| /* |
| * Kernel Probes (KProbes) |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| * |
| * Copyright (C) IBM Corporation, 2002, 2004 |
| * |
| * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel |
| * Probes initial implementation ( includes contributions from |
| * Rusty Russell). |
| * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes |
| * interface to access function arguments. |
| * 2004-Oct Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> adapted for x86_64 from i386. |
| * 2005-Mar Roland McGrath <roland@redhat.com> |
| * Fixed to handle %rip-relative addressing mode correctly. |
| * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston |
| * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi |
| * <prasanna@in.ibm.com> added function-return probes. |
| * 2005-May Rusty Lynch <rusty.lynch@intel.com> |
| * Added function return probes functionality |
| * 2006-Feb Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added |
| * kprobe-booster and kretprobe-booster for i386. |
| * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster |
| * and kretprobe-booster for x86-64 |
| * 2007-Dec Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven |
| * <arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> |
| * unified x86 kprobes code. |
| */ |
| #include <linux/kprobes.h> |
| #include <linux/ptrace.h> |
| #include <linux/string.h> |
| #include <linux/slab.h> |
| #include <linux/hardirq.h> |
| #include <linux/preempt.h> |
| #include <linux/sched/debug.h> |
| #include <linux/extable.h> |
| #include <linux/kdebug.h> |
| #include <linux/kallsyms.h> |
| #include <linux/ftrace.h> |
| #include <linux/frame.h> |
| #include <linux/kasan.h> |
| #include <linux/moduleloader.h> |
| |
| #include <asm/text-patching.h> |
| #include <asm/cacheflush.h> |
| #include <asm/desc.h> |
| #include <asm/pgtable.h> |
| #include <linux/uaccess.h> |
| #include <asm/alternative.h> |
| #include <asm/insn.h> |
| #include <asm/debugreg.h> |
| #include <asm/set_memory.h> |
| |
| #include "common.h" |
| |
| void jprobe_return_end(void); |
| |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); |
| |
| #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) |
| |
| #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ |
| (((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) | \ |
| (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) | \ |
| (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) | \ |
| (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf)) \ |
| << (row % 32)) |
| /* |
| * Undefined/reserved opcodes, conditional jump, Opcode Extension |
| * Groups, and some special opcodes can not boost. |
| * This is non-const and volatile to keep gcc from statically |
| * optimizing it out, as variable_test_bit makes gcc think only |
| * *(unsigned long*) is used. |
| */ |
| static volatile u32 twobyte_is_boostable[256 / 32] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ---------------------------------------------- */ |
| W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ |
| W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */ |
| W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ |
| W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ |
| W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ |
| W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ |
| W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ |
| W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ |
| W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ |
| W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ |
| W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ |
| W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ |
| W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ |
| W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ |
| W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ |
| W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0) /* f0 */ |
| /* ----------------------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| #undef W |
| |
| struct kretprobe_blackpoint kretprobe_blacklist[] = { |
| {"__switch_to", }, /* This function switches only current task, but |
| doesn't switch kernel stack.*/ |
| {NULL, NULL} /* Terminator */ |
| }; |
| |
| const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); |
| |
| static nokprobe_inline void |
| __synthesize_relative_insn(void *dest, void *from, void *to, u8 op) |
| { |
| struct __arch_relative_insn { |
| u8 op; |
| s32 raddr; |
| } __packed *insn; |
| |
| insn = (struct __arch_relative_insn *)dest; |
| insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); |
| insn->op = op; |
| } |
| |
| /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ |
| void synthesize_reljump(void *dest, void *from, void *to) |
| { |
| __synthesize_relative_insn(dest, from, to, RELATIVEJUMP_OPCODE); |
| } |
| NOKPROBE_SYMBOL(synthesize_reljump); |
| |
| /* Insert a call instruction at address 'from', which calls address 'to'.*/ |
| void synthesize_relcall(void *dest, void *from, void *to) |
| { |
| __synthesize_relative_insn(dest, from, to, RELATIVECALL_OPCODE); |
| } |
| NOKPROBE_SYMBOL(synthesize_relcall); |
| |
| /* |
| * Skip the prefixes of the instruction. |
| */ |
| static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn) |
| { |
| insn_attr_t attr; |
| |
| attr = inat_get_opcode_attribute((insn_byte_t)*insn); |
| while (inat_is_legacy_prefix(attr)) { |
| insn++; |
| attr = inat_get_opcode_attribute((insn_byte_t)*insn); |
| } |
| #ifdef CONFIG_X86_64 |
| if (inat_is_rex_prefix(attr)) |
| insn++; |
| #endif |
| return insn; |
| } |
| NOKPROBE_SYMBOL(skip_prefixes); |
| |
| /* |
| * Returns non-zero if INSN is boostable. |
| * RIP relative instructions are adjusted at copying time in 64 bits mode |
| */ |
| int can_boost(struct insn *insn, void *addr) |
| { |
| kprobe_opcode_t opcode; |
| |
| if (search_exception_tables((unsigned long)addr)) |
| return 0; /* Page fault may occur on this address. */ |
| |
| /* 2nd-byte opcode */ |
| if (insn->opcode.nbytes == 2) |
| return test_bit(insn->opcode.bytes[1], |
| (unsigned long *)twobyte_is_boostable); |
| |
| if (insn->opcode.nbytes != 1) |
| return 0; |
| |
| /* Can't boost Address-size override prefix */ |
| if (unlikely(inat_is_address_size_prefix(insn->attr))) |
| return 0; |
| |
| opcode = insn->opcode.bytes[0]; |
| |
| switch (opcode & 0xf0) { |
| case 0x60: |
| /* can't boost "bound" */ |
| return (opcode != 0x62); |
| case 0x70: |
| return 0; /* can't boost conditional jump */ |
| case 0x90: |
| return opcode != 0x9a; /* can't boost call far */ |
| case 0xc0: |
| /* can't boost software-interruptions */ |
| return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; |
| case 0xd0: |
| /* can boost AA* and XLAT */ |
| return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); |
| case 0xe0: |
| /* can boost in/out and absolute jmps */ |
| return ((opcode & 0x04) || opcode == 0xea); |
| case 0xf0: |
| /* clear and set flags are boostable */ |
| return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); |
| default: |
| /* CS override prefix and call are not boostable */ |
| return (opcode != 0x2e && opcode != 0x9a); |
| } |
| } |
| |
| static unsigned long |
| __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) |
| { |
| struct kprobe *kp; |
| unsigned long faddr; |
| |
| kp = get_kprobe((void *)addr); |
| faddr = ftrace_location(addr); |
| /* |
| * Addresses inside the ftrace location are refused by |
| * arch_check_ftrace_location(). Something went terribly wrong |
| * if such an address is checked here. |
| */ |
| if (WARN_ON(faddr && faddr != addr)) |
| return 0UL; |
| /* |
| * Use the current code if it is not modified by Kprobe |
| * and it cannot be modified by ftrace. |
| */ |
| if (!kp && !faddr) |
| return addr; |
| |
| /* |
| * Basically, kp->ainsn.insn has an original instruction. |
| * However, RIP-relative instruction can not do single-stepping |
| * at different place, __copy_instruction() tweaks the displacement of |
| * that instruction. In that case, we can't recover the instruction |
| * from the kp->ainsn.insn. |
| * |
| * On the other hand, in case on normal Kprobe, kp->opcode has a copy |
| * of the first byte of the probed instruction, which is overwritten |
| * by int3. And the instruction at kp->addr is not modified by kprobes |
| * except for the first byte, we can recover the original instruction |
| * from it and kp->opcode. |
| * |
| * In case of Kprobes using ftrace, we do not have a copy of |
| * the original instruction. In fact, the ftrace location might |
| * be modified at anytime and even could be in an inconsistent state. |
| * Fortunately, we know that the original code is the ideal 5-byte |
| * long NOP. |
| */ |
| if (probe_kernel_read(buf, (void *)addr, |
| MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) |
| return 0UL; |
| |
| if (faddr) |
| memcpy(buf, ideal_nops[NOP_ATOMIC5], 5); |
| else |
| buf[0] = kp->opcode; |
| return (unsigned long)buf; |
| } |
| |
| /* |
| * Recover the probed instruction at addr for further analysis. |
| * Caller must lock kprobes by kprobe_mutex, or disable preemption |
| * for preventing to release referencing kprobes. |
| * Returns zero if the instruction can not get recovered (or access failed). |
| */ |
| unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) |
| { |
| unsigned long __addr; |
| |
| __addr = __recover_optprobed_insn(buf, addr); |
| if (__addr != addr) |
| return __addr; |
| |
| return __recover_probed_insn(buf, addr); |
| } |
| |
| /* Check if paddr is at an instruction boundary */ |
| static int can_probe(unsigned long paddr) |
| { |
| unsigned long addr, __addr, offset = 0; |
| struct insn insn; |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| |
| if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) |
| return 0; |
| |
| /* Decode instructions */ |
| addr = paddr - offset; |
| while (addr < paddr) { |
| /* |
| * Check if the instruction has been modified by another |
| * kprobe, in which case we replace the breakpoint by the |
| * original instruction in our buffer. |
| * Also, jump optimization will change the breakpoint to |
| * relative-jump. Since the relative-jump itself is |
| * normally used, we just go through if there is no kprobe. |
| */ |
| __addr = recover_probed_instruction(buf, addr); |
| if (!__addr) |
| return 0; |
| kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE); |
| insn_get_length(&insn); |
| |
| /* |
| * Another debugging subsystem might insert this breakpoint. |
| * In that case, we can't recover it. |
| */ |
| if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) |
| return 0; |
| addr += insn.length; |
| } |
| |
| return (addr == paddr); |
| } |
| |
| /* |
| * Returns non-zero if opcode modifies the interrupt flag. |
| */ |
| static int is_IF_modifier(kprobe_opcode_t *insn) |
| { |
| /* Skip prefixes */ |
| insn = skip_prefixes(insn); |
| |
| switch (*insn) { |
| case 0xfa: /* cli */ |
| case 0xfb: /* sti */ |
| case 0xcf: /* iret/iretd */ |
| case 0x9d: /* popf/popfd */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Copy an instruction with recovering modified instruction by kprobes |
| * and adjust the displacement if the instruction uses the %rip-relative |
| * addressing mode. Note that since @real will be the final place of copied |
| * instruction, displacement must be adjust by @real, not @dest. |
| * This returns the length of copied instruction, or 0 if it has an error. |
| */ |
| int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn) |
| { |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| unsigned long recovered_insn = |
| recover_probed_instruction(buf, (unsigned long)src); |
| |
| if (!recovered_insn || !insn) |
| return 0; |
| |
| /* This can access kernel text if given address is not recovered */ |
| if (probe_kernel_read(dest, (void *)recovered_insn, MAX_INSN_SIZE)) |
| return 0; |
| |
| kernel_insn_init(insn, dest, MAX_INSN_SIZE); |
| insn_get_length(insn); |
| |
| /* Another subsystem puts a breakpoint, failed to recover */ |
| if (insn->opcode.bytes[0] == BREAKPOINT_INSTRUCTION) |
| return 0; |
| |
| #ifdef CONFIG_X86_64 |
| /* Only x86_64 has RIP relative instructions */ |
| if (insn_rip_relative(insn)) { |
| s64 newdisp; |
| u8 *disp; |
| /* |
| * The copied instruction uses the %rip-relative addressing |
| * mode. Adjust the displacement for the difference between |
| * the original location of this instruction and the location |
| * of the copy that will actually be run. The tricky bit here |
| * is making sure that the sign extension happens correctly in |
| * this calculation, since we need a signed 32-bit result to |
| * be sign-extended to 64 bits when it's added to the %rip |
| * value and yield the same 64-bit result that the sign- |
| * extension of the original signed 32-bit displacement would |
| * have given. |
| */ |
| newdisp = (u8 *) src + (s64) insn->displacement.value |
| - (u8 *) real; |
| if ((s64) (s32) newdisp != newdisp) { |
| pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp); |
| pr_err("\tSrc: %p, Dest: %p, old disp: %x\n", |
| src, real, insn->displacement.value); |
| return 0; |
| } |
| disp = (u8 *) dest + insn_offset_displacement(insn); |
| *(s32 *) disp = (s32) newdisp; |
| } |
| #endif |
| return insn->length; |
| } |
| |
| /* Prepare reljump right after instruction to boost */ |
| static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p, |
| struct insn *insn) |
| { |
| int len = insn->length; |
| |
| if (can_boost(insn, p->addr) && |
| MAX_INSN_SIZE - len >= RELATIVEJUMP_SIZE) { |
| /* |
| * These instructions can be executed directly if it |
| * jumps back to correct address. |
| */ |
| synthesize_reljump(buf + len, p->ainsn.insn + len, |
| p->addr + insn->length); |
| len += RELATIVEJUMP_SIZE; |
| p->ainsn.boostable = true; |
| } else { |
| p->ainsn.boostable = false; |
| } |
| |
| return len; |
| } |
| |
| /* Make page to RO mode when allocate it */ |
| void *alloc_insn_page(void) |
| { |
| void *page; |
| |
| page = module_alloc(PAGE_SIZE); |
| if (page) |
| set_memory_ro((unsigned long)page & PAGE_MASK, 1); |
| |
| return page; |
| } |
| |
| /* Recover page to RW mode before releasing it */ |
| void free_insn_page(void *page) |
| { |
| set_memory_nx((unsigned long)page & PAGE_MASK, 1); |
| set_memory_rw((unsigned long)page & PAGE_MASK, 1); |
| module_memfree(page); |
| } |
| |
| static int arch_copy_kprobe(struct kprobe *p) |
| { |
| struct insn insn; |
| kprobe_opcode_t buf[MAX_INSN_SIZE]; |
| int len; |
| |
| /* Copy an instruction with recovering if other optprobe modifies it.*/ |
| len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn); |
| if (!len) |
| return -EINVAL; |
| |
| /* |
| * __copy_instruction can modify the displacement of the instruction, |
| * but it doesn't affect boostable check. |
| */ |
| len = prepare_boost(buf, p, &insn); |
| |
| /* Check whether the instruction modifies Interrupt Flag or not */ |
| p->ainsn.if_modifier = is_IF_modifier(buf); |
| |
| /* Also, displacement change doesn't affect the first byte */ |
| p->opcode = buf[0]; |
| |
| /* OK, write back the instruction(s) into ROX insn buffer */ |
| text_poke(p->ainsn.insn, buf, len); |
| |
| return 0; |
| } |
| |
| int arch_prepare_kprobe(struct kprobe *p) |
| { |
| int ret; |
| |
| if (alternatives_text_reserved(p->addr, p->addr)) |
| return -EINVAL; |
| |
| if (!can_probe((unsigned long)p->addr)) |
| return -EILSEQ; |
| /* insn: must be on special executable page on x86. */ |
| p->ainsn.insn = get_insn_slot(); |
| if (!p->ainsn.insn) |
| return -ENOMEM; |
| |
| ret = arch_copy_kprobe(p); |
| if (ret) { |
| free_insn_slot(p->ainsn.insn, 0); |
| p->ainsn.insn = NULL; |
| } |
| |
| return ret; |
| } |
| |
| void arch_arm_kprobe(struct kprobe *p) |
| { |
| text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); |
| } |
| |
| void arch_disarm_kprobe(struct kprobe *p) |
| { |
| text_poke(p->addr, &p->opcode, 1); |
| } |
| |
| void arch_remove_kprobe(struct kprobe *p) |
| { |
| if (p->ainsn.insn) { |
| free_insn_slot(p->ainsn.insn, p->ainsn.boostable); |
| p->ainsn.insn = NULL; |
| } |
| } |
| |
| static nokprobe_inline void |
| save_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| kcb->prev_kprobe.kp = kprobe_running(); |
| kcb->prev_kprobe.status = kcb->kprobe_status; |
| kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; |
| kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; |
| } |
| |
| static nokprobe_inline void |
| restore_previous_kprobe(struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); |
| kcb->kprobe_status = kcb->prev_kprobe.status; |
| kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; |
| kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; |
| } |
| |
| static nokprobe_inline void |
| set_current_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| __this_cpu_write(current_kprobe, p); |
| kcb->kprobe_saved_flags = kcb->kprobe_old_flags |
| = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); |
| if (p->ainsn.if_modifier) |
| kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; |
| } |
| |
| static nokprobe_inline void clear_btf(void) |
| { |
| if (test_thread_flag(TIF_BLOCKSTEP)) { |
| unsigned long debugctl = get_debugctlmsr(); |
| |
| debugctl &= ~DEBUGCTLMSR_BTF; |
| update_debugctlmsr(debugctl); |
| } |
| } |
| |
| static nokprobe_inline void restore_btf(void) |
| { |
| if (test_thread_flag(TIF_BLOCKSTEP)) { |
| unsigned long debugctl = get_debugctlmsr(); |
| |
| debugctl |= DEBUGCTLMSR_BTF; |
| update_debugctlmsr(debugctl); |
| } |
| } |
| |
| void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) |
| { |
| unsigned long *sara = stack_addr(regs); |
| |
| ri->ret_addr = (kprobe_opcode_t *) *sara; |
| |
| /* Replace the return addr with trampoline addr */ |
| *sara = (unsigned long) &kretprobe_trampoline; |
| } |
| NOKPROBE_SYMBOL(arch_prepare_kretprobe); |
| |
| static void setup_singlestep(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb, int reenter) |
| { |
| if (setup_detour_execution(p, regs, reenter)) |
| return; |
| |
| #if !defined(CONFIG_PREEMPT) |
| if (p->ainsn.boostable && !p->post_handler) { |
| /* Boost up -- we can execute copied instructions directly */ |
| if (!reenter) |
| reset_current_kprobe(); |
| /* |
| * Reentering boosted probe doesn't reset current_kprobe, |
| * nor set current_kprobe, because it doesn't use single |
| * stepping. |
| */ |
| regs->ip = (unsigned long)p->ainsn.insn; |
| preempt_enable_no_resched(); |
| return; |
| } |
| #endif |
| if (reenter) { |
| save_previous_kprobe(kcb); |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_REENTER; |
| } else |
| kcb->kprobe_status = KPROBE_HIT_SS; |
| /* Prepare real single stepping */ |
| clear_btf(); |
| regs->flags |= X86_EFLAGS_TF; |
| regs->flags &= ~X86_EFLAGS_IF; |
| /* single step inline if the instruction is an int3 */ |
| if (p->opcode == BREAKPOINT_INSTRUCTION) |
| regs->ip = (unsigned long)p->addr; |
| else |
| regs->ip = (unsigned long)p->ainsn.insn; |
| } |
| NOKPROBE_SYMBOL(setup_singlestep); |
| |
| /* |
| * We have reentered the kprobe_handler(), since another probe was hit while |
| * within the handler. We save the original kprobes variables and just single |
| * step on the instruction of the new probe without calling any user handlers. |
| */ |
| static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| switch (kcb->kprobe_status) { |
| case KPROBE_HIT_SSDONE: |
| case KPROBE_HIT_ACTIVE: |
| case KPROBE_HIT_SS: |
| kprobes_inc_nmissed_count(p); |
| setup_singlestep(p, regs, kcb, 1); |
| break; |
| case KPROBE_REENTER: |
| /* A probe has been hit in the codepath leading up to, or just |
| * after, single-stepping of a probed instruction. This entire |
| * codepath should strictly reside in .kprobes.text section. |
| * Raise a BUG or we'll continue in an endless reentering loop |
| * and eventually a stack overflow. |
| */ |
| printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", |
| p->addr); |
| dump_kprobe(p); |
| BUG(); |
| default: |
| /* impossible cases */ |
| WARN_ON(1); |
| return 0; |
| } |
| |
| return 1; |
| } |
| NOKPROBE_SYMBOL(reenter_kprobe); |
| |
| /* |
| * Interrupts are disabled on entry as trap3 is an interrupt gate and they |
| * remain disabled throughout this function. |
| */ |
| int kprobe_int3_handler(struct pt_regs *regs) |
| { |
| kprobe_opcode_t *addr; |
| struct kprobe *p; |
| struct kprobe_ctlblk *kcb; |
| |
| if (user_mode(regs)) |
| return 0; |
| |
| addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); |
| /* |
| * We don't want to be preempted for the entire |
| * duration of kprobe processing. We conditionally |
| * re-enable preemption at the end of this function, |
| * and also in reenter_kprobe() and setup_singlestep(). |
| */ |
| preempt_disable(); |
| |
| kcb = get_kprobe_ctlblk(); |
| p = get_kprobe(addr); |
| |
| if (p) { |
| if (kprobe_running()) { |
| if (reenter_kprobe(p, regs, kcb)) |
| return 1; |
| } else { |
| set_current_kprobe(p, regs, kcb); |
| kcb->kprobe_status = KPROBE_HIT_ACTIVE; |
| |
| /* |
| * If we have no pre-handler or it returned 0, we |
| * continue with normal processing. If we have a |
| * pre-handler and it returned non-zero, it prepped |
| * for calling the break_handler below on re-entry |
| * for jprobe processing, so get out doing nothing |
| * more here. |
| */ |
| if (!p->pre_handler || !p->pre_handler(p, regs)) |
| setup_singlestep(p, regs, kcb, 0); |
| return 1; |
| } |
| } else if (*addr != BREAKPOINT_INSTRUCTION) { |
| /* |
| * The breakpoint instruction was removed right |
| * after we hit it. Another cpu has removed |
| * either a probepoint or a debugger breakpoint |
| * at this address. In either case, no further |
| * handling of this interrupt is appropriate. |
| * Back up over the (now missing) int3 and run |
| * the original instruction. |
| */ |
| regs->ip = (unsigned long)addr; |
| preempt_enable_no_resched(); |
| return 1; |
| } else if (kprobe_running()) { |
| p = __this_cpu_read(current_kprobe); |
| if (p->break_handler && p->break_handler(p, regs)) { |
| if (!skip_singlestep(p, regs, kcb)) |
| setup_singlestep(p, regs, kcb, 0); |
| return 1; |
| } |
| } /* else: not a kprobe fault; let the kernel handle it */ |
| |
| preempt_enable_no_resched(); |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_int3_handler); |
| |
| /* |
| * When a retprobed function returns, this code saves registers and |
| * calls trampoline_handler() runs, which calls the kretprobe's handler. |
| */ |
| asm( |
| ".global kretprobe_trampoline\n" |
| ".type kretprobe_trampoline, @function\n" |
| "kretprobe_trampoline:\n" |
| #ifdef CONFIG_X86_64 |
| /* We don't bother saving the ss register */ |
| " pushq %rsp\n" |
| " pushfq\n" |
| SAVE_REGS_STRING |
| " movq %rsp, %rdi\n" |
| " call trampoline_handler\n" |
| /* Replace saved sp with true return address. */ |
| " movq %rax, 152(%rsp)\n" |
| RESTORE_REGS_STRING |
| " popfq\n" |
| #else |
| " pushf\n" |
| SAVE_REGS_STRING |
| " movl %esp, %eax\n" |
| " call trampoline_handler\n" |
| /* Move flags to cs */ |
| " movl 56(%esp), %edx\n" |
| " movl %edx, 52(%esp)\n" |
| /* Replace saved flags with true return address. */ |
| " movl %eax, 56(%esp)\n" |
| RESTORE_REGS_STRING |
| " popf\n" |
| #endif |
| " ret\n" |
| ".size kretprobe_trampoline, .-kretprobe_trampoline\n" |
| ); |
| NOKPROBE_SYMBOL(kretprobe_trampoline); |
| STACK_FRAME_NON_STANDARD(kretprobe_trampoline); |
| |
| /* |
| * Called from kretprobe_trampoline |
| */ |
| __visible __used void *trampoline_handler(struct pt_regs *regs) |
| { |
| struct kretprobe_instance *ri = NULL; |
| struct hlist_head *head, empty_rp; |
| struct hlist_node *tmp; |
| unsigned long flags, orig_ret_address = 0; |
| unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; |
| kprobe_opcode_t *correct_ret_addr = NULL; |
| |
| INIT_HLIST_HEAD(&empty_rp); |
| kretprobe_hash_lock(current, &head, &flags); |
| /* fixup registers */ |
| #ifdef CONFIG_X86_64 |
| regs->cs = __KERNEL_CS; |
| #else |
| regs->cs = __KERNEL_CS | get_kernel_rpl(); |
| regs->gs = 0; |
| #endif |
| regs->ip = trampoline_address; |
| regs->orig_ax = ~0UL; |
| |
| /* |
| * It is possible to have multiple instances associated with a given |
| * task either because multiple functions in the call path have |
| * return probes installed on them, and/or more than one |
| * return probe was registered for a target function. |
| * |
| * We can handle this because: |
| * - instances are always pushed into the head of the list |
| * - when multiple return probes are registered for the same |
| * function, the (chronologically) first instance's ret_addr |
| * will be the real return address, and all the rest will |
| * point to kretprobe_trampoline. |
| */ |
| hlist_for_each_entry(ri, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_assert(ri, orig_ret_address, trampoline_address); |
| |
| correct_ret_addr = ri->ret_addr; |
| hlist_for_each_entry_safe(ri, tmp, head, hlist) { |
| if (ri->task != current) |
| /* another task is sharing our hash bucket */ |
| continue; |
| |
| orig_ret_address = (unsigned long)ri->ret_addr; |
| if (ri->rp && ri->rp->handler) { |
| __this_cpu_write(current_kprobe, &ri->rp->kp); |
| get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; |
| ri->ret_addr = correct_ret_addr; |
| ri->rp->handler(ri, regs); |
| __this_cpu_write(current_kprobe, NULL); |
| } |
| |
| recycle_rp_inst(ri, &empty_rp); |
| |
| if (orig_ret_address != trampoline_address) |
| /* |
| * This is the real return address. Any other |
| * instances associated with this task are for |
| * other calls deeper on the call stack |
| */ |
| break; |
| } |
| |
| kretprobe_hash_unlock(current, &flags); |
| |
| hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { |
| hlist_del(&ri->hlist); |
| kfree(ri); |
| } |
| return (void *)orig_ret_address; |
| } |
| NOKPROBE_SYMBOL(trampoline_handler); |
| |
| /* |
| * Called after single-stepping. p->addr is the address of the |
| * instruction whose first byte has been replaced by the "int 3" |
| * instruction. To avoid the SMP problems that can occur when we |
| * temporarily put back the original opcode to single-step, we |
| * single-stepped a copy of the instruction. The address of this |
| * copy is p->ainsn.insn. |
| * |
| * This function prepares to return from the post-single-step |
| * interrupt. We have to fix up the stack as follows: |
| * |
| * 0) Except in the case of absolute or indirect jump or call instructions, |
| * the new ip is relative to the copied instruction. We need to make |
| * it relative to the original instruction. |
| * |
| * 1) If the single-stepped instruction was pushfl, then the TF and IF |
| * flags are set in the just-pushed flags, and may need to be cleared. |
| * |
| * 2) If the single-stepped instruction was a call, the return address |
| * that is atop the stack is the address following the copied instruction. |
| * We need to make it the address following the original instruction. |
| * |
| * If this is the first time we've single-stepped the instruction at |
| * this probepoint, and the instruction is boostable, boost it: add a |
| * jump instruction after the copied instruction, that jumps to the next |
| * instruction after the probepoint. |
| */ |
| static void resume_execution(struct kprobe *p, struct pt_regs *regs, |
| struct kprobe_ctlblk *kcb) |
| { |
| unsigned long *tos = stack_addr(regs); |
| unsigned long copy_ip = (unsigned long)p->ainsn.insn; |
| unsigned long orig_ip = (unsigned long)p->addr; |
| kprobe_opcode_t *insn = p->ainsn.insn; |
| |
| /* Skip prefixes */ |
| insn = skip_prefixes(insn); |
| |
| regs->flags &= ~X86_EFLAGS_TF; |
| switch (*insn) { |
| case 0x9c: /* pushfl */ |
| *tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); |
| *tos |= kcb->kprobe_old_flags; |
| break; |
| case 0xc2: /* iret/ret/lret */ |
| case 0xc3: |
| case 0xca: |
| case 0xcb: |
| case 0xcf: |
| case 0xea: /* jmp absolute -- ip is correct */ |
| /* ip is already adjusted, no more changes required */ |
| p->ainsn.boostable = true; |
| goto no_change; |
| case 0xe8: /* call relative - Fix return addr */ |
| *tos = orig_ip + (*tos - copy_ip); |
| break; |
| #ifdef CONFIG_X86_32 |
| case 0x9a: /* call absolute -- same as call absolute, indirect */ |
| *tos = orig_ip + (*tos - copy_ip); |
| goto no_change; |
| #endif |
| case 0xff: |
| if ((insn[1] & 0x30) == 0x10) { |
| /* |
| * call absolute, indirect |
| * Fix return addr; ip is correct. |
| * But this is not boostable |
| */ |
| *tos = orig_ip + (*tos - copy_ip); |
| goto no_change; |
| } else if (((insn[1] & 0x31) == 0x20) || |
| ((insn[1] & 0x31) == 0x21)) { |
| /* |
| * jmp near and far, absolute indirect |
| * ip is correct. And this is boostable |
| */ |
| p->ainsn.boostable = true; |
| goto no_change; |
| } |
| default: |
| break; |
| } |
| |
| regs->ip += orig_ip - copy_ip; |
| |
| no_change: |
| restore_btf(); |
| } |
| NOKPROBE_SYMBOL(resume_execution); |
| |
| /* |
| * Interrupts are disabled on entry as trap1 is an interrupt gate and they |
| * remain disabled throughout this function. |
| */ |
| int kprobe_debug_handler(struct pt_regs *regs) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (!cur) |
| return 0; |
| |
| resume_execution(cur, regs, kcb); |
| regs->flags |= kcb->kprobe_saved_flags; |
| |
| if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { |
| kcb->kprobe_status = KPROBE_HIT_SSDONE; |
| cur->post_handler(cur, regs, 0); |
| } |
| |
| /* Restore back the original saved kprobes variables and continue. */ |
| if (kcb->kprobe_status == KPROBE_REENTER) { |
| restore_previous_kprobe(kcb); |
| goto out; |
| } |
| reset_current_kprobe(); |
| out: |
| preempt_enable_no_resched(); |
| |
| /* |
| * if somebody else is singlestepping across a probe point, flags |
| * will have TF set, in which case, continue the remaining processing |
| * of do_debug, as if this is not a probe hit. |
| */ |
| if (regs->flags & X86_EFLAGS_TF) |
| return 0; |
| |
| return 1; |
| } |
| NOKPROBE_SYMBOL(kprobe_debug_handler); |
| |
| int kprobe_fault_handler(struct pt_regs *regs, int trapnr) |
| { |
| struct kprobe *cur = kprobe_running(); |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) { |
| /* This must happen on single-stepping */ |
| WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS && |
| kcb->kprobe_status != KPROBE_REENTER); |
| /* |
| * We are here because the instruction being single |
| * stepped caused a page fault. We reset the current |
| * kprobe and the ip points back to the probe address |
| * and allow the page fault handler to continue as a |
| * normal page fault. |
| */ |
| regs->ip = (unsigned long)cur->addr; |
| /* |
| * Trap flag (TF) has been set here because this fault |
| * happened where the single stepping will be done. |
| * So clear it by resetting the current kprobe: |
| */ |
| regs->flags &= ~X86_EFLAGS_TF; |
| |
| /* |
| * If the TF flag was set before the kprobe hit, |
| * don't touch it: |
| */ |
| regs->flags |= kcb->kprobe_old_flags; |
| |
| if (kcb->kprobe_status == KPROBE_REENTER) |
| restore_previous_kprobe(kcb); |
| else |
| reset_current_kprobe(); |
| preempt_enable_no_resched(); |
| } else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE || |
| kcb->kprobe_status == KPROBE_HIT_SSDONE) { |
| /* |
| * We increment the nmissed count for accounting, |
| * we can also use npre/npostfault count for accounting |
| * these specific fault cases. |
| */ |
| kprobes_inc_nmissed_count(cur); |
| |
| /* |
| * We come here because instructions in the pre/post |
| * handler caused the page_fault, this could happen |
| * if handler tries to access user space by |
| * copy_from_user(), get_user() etc. Let the |
| * user-specified handler try to fix it first. |
| */ |
| if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) |
| return 1; |
| |
| /* |
| * In case the user-specified fault handler returned |
| * zero, try to fix up. |
| */ |
| if (fixup_exception(regs, trapnr)) |
| return 1; |
| |
| /* |
| * fixup routine could not handle it, |
| * Let do_page_fault() fix it. |
| */ |
| } |
| |
| return 0; |
| } |
| NOKPROBE_SYMBOL(kprobe_fault_handler); |
| |
| /* |
| * Wrapper routine for handling exceptions. |
| */ |
| int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, |
| void *data) |
| { |
| struct die_args *args = data; |
| int ret = NOTIFY_DONE; |
| |
| if (args->regs && user_mode(args->regs)) |
| return ret; |
| |
| if (val == DIE_GPF) { |
| /* |
| * To be potentially processing a kprobe fault and to |
| * trust the result from kprobe_running(), we have |
| * be non-preemptible. |
| */ |
| if (!preemptible() && kprobe_running() && |
| kprobe_fault_handler(args->regs, args->trapnr)) |
| ret = NOTIFY_STOP; |
| } |
| return ret; |
| } |
| NOKPROBE_SYMBOL(kprobe_exceptions_notify); |
| |
| int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| unsigned long addr; |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| kcb->jprobe_saved_regs = *regs; |
| kcb->jprobe_saved_sp = stack_addr(regs); |
| addr = (unsigned long)(kcb->jprobe_saved_sp); |
| |
| /* |
| * As Linus pointed out, gcc assumes that the callee |
| * owns the argument space and could overwrite it, e.g. |
| * tailcall optimization. So, to be absolutely safe |
| * we also save and restore enough stack bytes to cover |
| * the argument area. |
| * Use __memcpy() to avoid KASAN stack out-of-bounds reports as we copy |
| * raw stack chunk with redzones: |
| */ |
| __memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, MIN_STACK_SIZE(addr)); |
| regs->ip = (unsigned long)(jp->entry); |
| |
| /* |
| * jprobes use jprobe_return() which skips the normal return |
| * path of the function, and this messes up the accounting of the |
| * function graph tracer to get messed up. |
| * |
| * Pause function graph tracing while performing the jprobe function. |
| */ |
| pause_graph_tracing(); |
| return 1; |
| } |
| NOKPROBE_SYMBOL(setjmp_pre_handler); |
| |
| void jprobe_return(void) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| |
| /* Unpoison stack redzones in the frames we are going to jump over. */ |
| kasan_unpoison_stack_above_sp_to(kcb->jprobe_saved_sp); |
| |
| asm volatile ( |
| #ifdef CONFIG_X86_64 |
| " xchg %%rbx,%%rsp \n" |
| #else |
| " xchgl %%ebx,%%esp \n" |
| #endif |
| " int3 \n" |
| " .globl jprobe_return_end\n" |
| " jprobe_return_end: \n" |
| " nop \n"::"b" |
| (kcb->jprobe_saved_sp):"memory"); |
| } |
| NOKPROBE_SYMBOL(jprobe_return); |
| NOKPROBE_SYMBOL(jprobe_return_end); |
| |
| int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) |
| { |
| struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); |
| u8 *addr = (u8 *) (regs->ip - 1); |
| struct jprobe *jp = container_of(p, struct jprobe, kp); |
| void *saved_sp = kcb->jprobe_saved_sp; |
| |
| if ((addr > (u8 *) jprobe_return) && |
| (addr < (u8 *) jprobe_return_end)) { |
| if (stack_addr(regs) != saved_sp) { |
| struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; |
| printk(KERN_ERR |
| "current sp %p does not match saved sp %p\n", |
| stack_addr(regs), saved_sp); |
| printk(KERN_ERR "Saved registers for jprobe %p\n", jp); |
| show_regs(saved_regs); |
| printk(KERN_ERR "Current registers\n"); |
| show_regs(regs); |
| BUG(); |
| } |
| /* It's OK to start function graph tracing again */ |
| unpause_graph_tracing(); |
| *regs = kcb->jprobe_saved_regs; |
| __memcpy(saved_sp, kcb->jprobes_stack, MIN_STACK_SIZE(saved_sp)); |
| preempt_enable_no_resched(); |
| return 1; |
| } |
| return 0; |
| } |
| NOKPROBE_SYMBOL(longjmp_break_handler); |
| |
| bool arch_within_kprobe_blacklist(unsigned long addr) |
| { |
| return (addr >= (unsigned long)__kprobes_text_start && |
| addr < (unsigned long)__kprobes_text_end) || |
| (addr >= (unsigned long)__entry_text_start && |
| addr < (unsigned long)__entry_text_end); |
| } |
| |
| int __init arch_init_kprobes(void) |
| { |
| return 0; |
| } |
| |
| int arch_trampoline_kprobe(struct kprobe *p) |
| { |
| return 0; |
| } |