpu(nd_region->lane); |
| memregion_free(nd_region->id); |
| if (is_nd_blk(dev)) |
| kfree(to_nd_blk_region(dev)); |
| else |
| kfree(nd_region); |
| } |
| |
| struct nd_region *to_nd_region(struct device *dev) |
| { |
| struct nd_region *nd_region = container_of(dev, struct nd_region, dev); |
| |
| WARN_ON(dev->type->release != nd_region_release); |
| return nd_region; |
| } |
| EXPORT_SYMBOL_GPL(to_nd_region); |
| |
| struct device *nd_region_dev(struct nd_region *nd_region) |
| { |
| if (!nd_region) |
| return NULL; |
| return &nd_region->dev; |
| } |
| EXPORT_SYMBOL_GPL(nd_region_dev); |
| |
| struct nd_blk_region *to_nd_blk_region(struct device *dev) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| WARN_ON(!is_nd_blk(dev)); |
| return container_of(nd_region, struct nd_blk_region, nd_region); |
| } |
| EXPORT_SYMBOL_GPL(to_nd_blk_region); |
| |
| void *nd_region_provider_data(struct nd_region *nd_region) |
| { |
| return nd_region->provider_data; |
| } |
| EXPORT_SYMBOL_GPL(nd_region_provider_data); |
| |
| void *nd_blk_region_provider_data(struct nd_blk_region *ndbr) |
| { |
| return ndbr->blk_provider_data; |
| } |
| EXPORT_SYMBOL_GPL(nd_blk_region_provider_data); |
| |
| void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data) |
| { |
| ndbr->blk_provider_data = data; |
| } |
| EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data); |
| |
| /** |
| * nd_region_to_nstype() - region to an integer namespace type |
| * @nd_region: region-device to interrogate |
| * |
| * This is the 'nstype' attribute of a region as well, an input to the |
| * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match |
| * namespace devices with namespace drivers. |
| */ |
| int nd_region_to_nstype(struct nd_region *nd_region) |
| { |
| if (is_memory(&nd_region->dev)) { |
| u16 i, label; |
| |
| for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| |
| if (test_bit(NDD_LABELING, &nvdimm->flags)) |
| label++; |
| } |
| if (label) |
| return ND_DEVICE_NAMESPACE_PMEM; |
| else |
| return ND_DEVICE_NAMESPACE_IO; |
| } else if (is_nd_blk(&nd_region->dev)) { |
| return ND_DEVICE_NAMESPACE_BLK; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(nd_region_to_nstype); |
| |
| static unsigned long long region_size(struct nd_region *nd_region) |
| { |
| if (is_memory(&nd_region->dev)) { |
| return nd_region->ndr_size; |
| } else if (nd_region->ndr_mappings == 1) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[0]; |
| |
| return nd_mapping->size; |
| } |
| |
| return 0; |
| } |
| |
| static ssize_t size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%llu\n", region_size(nd_region)); |
| } |
| static DEVICE_ATTR_RO(size); |
| |
| static ssize_t deep_flush_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| /* |
| * NOTE: in the nvdimm_has_flush() error case this attribute is |
| * not visible. |
| */ |
| return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region)); |
| } |
| |
| static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t len) |
| { |
| bool flush; |
| int rc = strtobool(buf, &flush); |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| if (rc) |
| return rc; |
| if (!flush) |
| return -EINVAL; |
| rc = nvdimm_flush(nd_region, NULL); |
| if (rc) |
| return rc; |
| |
| return len; |
| } |
| static DEVICE_ATTR_RW(deep_flush); |
| |
| static ssize_t mappings_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%d\n", nd_region->ndr_mappings); |
| } |
| static DEVICE_ATTR_RO(mappings); |
| |
| static ssize_t nstype_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region)); |
| } |
| static DEVICE_ATTR_RO(nstype); |
| |
| static ssize_t set_cookie_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| struct nd_interleave_set *nd_set = nd_region->nd_set; |
| ssize_t rc = 0; |
| |
| if (is_memory(dev) && nd_set) |
| /* pass, should be precluded by region_visible */; |
| else |
| return -ENXIO; |
| |
| /* |
| * The cookie to show depends on which specification of the |
| * labels we are using. If there are not labels then default to |
| * the v1.1 namespace label cookie definition. To read all this |
| * data we need to wait for probing to settle. |
| */ |
| nd_device_lock(dev); |
| nvdimm_bus_lock(dev); |
| wait_nvdimm_bus_probe_idle(dev); |
| if (nd_region->ndr_mappings) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[0]; |
| struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); |
| |
| if (ndd) { |
| struct nd_namespace_index *nsindex; |
| |
| nsindex = to_namespace_index(ndd, ndd->ns_current); |
| rc = sprintf(buf, "%#llx\n", |
| nd_region_interleave_set_cookie(nd_region, |
| nsindex)); |
| } |
| } |
| nvdimm_bus_unlock(dev); |
| nd_device_unlock(dev); |
| |
| if (rc) |
| return rc; |
| return sprintf(buf, "%#llx\n", nd_set->cookie1); |
| } |
| static DEVICE_ATTR_RO(set_cookie); |
| |
| resource_size_t nd_region_available_dpa(struct nd_region *nd_region) |
| { |
| resource_size_t blk_max_overlap = 0, available, overlap; |
| int i; |
| |
| WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); |
| |
| retry: |
| available = 0; |
| overlap = blk_max_overlap; |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm_drvdata *ndd = to_ndd(nd_mapping); |
| |
| /* if a dimm is disabled the available capacity is zero */ |
| if (!ndd) |
| return 0; |
| |
| if (is_memory(&nd_region->dev)) { |
| available += nd_pmem_available_dpa(nd_region, |
| nd_mapping, &overlap); |
| if (overlap > blk_max_overlap) { |
| blk_max_overlap = overlap; |
| goto retry; |
| } |
| } else if (is_nd_blk(&nd_region->dev)) |
| available += nd_blk_available_dpa(nd_region); |
| } |
| |
| return available; |
| } |
| |
| resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region) |
| { |
| resource_size_t available = 0; |
| int i; |
| |
| if (is_memory(&nd_region->dev)) |
| available = PHYS_ADDR_MAX; |
| |
| WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev)); |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| |
| if (is_memory(&nd_region->dev)) |
| available = min(available, |
| nd_pmem_max_contiguous_dpa(nd_region, |
| nd_mapping)); |
| else if (is_nd_blk(&nd_region->dev)) |
| available += nd_blk_available_dpa(nd_region); |
| } |
| if (is_memory(&nd_region->dev)) |
| return available * nd_region->ndr_mappings; |
| return available; |
| } |
| |
| static ssize_t available_size_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| unsigned long long available = 0; |
| |
| /* |
| * Flush in-flight updates and grab a snapshot of the available |
| * size. Of course, this value is potentially invalidated the |
| * memory nvdimm_bus_lock() is dropped, but that's userspace's |
| * problem to not race itself. |
| */ |
| nd_device_lock(dev); |
| nvdimm_bus_lock(dev); |
| wait_nvdimm_bus_probe_idle(dev); |
| available = nd_region_available_dpa(nd_region); |
| nvdimm_bus_unlock(dev); |
| nd_device_unlock(dev); |
| |
| return sprintf(buf, "%llu\n", available); |
| } |
| static DEVICE_ATTR_RO(available_size); |
| |
| static ssize_t max_available_extent_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| unsigned long long available = 0; |
| |
| nd_device_lock(dev); |
| nvdimm_bus_lock(dev); |
| wait_nvdimm_bus_probe_idle(dev); |
| available = nd_region_allocatable_dpa(nd_region); |
| nvdimm_bus_unlock(dev); |
| nd_device_unlock(dev); |
| |
| return sprintf(buf, "%llu\n", available); |
| } |
| static DEVICE_ATTR_RO(max_available_extent); |
| |
| static ssize_t init_namespaces_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region_data *ndrd = dev_get_drvdata(dev); |
| ssize_t rc; |
| |
| nvdimm_bus_lock(dev); |
| if (ndrd) |
| rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count); |
| else |
| rc = -ENXIO; |
| nvdimm_bus_unlock(dev); |
| |
| return rc; |
| } |
| static DEVICE_ATTR_RO(init_namespaces); |
| |
| static ssize_t namespace_seed_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| ssize_t rc; |
| |
| nvdimm_bus_lock(dev); |
| if (nd_region->ns_seed) |
| rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed)); |
| else |
| rc = sprintf(buf, "\n"); |
| nvdimm_bus_unlock(dev); |
| return rc; |
| } |
| static DEVICE_ATTR_RO(namespace_seed); |
| |
| static ssize_t btt_seed_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| ssize_t rc; |
| |
| nvdimm_bus_lock(dev); |
| if (nd_region->btt_seed) |
| rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed)); |
| else |
| rc = sprintf(buf, "\n"); |
| nvdimm_bus_unlock(dev); |
| |
| return rc; |
| } |
| static DEVICE_ATTR_RO(btt_seed); |
| |
| static ssize_t pfn_seed_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| ssize_t rc; |
| |
| nvdimm_bus_lock(dev); |
| if (nd_region->pfn_seed) |
| rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed)); |
| else |
| rc = sprintf(buf, "\n"); |
| nvdimm_bus_unlock(dev); |
| |
| return rc; |
| } |
| static DEVICE_ATTR_RO(pfn_seed); |
| |
| static ssize_t dax_seed_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| ssize_t rc; |
| |
| nvdimm_bus_lock(dev); |
| if (nd_region->dax_seed) |
| rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed)); |
| else |
| rc = sprintf(buf, "\n"); |
| nvdimm_bus_unlock(dev); |
| |
| return rc; |
| } |
| static DEVICE_ATTR_RO(dax_seed); |
| |
| static ssize_t read_only_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%d\n", nd_region->ro); |
| } |
| |
| static ssize_t read_only_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| bool ro; |
| int rc = strtobool(buf, &ro); |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| if (rc) |
| return rc; |
| |
| nd_region->ro = ro; |
| return len; |
| } |
| static DEVICE_ATTR_RW(read_only); |
| |
| static ssize_t align_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%#lx\n", nd_region->align); |
| } |
| |
| static ssize_t align_store(struct device *dev, |
| struct device_attribute *attr, const char *buf, size_t len) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| unsigned long val, dpa; |
| u32 remainder; |
| int rc; |
| |
| rc = kstrtoul(buf, 0, &val); |
| if (rc) |
| return rc; |
| |
| if (!nd_region->ndr_mappings) |
| return -ENXIO; |
| |
| /* |
| * Ensure space-align is evenly divisible by the region |
| * interleave-width because the kernel typically has no facility |
| * to determine which DIMM(s), dimm-physical-addresses, would |
| * contribute to the tail capacity in system-physical-address |
| * space for the namespace. |
| */ |
| dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder); |
| if (!is_power_of_2(dpa) || dpa < PAGE_SIZE |
| || val > region_size(nd_region) || remainder) |
| return -EINVAL; |
| |
| /* |
| * Given that space allocation consults this value multiple |
| * times ensure it does not change for the duration of the |
| * allocation. |
| */ |
| nvdimm_bus_lock(dev); |
| nd_region->align = val; |
| nvdimm_bus_unlock(dev); |
| |
| return len; |
| } |
| static DEVICE_ATTR_RW(align); |
| |
| static ssize_t region_badblocks_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| ssize_t rc; |
| |
| nd_device_lock(dev); |
| if (dev->driver) |
| rc = badblocks_show(&nd_region->bb, buf, 0); |
| else |
| rc = -ENXIO; |
| nd_device_unlock(dev); |
| |
| return rc; |
| } |
| static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL); |
| |
| static ssize_t resource_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| return sprintf(buf, "%#llx\n", nd_region->ndr_start); |
| } |
| static DEVICE_ATTR_ADMIN_RO(resource); |
| |
| static ssize_t persistence_domain_show(struct device *dev, |
| struct device_attribute *attr, char *buf) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags)) |
| return sprintf(buf, "cpu_cache\n"); |
| else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags)) |
| return sprintf(buf, "memory_controller\n"); |
| else |
| return sprintf(buf, "\n"); |
| } |
| static DEVICE_ATTR_RO(persistence_domain); |
| |
| static struct attribute *nd_region_attributes[] = { |
| &dev_attr_size.attr, |
| &dev_attr_align.attr, |
| &dev_attr_nstype.attr, |
| &dev_attr_mappings.attr, |
| &dev_attr_btt_seed.attr, |
| &dev_attr_pfn_seed.attr, |
| &dev_attr_dax_seed.attr, |
| &dev_attr_deep_flush.attr, |
| &dev_attr_read_only.attr, |
| &dev_attr_set_cookie.attr, |
| &dev_attr_available_size.attr, |
| &dev_attr_max_available_extent.attr, |
| &dev_attr_namespace_seed.attr, |
| &dev_attr_init_namespaces.attr, |
| &dev_attr_badblocks.attr, |
| &dev_attr_resource.attr, |
| &dev_attr_persistence_domain.attr, |
| NULL, |
| }; |
| |
| static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n) |
| { |
| struct device *dev = container_of(kobj, typeof(*dev), kobj); |
| struct nd_region *nd_region = to_nd_region(dev); |
| struct nd_interleave_set *nd_set = nd_region->nd_set; |
| int type = nd_region_to_nstype(nd_region); |
| |
| if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr) |
| return 0; |
| |
| if (!is_memory(dev) && a == &dev_attr_dax_seed.attr) |
| return 0; |
| |
| if (!is_memory(dev) && a == &dev_attr_badblocks.attr) |
| return 0; |
| |
| if (a == &dev_attr_resource.attr && !is_memory(dev)) |
| return 0; |
| |
| if (a == &dev_attr_deep_flush.attr) { |
| int has_flush = nvdimm_has_flush(nd_region); |
| |
| if (has_flush == 1) |
| return a->mode; |
| else if (has_flush == 0) |
| return 0444; |
| else |
| return 0; |
| } |
| |
| if (a == &dev_attr_persistence_domain.attr) { |
| if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE) |
| | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0) |
| return 0; |
| return a->mode; |
| } |
| |
| if (a == &dev_attr_align.attr) |
| return a->mode; |
| |
| if (a != &dev_attr_set_cookie.attr |
| && a != &dev_attr_available_size.attr) |
| return a->mode; |
| |
| if ((type == ND_DEVICE_NAMESPACE_PMEM |
| || type == ND_DEVICE_NAMESPACE_BLK) |
| && a == &dev_attr_available_size.attr) |
| return a->mode; |
| else if (is_memory(dev) && nd_set) |
| return a->mode; |
| |
| return 0; |
| } |
| |
| static ssize_t mappingN(struct device *dev, char *buf, int n) |
| { |
| struct nd_region *nd_region = to_nd_region(dev); |
| struct nd_mapping *nd_mapping; |
| struct nvdimm *nvdimm; |
| |
| if (n >= nd_region->ndr_mappings) |
| return -ENXIO; |
| nd_mapping = &nd_region->mapping[n]; |
| nvdimm = nd_mapping->nvdimm; |
| |
| return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev), |
| nd_mapping->start, nd_mapping->size, |
| nd_mapping->position); |
| } |
| |
| #define REGION_MAPPING(idx) \ |
| static ssize_t mapping##idx##_show(struct device *dev, \ |
| struct device_attribute *attr, char *buf) \ |
| { \ |
| return mappingN(dev, buf, idx); \ |
| } \ |
| static DEVICE_ATTR_RO(mapping##idx) |
| |
| /* |
| * 32 should be enough for a while, even in the presence of socket |
| * interleave a 32-way interleave set is a degenerate case. |
| */ |
| REGION_MAPPING(0); |
| REGION_MAPPING(1); |
| REGION_MAPPING(2); |
| REGION_MAPPING(3); |
| REGION_MAPPING(4); |
| REGION_MAPPING(5); |
| REGION_MAPPING(6); |
| REGION_MAPPING(7); |
| REGION_MAPPING(8); |
| REGION_MAPPING(9); |
| REGION_MAPPING(10); |
| REGION_MAPPING(11); |
| REGION_MAPPING(12); |
| REGION_MAPPING(13); |
| REGION_MAPPING(14); |
| REGION_MAPPING(15); |
| REGION_MAPPING(16); |
| REGION_MAPPING(17); |
| REGION_MAPPING(18); |
| REGION_MAPPING(19); |
| REGION_MAPPING(20); |
| REGION_MAPPING(21); |
| REGION_MAPPING(22); |
| REGION_MAPPING(23); |
| REGION_MAPPING(24); |
| REGION_MAPPING(25); |
| REGION_MAPPING(26); |
| REGION_MAPPING(27); |
| REGION_MAPPING(28); |
| REGION_MAPPING(29); |
| REGION_MAPPING(30); |
| REGION_MAPPING(31); |
| |
| static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n) |
| { |
| struct device *dev = container_of(kobj, struct device, kobj); |
| struct nd_region *nd_region = to_nd_region(dev); |
| |
| if (n < nd_region->ndr_mappings) |
| return a->mode; |
| return 0; |
| } |
| |
| static struct attribute *mapping_attributes[] = { |
| &dev_attr_mapping0.attr, |
| &dev_attr_mapping1.attr, |
| &dev_attr_mapping2.attr, |
| &dev_attr_mapping3.attr, |
| &dev_attr_mapping4.attr, |
| &dev_attr_mapping5.attr, |
| &dev_attr_mapping6.attr, |
| &dev_attr_mapping7.attr, |
| &dev_attr_mapping8.attr, |
| &dev_attr_mapping9.attr, |
| &dev_attr_mapping10.attr, |
| &dev_attr_mapping11.attr, |
| &dev_attr_mapping12.attr, |
| &dev_attr_mapping13.attr, |
| &dev_attr_mapping14.attr, |
| &dev_attr_mapping15.attr, |
| &dev_attr_mapping16.attr, |
| &dev_attr_mapping17.attr, |
| &dev_attr_mapping18.attr, |
| &dev_attr_mapping19.attr, |
| &dev_attr_mapping20.attr, |
| &dev_attr_mapping21.attr, |
| &dev_attr_mapping22.attr, |
| &dev_attr_mapping23.attr, |
| &dev_attr_mapping24.attr, |
| &dev_attr_mapping25.attr, |
| &dev_attr_mapping26.attr, |
| &dev_attr_mapping27.attr, |
| &dev_attr_mapping28.attr, |
| &dev_attr_mapping29.attr, |
| &dev_attr_mapping30.attr, |
| &dev_attr_mapping31.attr, |
| NULL, |
| }; |
| |
| static const struct attribute_group nd_mapping_attribute_group = { |
| .is_visible = mapping_visible, |
| .attrs = mapping_attributes, |
| }; |
| |
| static const struct attribute_group nd_region_attribute_group = { |
| .attrs = nd_region_attributes, |
| .is_visible = region_visible, |
| }; |
| |
| static const struct attribute_group *nd_region_attribute_groups[] = { |
| &nd_device_attribute_group, |
| &nd_region_attribute_group, |
| &nd_numa_attribute_group, |
| &nd_mapping_attribute_group, |
| NULL, |
| }; |
| |
| static const struct device_type nd_blk_device_type = { |
| .name = "nd_blk", |
| .release = nd_region_release, |
| .groups = nd_region_attribute_groups, |
| }; |
| |
| static const struct device_type nd_pmem_device_type = { |
| .name = "nd_pmem", |
| .release = nd_region_release, |
| .groups = nd_region_attribute_groups, |
| }; |
| |
| static const struct device_type nd_volatile_device_type = { |
| .name = "nd_volatile", |
| .release = nd_region_release, |
| .groups = nd_region_attribute_groups, |
| }; |
| |
| bool is_nd_pmem(struct device *dev) |
| { |
| return dev ? dev->type == &nd_pmem_device_type : false; |
| } |
| |
| bool is_nd_blk(struct device *dev) |
| { |
| return dev ? dev->type == &nd_blk_device_type : false; |
| } |
| |
| bool is_nd_volatile(struct device *dev) |
| { |
| return dev ? dev->type == &nd_volatile_device_type : false; |
| } |
| |
| u64 nd_region_interleave_set_cookie(struct nd_region *nd_region, |
| struct nd_namespace_index *nsindex) |
| { |
| struct nd_interleave_set *nd_set = nd_region->nd_set; |
| |
| if (!nd_set) |
| return 0; |
| |
| if (nsindex && __le16_to_cpu(nsindex->major) == 1 |
| && __le16_to_cpu(nsindex->minor) == 1) |
| return nd_set->cookie1; |
| return nd_set->cookie2; |
| } |
| |
| u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region) |
| { |
| struct nd_interleave_set *nd_set = nd_region->nd_set; |
| |
| if (nd_set) |
| return nd_set->altcookie; |
| return 0; |
| } |
| |
| void nd_mapping_free_labels(struct nd_mapping *nd_mapping) |
| { |
| struct nd_label_ent *label_ent, *e; |
| |
| lockdep_assert_held(&nd_mapping->lock); |
| list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) { |
| list_del(&label_ent->list); |
| kfree(label_ent); |
| } |
| } |
| |
| /* |
| * When a namespace is activated create new seeds for the next |
| * namespace, or namespace-personality to be configured. |
| */ |
| void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev) |
| { |
| nvdimm_bus_lock(dev); |
| if (nd_region->ns_seed == dev) { |
| nd_region_create_ns_seed(nd_region); |
| } else if (is_nd_btt(dev)) { |
| struct nd_btt *nd_btt = to_nd_btt(dev); |
| |
| if (nd_region->btt_seed == dev) |
| nd_region_create_btt_seed(nd_region); |
| if (nd_region->ns_seed == &nd_btt->ndns->dev) |
| nd_region_create_ns_seed(nd_region); |
| } else if (is_nd_pfn(dev)) { |
| struct nd_pfn *nd_pfn = to_nd_pfn(dev); |
| |
| if (nd_region->pfn_seed == dev) |
| nd_region_create_pfn_seed(nd_region); |
| if (nd_region->ns_seed == &nd_pfn->ndns->dev) |
| nd_region_create_ns_seed(nd_region); |
| } else if (is_nd_dax(dev)) { |
| struct nd_dax *nd_dax = to_nd_dax(dev); |
| |
| if (nd_region->dax_seed == dev) |
| nd_region_create_dax_seed(nd_region); |
| if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev) |
| nd_region_create_ns_seed(nd_region); |
| } |
| nvdimm_bus_unlock(dev); |
| } |
| |
| int nd_blk_region_init(struct nd_region *nd_region) |
| { |
| struct device *dev = &nd_region->dev; |
| struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); |
| |
| if (!is_nd_blk(dev)) |
| return 0; |
| |
| if (nd_region->ndr_mappings < 1) { |
| dev_dbg(dev, "invalid BLK region\n"); |
| return -ENXIO; |
| } |
| |
| return to_nd_blk_region(dev)->enable(nvdimm_bus, dev); |
| } |
| |
| /** |
| * nd_region_acquire_lane - allocate and lock a lane |
| * @nd_region: region id and number of lanes possible |
| * |
| * A lane correlates to a BLK-data-window and/or a log slot in the BTT. |
| * We optimize for the common case where there are 256 lanes, one |
| * per-cpu. For larger systems we need to lock to share lanes. For now |
| * this implementation assumes the cost of maintaining an allocator for |
| * free lanes is on the order of the lock hold time, so it implements a |
| * static lane = cpu % num_lanes mapping. |
| * |
| * In the case of a BTT instance on top of a BLK namespace a lane may be |
| * acquired recursively. We lock on the first instance. |
| * |
| * In the case of a BTT instance on top of PMEM, we only acquire a lane |
| * for the BTT metadata updates. |
| */ |
| unsigned int nd_region_acquire_lane(struct nd_region *nd_region) |
| { |
| unsigned int cpu, lane; |
| |
| cpu = get_cpu(); |
| if (nd_region->num_lanes < nr_cpu_ids) { |
| struct nd_percpu_lane *ndl_lock, *ndl_count; |
| |
| lane = cpu % nd_region->num_lanes; |
| ndl_count = per_cpu_ptr(nd_region->lane, cpu); |
| ndl_lock = per_cpu_ptr(nd_region->lane, lane); |
| if (ndl_count->count++ == 0) |
| spin_lock(&ndl_lock->lock); |
| } else |
| lane = cpu; |
| |
| return lane; |
| } |
| EXPORT_SYMBOL(nd_region_acquire_lane); |
| |
| void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane) |
| { |
| if (nd_region->num_lanes < nr_cpu_ids) { |
| unsigned int cpu = get_cpu(); |
| struct nd_percpu_lane *ndl_lock, *ndl_count; |
| |
| ndl_count = per_cpu_ptr(nd_region->lane, cpu); |
| ndl_lock = per_cpu_ptr(nd_region->lane, lane); |
| if (--ndl_count->count == 0) |
| spin_unlock(&ndl_lock->lock); |
| put_cpu(); |
| } |
| put_cpu(); |
| } |
| EXPORT_SYMBOL(nd_region_release_lane); |
| |
| /* |
| * PowerPC requires this alignment for memremap_pages(). All other archs |
| * should be ok with SUBSECTION_SIZE (see memremap_compat_align()). |
| */ |
| #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M |
| |
| static unsigned long default_align(struct nd_region *nd_region) |
| { |
| unsigned long align; |
| int i, mappings; |
| u32 remainder; |
| |
| if (is_nd_blk(&nd_region->dev)) |
| align = PAGE_SIZE; |
| else |
| align = MEMREMAP_COMPAT_ALIGN_MAX; |
| |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| |
| if (test_bit(NDD_ALIASING, &nvdimm->flags)) { |
| align = MEMREMAP_COMPAT_ALIGN_MAX; |
| break; |
| } |
| } |
| |
| mappings = max_t(u16, 1, nd_region->ndr_mappings); |
| div_u64_rem(align, mappings, &remainder); |
| if (remainder) |
| align *= mappings; |
| |
| return align; |
| } |
| |
| static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus, |
| struct nd_region_desc *ndr_desc, |
| const struct device_type *dev_type, const char *caller) |
| { |
| struct nd_region *nd_region; |
| struct device *dev; |
| void *region_buf; |
| unsigned int i; |
| int ro = 0; |
| |
| for (i = 0; i < ndr_desc->num_mappings; i++) { |
| struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; |
| struct nvdimm *nvdimm = mapping->nvdimm; |
| |
| if ((mapping->start | mapping->size) % PAGE_SIZE) { |
| dev_err(&nvdimm_bus->dev, |
| "%s: %s mapping%d is not %ld aligned\n", |
| caller, dev_name(&nvdimm->dev), i, PAGE_SIZE); |
| return NULL; |
| } |
| |
| if (test_bit(NDD_UNARMED, &nvdimm->flags)) |
| ro = 1; |
| |
| if (test_bit(NDD_NOBLK, &nvdimm->flags) |
| && dev_type == &nd_blk_device_type) { |
| dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n", |
| caller, dev_name(&nvdimm->dev), i); |
| return NULL; |
| } |
| } |
| |
| if (dev_type == &nd_blk_device_type) { |
| struct nd_blk_region_desc *ndbr_desc; |
| struct nd_blk_region *ndbr; |
| |
| ndbr_desc = to_blk_region_desc(ndr_desc); |
| ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping) |
| * ndr_desc->num_mappings, |
| GFP_KERNEL); |
| if (ndbr) { |
| nd_region = &ndbr->nd_region; |
| ndbr->enable = ndbr_desc->enable; |
| ndbr->do_io = ndbr_desc->do_io; |
| } |
| region_buf = ndbr; |
| } else { |
| nd_region = kzalloc(struct_size(nd_region, mapping, |
| ndr_desc->num_mappings), |
| GFP_KERNEL); |
| region_buf = nd_region; |
| } |
| |
| if (!region_buf) |
| return NULL; |
| nd_region->id = memregion_alloc(GFP_KERNEL); |
| if (nd_region->id < 0) |
| goto err_id; |
| |
| nd_region->lane = alloc_percpu(struct nd_percpu_lane); |
| if (!nd_region->lane) |
| goto err_percpu; |
| |
| for (i = 0; i < nr_cpu_ids; i++) { |
| struct nd_percpu_lane *ndl; |
| |
| ndl = per_cpu_ptr(nd_region->lane, i); |
| spin_lock_init(&ndl->lock); |
| ndl->count = 0; |
| } |
| |
| for (i = 0; i < ndr_desc->num_mappings; i++) { |
| struct nd_mapping_desc *mapping = &ndr_desc->mapping[i]; |
| struct nvdimm *nvdimm = mapping->nvdimm; |
| |
| nd_region->mapping[i].nvdimm = nvdimm; |
| nd_region->mapping[i].start = mapping->start; |
| nd_region->mapping[i].size = mapping->size; |
| nd_region->mapping[i].position = mapping->position; |
| INIT_LIST_HEAD(&nd_region->mapping[i].labels); |
| mutex_init(&nd_region->mapping[i].lock); |
| |
| get_device(&nvdimm->dev); |
| } |
| nd_region->ndr_mappings = ndr_desc->num_mappings; |
| nd_region->provider_data = ndr_desc->provider_data; |
| nd_region->nd_set = ndr_desc->nd_set; |
| nd_region->num_lanes = ndr_desc->num_lanes; |
| nd_region->flags = ndr_desc->flags; |
| nd_region->ro = ro; |
| nd_region->numa_node = ndr_desc->numa_node; |
| nd_region->target_node = ndr_desc->target_node; |
| ida_init(&nd_region->ns_ida); |
| ida_init(&nd_region->btt_ida); |
| ida_init(&nd_region->pfn_ida); |
| ida_init(&nd_region->dax_ida); |
| dev = &nd_region->dev; |
| dev_set_name(dev, "region%d", nd_region->id); |
| dev->parent = &nvdimm_bus->dev; |
| dev->type = dev_type; |
| dev->groups = ndr_desc->attr_groups; |
| dev->of_node = ndr_desc->of_node; |
| nd_region->ndr_size = resource_size(ndr_desc->res); |
| nd_region->ndr_start = ndr_desc->res->start; |
| nd_region->align = default_align(nd_region); |
| if (ndr_desc->flush) |
| nd_region->flush = ndr_desc->flush; |
| else |
| nd_region->flush = NULL; |
| |
| nd_device_register(dev); |
| |
| return nd_region; |
| |
| err_percpu: |
| memregion_free(nd_region->id); |
| err_id: |
| kfree(region_buf); |
| return NULL; |
| } |
| |
| struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus, |
| struct nd_region_desc *ndr_desc) |
| { |
| ndr_desc->num_lanes = ND_MAX_LANES; |
| return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type, |
| __func__); |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create); |
| |
| struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus, |
| struct nd_region_desc *ndr_desc) |
| { |
| if (ndr_desc->num_mappings > 1) |
| return NULL; |
| ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES); |
| return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type, |
| __func__); |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_blk_region_create); |
| |
| struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus, |
| struct nd_region_desc *ndr_desc) |
| { |
| ndr_desc->num_lanes = ND_MAX_LANES; |
| return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type, |
| __func__); |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create); |
| |
| int nvdimm_flush(struct nd_region *nd_region, struct bio *bio) |
| { |
| int rc = 0; |
| |
| if (!nd_region->flush) |
| rc = generic_nvdimm_flush(nd_region); |
| else { |
| if (nd_region->flush(nd_region, bio)) |
| rc = -EIO; |
| } |
| |
| return rc; |
| } |
| /** |
| * nvdimm_flush - flush any posted write queues between the cpu and pmem media |
| * @nd_region: blk or interleaved pmem region |
| */ |
| int generic_nvdimm_flush(struct nd_region *nd_region) |
| { |
| struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev); |
| int i, idx; |
| |
| /* |
| * Try to encourage some diversity in flush hint addresses |
| * across cpus assuming a limited number of flush hints. |
| */ |
| idx = this_cpu_read(flush_idx); |
| idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8)); |
| |
| /* |
| * The pmem_wmb() is needed to 'sfence' all |
| * previous writes such that they are architecturally visible for |
| * the platform buffer flush. Note that we've already arranged for pmem |
| * writes to avoid the cache via memcpy_flushcache(). The final |
| * wmb() ensures ordering for the NVDIMM flush write. |
| */ |
| pmem_wmb(); |
| for (i = 0; i < nd_region->ndr_mappings; i++) |
| if (ndrd_get_flush_wpq(ndrd, i, 0)) |
| writeq(1, ndrd_get_flush_wpq(ndrd, i, idx)); |
| wmb(); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_flush); |
| |
| /** |
| * nvdimm_has_flush - determine write flushing requirements |
| * @nd_region: blk or interleaved pmem region |
| * |
| * Returns 1 if writes require flushing |
| * Returns 0 if writes do not require flushing |
| * Returns -ENXIO if flushing capability can not be determined |
| */ |
| int nvdimm_has_flush(struct nd_region *nd_region) |
| { |
| int i; |
| |
| /* no nvdimm or pmem api == flushing capability unknown */ |
| if (nd_region->ndr_mappings == 0 |
| || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API)) |
| return -ENXIO; |
| |
| for (i = 0; i < nd_region->ndr_mappings; i++) { |
| struct nd_mapping *nd_mapping = &nd_region->mapping[i]; |
| struct nvdimm *nvdimm = nd_mapping->nvdimm; |
| |
| /* flush hints present / available */ |
| if (nvdimm->num_flush) |
| return 1; |
| } |
| |
| /* |
| * The platform defines dimm devices without hints, assume |
| * platform persistence mechanism like ADR |
| */ |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_has_flush); |
| |
| int nvdimm_has_cache(struct nd_region *nd_region) |
| { |
| return is_nd_pmem(&nd_region->dev) && |
| !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags); |
| } |
| EXPORT_SYMBOL_GPL(nvdimm_has_cache); |
| |
| bool is_nvdimm_sync(struct nd_region *nd_region) |
| { |
| if (is_nd_volatile(&nd_region->dev)) |
| return true; |
| |
| return is_nd_pmem(&nd_region->dev) && |
| !test_bit(ND_REGION_ASYNC, &nd_region->flags); |
| } |
| EXPORT_SYMBOL_GPL(is_nvdimm_sync); |
| |
| struct conflict_context { |
| struct nd_region *nd_region; |
| resource_size_t start, size; |
| }; |
| |
| static int region_conflict(struct device *dev, void *data) |
| { |
| struct nd_region *nd_region; |
| struct conflict_context *ctx = data; |
| resource_size_t res_end, region_end, region_start; |
| |
| if (!is_memory(dev)) |
| return 0; |
| |
| nd_region = to_nd_region(dev); |
| if (nd_region == ctx->nd_region) |
| return 0; |
| |
| res_end = ctx->start + ctx->size; |
| region_start = nd_region->ndr_start; |
| region_end = region_start + nd_region->ndr_size; |
| if (ctx->start >= region_start && ctx->start < region_end) |
| return -EBUSY; |
| if (res_end > region_start && res_end <= region_end) |
| return -EBUSY; |
| return 0; |
| } |
| |
| int nd_region_conflict(struct nd_region *nd_region, resource_size_t start, |
| resource_size_t size) |
| { |
| struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); |
| struct conflict_context ctx = { |
| .nd_region = nd_region, |
| .start = start, |
| .size = size, |
| }; |
| |
| return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict); |
| } |