blob: 78cef00c9596d7cf95dcc12e5cf05949b1987cbf [file] [log] [blame]
/*
* IPv6 Address [auto]configuration
* Linux INET6 implementation
*
* Authors:
* Pedro Roque <roque@di.fc.ul.pt>
* Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/*
* Changes:
*
* Janos Farkas : delete timer on ifdown
* <chexum@bankinf.banki.hu>
* Andi Kleen : kill double kfree on module
* unload.
* Maciej W. Rozycki : FDDI support
* sekiya@USAGI : Don't send too many RS
* packets.
* yoshfuji@USAGI : Fixed interval between DAD
* packets.
* YOSHIFUJI Hideaki @USAGI : improved accuracy of
* address validation timer.
* YOSHIFUJI Hideaki @USAGI : Privacy Extensions (RFC3041)
* support.
* Yuji SEKIYA @USAGI : Don't assign a same IPv6
* address on a same interface.
* YOSHIFUJI Hideaki @USAGI : ARCnet support
* YOSHIFUJI Hideaki @USAGI : convert /proc/net/if_inet6 to
* seq_file.
* YOSHIFUJI Hideaki @USAGI : improved source address
* selection; consider scope,
* status etc.
*/
#define pr_fmt(fmt) "IPv6: " fmt
#include <linux/errno.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <linux/in6.h>
#include <linux/netdevice.h>
#include <linux/if_addr.h>
#include <linux/if_arp.h>
#include <linux/if_arcnet.h>
#include <linux/if_infiniband.h>
#include <linux/route.h>
#include <linux/inetdevice.h>
#include <linux/init.h>
#include <linux/slab.h>
#ifdef CONFIG_SYSCTL
#include <linux/sysctl.h>
#endif
#include <linux/capability.h>
#include <linux/delay.h>
#include <linux/notifier.h>
#include <linux/string.h>
#include <linux/hash.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/snmp.h>
#include <net/6lowpan.h>
#include <net/firewire.h>
#include <net/ipv6.h>
#include <net/protocol.h>
#include <net/ndisc.h>
#include <net/ip6_route.h>
#include <net/addrconf.h>
#include <net/tcp.h>
#include <net/ip.h>
#include <net/netlink.h>
#include <net/pkt_sched.h>
#include <net/l3mdev.h>
#include <linux/if_tunnel.h>
#include <linux/rtnetlink.h>
#include <linux/netconf.h>
#include <linux/random.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/export.h>
#define INFINITY_LIFE_TIME 0xFFFFFFFF
#define IPV6_MAX_STRLEN \
sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")
static inline u32 cstamp_delta(unsigned long cstamp)
{
return (cstamp - INITIAL_JIFFIES) * 100UL / HZ;
}
static inline s32 rfc3315_s14_backoff_init(s32 irt)
{
/* multiply 'initial retransmission time' by 0.9 .. 1.1 */
u64 tmp = (900000 + prandom_u32() % 200001) * (u64)irt;
do_div(tmp, 1000000);
return (s32)tmp;
}
static inline s32 rfc3315_s14_backoff_update(s32 rt, s32 mrt)
{
/* multiply 'retransmission timeout' by 1.9 .. 2.1 */
u64 tmp = (1900000 + prandom_u32() % 200001) * (u64)rt;
do_div(tmp, 1000000);
if ((s32)tmp > mrt) {
/* multiply 'maximum retransmission time' by 0.9 .. 1.1 */
tmp = (900000 + prandom_u32() % 200001) * (u64)mrt;
do_div(tmp, 1000000);
}
return (s32)tmp;
}
#ifdef CONFIG_SYSCTL
static int addrconf_sysctl_register(struct inet6_dev *idev);
static void addrconf_sysctl_unregister(struct inet6_dev *idev);
#else
static inline int addrconf_sysctl_register(struct inet6_dev *idev)
{
return 0;
}
static inline void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
}
#endif
static void ipv6_regen_rndid(struct inet6_dev *idev);
static void ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr);
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev);
static int ipv6_count_addresses(const struct inet6_dev *idev);
static int ipv6_generate_stable_address(struct in6_addr *addr,
u8 dad_count,
const struct inet6_dev *idev);
#define IN6_ADDR_HSIZE_SHIFT 8
#define IN6_ADDR_HSIZE (1 << IN6_ADDR_HSIZE_SHIFT)
/*
* Configured unicast address hash table
*/
static struct hlist_head inet6_addr_lst[IN6_ADDR_HSIZE];
static DEFINE_SPINLOCK(addrconf_hash_lock);
static void addrconf_verify(void);
static void addrconf_verify_rtnl(void);
static void addrconf_verify_work(struct work_struct *);
static struct workqueue_struct *addrconf_wq;
static DECLARE_DELAYED_WORK(addr_chk_work, addrconf_verify_work);
static void addrconf_join_anycast(struct inet6_ifaddr *ifp);
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp);
static void addrconf_type_change(struct net_device *dev,
unsigned long event);
static int addrconf_ifdown(struct net_device *dev, int how);
static struct rt6_info *addrconf_get_prefix_route(const struct in6_addr *pfx,
int plen,
const struct net_device *dev,
u32 flags, u32 noflags);
static void addrconf_dad_start(struct inet6_ifaddr *ifp);
static void addrconf_dad_work(struct work_struct *w);
static void addrconf_dad_completed(struct inet6_ifaddr *ifp, bool bump_id,
bool send_na);
static void addrconf_dad_run(struct inet6_dev *idev);
static void addrconf_rs_timer(struct timer_list *t);
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifa);
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo);
static struct ipv6_devconf ipv6_devconf __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.mldv1_unsolicited_report_interval = 10 * HZ,
.mldv2_unsolicited_report_interval = HZ,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_max_interval = RTR_SOLICITATION_MAX_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_from_local = 0,
.accept_ra_min_hop_limit= 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_min_plen = 0,
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 0,
.suppress_frag_ndisc = 1,
.accept_ra_mtu = 1,
.stable_secret = {
.initialized = false,
},
.use_oif_addrs_only = 0,
.ignore_routes_with_linkdown = 0,
.keep_addr_on_down = 0,
.seg6_enabled = 0,
#ifdef CONFIG_IPV6_SEG6_HMAC
.seg6_require_hmac = 0,
#endif
.enhanced_dad = 1,
.addr_gen_mode = IN6_ADDR_GEN_MODE_EUI64,
.disable_policy = 0,
};
static struct ipv6_devconf ipv6_devconf_dflt __read_mostly = {
.forwarding = 0,
.hop_limit = IPV6_DEFAULT_HOPLIMIT,
.mtu6 = IPV6_MIN_MTU,
.accept_ra = 1,
.accept_redirects = 1,
.autoconf = 1,
.force_mld_version = 0,
.mldv1_unsolicited_report_interval = 10 * HZ,
.mldv2_unsolicited_report_interval = HZ,
.dad_transmits = 1,
.rtr_solicits = MAX_RTR_SOLICITATIONS,
.rtr_solicit_interval = RTR_SOLICITATION_INTERVAL,
.rtr_solicit_max_interval = RTR_SOLICITATION_MAX_INTERVAL,
.rtr_solicit_delay = MAX_RTR_SOLICITATION_DELAY,
.use_tempaddr = 0,
.temp_valid_lft = TEMP_VALID_LIFETIME,
.temp_prefered_lft = TEMP_PREFERRED_LIFETIME,
.regen_max_retry = REGEN_MAX_RETRY,
.max_desync_factor = MAX_DESYNC_FACTOR,
.max_addresses = IPV6_MAX_ADDRESSES,
.accept_ra_defrtr = 1,
.accept_ra_from_local = 0,
.accept_ra_min_hop_limit= 1,
.accept_ra_pinfo = 1,
#ifdef CONFIG_IPV6_ROUTER_PREF
.accept_ra_rtr_pref = 1,
.rtr_probe_interval = 60 * HZ,
#ifdef CONFIG_IPV6_ROUTE_INFO
.accept_ra_rt_info_min_plen = 0,
.accept_ra_rt_info_max_plen = 0,
#endif
#endif
.proxy_ndp = 0,
.accept_source_route = 0, /* we do not accept RH0 by default. */
.disable_ipv6 = 0,
.accept_dad = 1,
.suppress_frag_ndisc = 1,
.accept_ra_mtu = 1,
.stable_secret = {
.initialized = false,
},
.use_oif_addrs_only = 0,
.ignore_routes_with_linkdown = 0,
.keep_addr_on_down = 0,
.seg6_enabled = 0,
#ifdef CONFIG_IPV6_SEG6_HMAC
.seg6_require_hmac = 0,
#endif
.enhanced_dad = 1,
.addr_gen_mode = IN6_ADDR_GEN_MODE_EUI64,
.disable_policy = 0,
};
/* Check if link is ready: is it up and is a valid qdisc available */
static inline bool addrconf_link_ready(const struct net_device *dev)
{
return netif_oper_up(dev) && !qdisc_tx_is_noop(dev);
}
static void addrconf_del_rs_timer(struct inet6_dev *idev)
{
if (del_timer(&idev->rs_timer))
__in6_dev_put(idev);
}
static void addrconf_del_dad_work(struct inet6_ifaddr *ifp)
{
if (cancel_delayed_work(&ifp->dad_work))
__in6_ifa_put(ifp);
}
static void addrconf_mod_rs_timer(struct inet6_dev *idev,
unsigned long when)
{
if (!timer_pending(&idev->rs_timer))
in6_dev_hold(idev);
mod_timer(&idev->rs_timer, jiffies + when);
}
static void addrconf_mod_dad_work(struct inet6_ifaddr *ifp,
unsigned long delay)
{
in6_ifa_hold(ifp);
if (mod_delayed_work(addrconf_wq, &ifp->dad_work, delay))
in6_ifa_put(ifp);
}
static int snmp6_alloc_dev(struct inet6_dev *idev)
{
int i;
idev->stats.ipv6 = alloc_percpu(struct ipstats_mib);
if (!idev->stats.ipv6)
goto err_ip;
for_each_possible_cpu(i) {
struct ipstats_mib *addrconf_stats;
addrconf_stats = per_cpu_ptr(idev->stats.ipv6, i);
u64_stats_init(&addrconf_stats->syncp);
}
idev->stats.icmpv6dev = kzalloc(sizeof(struct icmpv6_mib_device),
GFP_KERNEL);
if (!idev->stats.icmpv6dev)
goto err_icmp;
idev->stats.icmpv6msgdev = kzalloc(sizeof(struct icmpv6msg_mib_device),
GFP_KERNEL);
if (!idev->stats.icmpv6msgdev)
goto err_icmpmsg;
return 0;
err_icmpmsg:
kfree(idev->stats.icmpv6dev);
err_icmp:
free_percpu(idev->stats.ipv6);
err_ip:
return -ENOMEM;
}
static struct inet6_dev *ipv6_add_dev(struct net_device *dev)
{
struct inet6_dev *ndev;
int err = -ENOMEM;
ASSERT_RTNL();
if (dev->mtu < IPV6_MIN_MTU)
return ERR_PTR(-EINVAL);
ndev = kzalloc(sizeof(struct inet6_dev), GFP_KERNEL);
if (!ndev)
return ERR_PTR(err);
rwlock_init(&ndev->lock);
ndev->dev = dev;
INIT_LIST_HEAD(&ndev->addr_list);
timer_setup(&ndev->rs_timer, addrconf_rs_timer, 0);
memcpy(&ndev->cnf, dev_net(dev)->ipv6.devconf_dflt, sizeof(ndev->cnf));
if (ndev->cnf.stable_secret.initialized)
ndev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
else
ndev->cnf.addr_gen_mode = ipv6_devconf_dflt.addr_gen_mode;
ndev->cnf.mtu6 = dev->mtu;
ndev->nd_parms = neigh_parms_alloc(dev, &nd_tbl);
if (!ndev->nd_parms) {
kfree(ndev);
return ERR_PTR(err);
}
if (ndev->cnf.forwarding)
dev_disable_lro(dev);
/* We refer to the device */
dev_hold(dev);
if (snmp6_alloc_dev(ndev) < 0) {
netdev_dbg(dev, "%s: cannot allocate memory for statistics\n",
__func__);
neigh_parms_release(&nd_tbl, ndev->nd_parms);
dev_put(dev);
kfree(ndev);
return ERR_PTR(err);
}
if (snmp6_register_dev(ndev) < 0) {
netdev_dbg(dev, "%s: cannot create /proc/net/dev_snmp6/%s\n",
__func__, dev->name);
goto err_release;
}
/* One reference from device. */
refcount_set(&ndev->refcnt, 1);
if (dev->flags & (IFF_NOARP | IFF_LOOPBACK))
ndev->cnf.accept_dad = -1;
#if IS_ENABLED(CONFIG_IPV6_SIT)
if (dev->type == ARPHRD_SIT && (dev->priv_flags & IFF_ISATAP)) {
pr_info("%s: Disabled Multicast RS\n", dev->name);
ndev->cnf.rtr_solicits = 0;
}
#endif
INIT_LIST_HEAD(&ndev->tempaddr_list);
ndev->desync_factor = U32_MAX;
if ((dev->flags&IFF_LOOPBACK) ||
dev->type == ARPHRD_TUNNEL ||
dev->type == ARPHRD_TUNNEL6 ||
dev->type == ARPHRD_SIT ||
dev->type == ARPHRD_NONE) {
ndev->cnf.use_tempaddr = -1;
} else
ipv6_regen_rndid(ndev);
ndev->token = in6addr_any;
if (netif_running(dev) && addrconf_link_ready(dev))
ndev->if_flags |= IF_READY;
ipv6_mc_init_dev(ndev);
ndev->tstamp = jiffies;
err = addrconf_sysctl_register(ndev);
if (err) {
ipv6_mc_destroy_dev(ndev);
snmp6_unregister_dev(ndev);
goto err_release;
}
/* protected by rtnl_lock */
rcu_assign_pointer(dev->ip6_ptr, ndev);
/* Join interface-local all-node multicast group */
ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allnodes);
/* Join all-node multicast group */
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allnodes);
/* Join all-router multicast group if forwarding is set */
if (ndev->cnf.forwarding && (dev->flags & IFF_MULTICAST))
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
return ndev;
err_release:
neigh_parms_release(&nd_tbl, ndev->nd_parms);
ndev->dead = 1;
in6_dev_finish_destroy(ndev);
return ERR_PTR(err);
}
static struct inet6_dev *ipv6_find_idev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = __in6_dev_get(dev);
if (!idev) {
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
return NULL;
}
if (dev->flags&IFF_UP)
ipv6_mc_up(idev);
return idev;
}
static int inet6_netconf_msgsize_devconf(int type)
{
int size = NLMSG_ALIGN(sizeof(struct netconfmsg))
+ nla_total_size(4); /* NETCONFA_IFINDEX */
bool all = false;
if (type == NETCONFA_ALL)
all = true;
if (all || type == NETCONFA_FORWARDING)
size += nla_total_size(4);
#ifdef CONFIG_IPV6_MROUTE
if (all || type == NETCONFA_MC_FORWARDING)
size += nla_total_size(4);
#endif
if (all || type == NETCONFA_PROXY_NEIGH)
size += nla_total_size(4);
if (all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN)
size += nla_total_size(4);
return size;
}
static int inet6_netconf_fill_devconf(struct sk_buff *skb, int ifindex,
struct ipv6_devconf *devconf, u32 portid,
u32 seq, int event, unsigned int flags,
int type)
{
struct nlmsghdr *nlh;
struct netconfmsg *ncm;
bool all = false;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct netconfmsg),
flags);
if (!nlh)
return -EMSGSIZE;
if (type == NETCONFA_ALL)
all = true;
ncm = nlmsg_data(nlh);
ncm->ncm_family = AF_INET6;
if (nla_put_s32(skb, NETCONFA_IFINDEX, ifindex) < 0)
goto nla_put_failure;
if (!devconf)
goto out;
if ((all || type == NETCONFA_FORWARDING) &&
nla_put_s32(skb, NETCONFA_FORWARDING, devconf->forwarding) < 0)
goto nla_put_failure;
#ifdef CONFIG_IPV6_MROUTE
if ((all || type == NETCONFA_MC_FORWARDING) &&
nla_put_s32(skb, NETCONFA_MC_FORWARDING,
devconf->mc_forwarding) < 0)
goto nla_put_failure;
#endif
if ((all || type == NETCONFA_PROXY_NEIGH) &&
nla_put_s32(skb, NETCONFA_PROXY_NEIGH, devconf->proxy_ndp) < 0)
goto nla_put_failure;
if ((all || type == NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN) &&
nla_put_s32(skb, NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
devconf->ignore_routes_with_linkdown) < 0)
goto nla_put_failure;
out:
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
void inet6_netconf_notify_devconf(struct net *net, int event, int type,
int ifindex, struct ipv6_devconf *devconf)
{
struct sk_buff *skb;
int err = -ENOBUFS;
skb = nlmsg_new(inet6_netconf_msgsize_devconf(type), GFP_KERNEL);
if (!skb)
goto errout;
err = inet6_netconf_fill_devconf(skb, ifindex, devconf, 0, 0,
event, 0, type);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_NETCONF, NULL, GFP_KERNEL);
return;
errout:
rtnl_set_sk_err(net, RTNLGRP_IPV6_NETCONF, err);
}
static const struct nla_policy devconf_ipv6_policy[NETCONFA_MAX+1] = {
[NETCONFA_IFINDEX] = { .len = sizeof(int) },
[NETCONFA_FORWARDING] = { .len = sizeof(int) },
[NETCONFA_PROXY_NEIGH] = { .len = sizeof(int) },
[NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN] = { .len = sizeof(int) },
};
static int inet6_netconf_get_devconf(struct sk_buff *in_skb,
struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(in_skb->sk);
struct nlattr *tb[NETCONFA_MAX+1];
struct inet6_dev *in6_dev = NULL;
struct net_device *dev = NULL;
struct netconfmsg *ncm;
struct sk_buff *skb;
struct ipv6_devconf *devconf;
int ifindex;
int err;
err = nlmsg_parse(nlh, sizeof(*ncm), tb, NETCONFA_MAX,
devconf_ipv6_policy, extack);
if (err < 0)
return err;
if (!tb[NETCONFA_IFINDEX])
return -EINVAL;
err = -EINVAL;
ifindex = nla_get_s32(tb[NETCONFA_IFINDEX]);
switch (ifindex) {
case NETCONFA_IFINDEX_ALL:
devconf = net->ipv6.devconf_all;
break;
case NETCONFA_IFINDEX_DEFAULT:
devconf = net->ipv6.devconf_dflt;
break;
default:
dev = dev_get_by_index(net, ifindex);
if (!dev)
return -EINVAL;
in6_dev = in6_dev_get(dev);
if (!in6_dev)
goto errout;
devconf = &in6_dev->cnf;
break;
}
err = -ENOBUFS;
skb = nlmsg_new(inet6_netconf_msgsize_devconf(NETCONFA_ALL), GFP_KERNEL);
if (!skb)
goto errout;
err = inet6_netconf_fill_devconf(skb, ifindex, devconf,
NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, RTM_NEWNETCONF, 0,
NETCONFA_ALL);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_netconf_msgsize_devconf() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout:
if (in6_dev)
in6_dev_put(in6_dev);
if (dev)
dev_put(dev);
return err;
}
static int inet6_netconf_dump_devconf(struct sk_buff *skb,
struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx, s_idx;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
s_h = cb->args[0];
s_idx = idx = cb->args[1];
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
rcu_read_lock();
cb->seq = atomic_read(&net->ipv6.dev_addr_genid) ^
net->dev_base_seq;
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (inet6_netconf_fill_devconf(skb, dev->ifindex,
&idev->cnf,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF,
NLM_F_MULTI,
NETCONFA_ALL) < 0) {
rcu_read_unlock();
goto done;
}
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
cont:
idx++;
}
rcu_read_unlock();
}
if (h == NETDEV_HASHENTRIES) {
if (inet6_netconf_fill_devconf(skb, NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
NETCONFA_ALL) < 0)
goto done;
else
h++;
}
if (h == NETDEV_HASHENTRIES + 1) {
if (inet6_netconf_fill_devconf(skb, NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWNETCONF, NLM_F_MULTI,
NETCONFA_ALL) < 0)
goto done;
else
h++;
}
done:
cb->args[0] = h;
cb->args[1] = idx;
return skb->len;
}
#ifdef CONFIG_SYSCTL
static void dev_forward_change(struct inet6_dev *idev)
{
struct net_device *dev;
struct inet6_ifaddr *ifa;
if (!idev)
return;
dev = idev->dev;
if (idev->cnf.forwarding)
dev_disable_lro(dev);
if (dev->flags & IFF_MULTICAST) {
if (idev->cnf.forwarding) {
ipv6_dev_mc_inc(dev, &in6addr_linklocal_allrouters);
ipv6_dev_mc_inc(dev, &in6addr_interfacelocal_allrouters);
ipv6_dev_mc_inc(dev, &in6addr_sitelocal_allrouters);
} else {
ipv6_dev_mc_dec(dev, &in6addr_linklocal_allrouters);
ipv6_dev_mc_dec(dev, &in6addr_interfacelocal_allrouters);
ipv6_dev_mc_dec(dev, &in6addr_sitelocal_allrouters);
}
}
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (ifa->flags&IFA_F_TENTATIVE)
continue;
if (idev->cnf.forwarding)
addrconf_join_anycast(ifa);
else
addrconf_leave_anycast(ifa);
}
inet6_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
NETCONFA_FORWARDING,
dev->ifindex, &idev->cnf);
}
static void addrconf_forward_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.forwarding) ^ (!newf);
idev->cnf.forwarding = newf;
if (changed)
dev_forward_change(idev);
}
}
}
static int addrconf_fixup_forwarding(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->forwarding) {
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->forwarding) {
int old_dflt = net->ipv6.devconf_dflt->forwarding;
net->ipv6.devconf_dflt->forwarding = newf;
if ((!newf) ^ (!old_dflt))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
addrconf_forward_change(net, newf);
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_FORWARDING,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
} else if ((!newf) ^ (!old))
dev_forward_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
if (newf)
rt6_purge_dflt_routers(net);
return 1;
}
static void addrconf_linkdown_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.ignore_routes_with_linkdown) ^ (!newf);
idev->cnf.ignore_routes_with_linkdown = newf;
if (changed)
inet6_netconf_notify_devconf(dev_net(dev),
RTM_NEWNETCONF,
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
dev->ifindex,
&idev->cnf);
}
}
}
static int addrconf_fixup_linkdown(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->ignore_routes_with_linkdown) {
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net,
RTM_NEWNETCONF,
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->ignore_routes_with_linkdown) {
net->ipv6.devconf_dflt->ignore_routes_with_linkdown = newf;
addrconf_linkdown_change(net, newf);
if ((!newf) ^ (!old))
inet6_netconf_notify_devconf(net,
RTM_NEWNETCONF,
NETCONFA_IGNORE_ROUTES_WITH_LINKDOWN,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
}
rtnl_unlock();
return 1;
}
#endif
/* Nobody refers to this ifaddr, destroy it */
void inet6_ifa_finish_destroy(struct inet6_ifaddr *ifp)
{
WARN_ON(!hlist_unhashed(&ifp->addr_lst));
#ifdef NET_REFCNT_DEBUG
pr_debug("%s\n", __func__);
#endif
in6_dev_put(ifp->idev);
if (cancel_delayed_work(&ifp->dad_work))
pr_notice("delayed DAD work was pending while freeing ifa=%p\n",
ifp);
if (ifp->state != INET6_IFADDR_STATE_DEAD) {
pr_warn("Freeing alive inet6 address %p\n", ifp);
return;
}
ip6_rt_put(ifp->rt);
kfree_rcu(ifp, rcu);
}
static void
ipv6_link_dev_addr(struct inet6_dev *idev, struct inet6_ifaddr *ifp)
{
struct list_head *p;
int ifp_scope = ipv6_addr_src_scope(&ifp->addr);
/*
* Each device address list is sorted in order of scope -
* global before linklocal.
*/
list_for_each(p, &idev->addr_list) {
struct inet6_ifaddr *ifa
= list_entry(p, struct inet6_ifaddr, if_list);
if (ifp_scope >= ipv6_addr_src_scope(&ifa->addr))
break;
}
list_add_tail_rcu(&ifp->if_list, p);
}
static u32 inet6_addr_hash(const struct net *net, const struct in6_addr *addr)
{
u32 val = ipv6_addr_hash(addr) ^ net_hash_mix(net);
return hash_32(val, IN6_ADDR_HSIZE_SHIFT);
}
static bool ipv6_chk_same_addr(struct net *net, const struct in6_addr *addr,
struct net_device *dev, unsigned int hash)
{
struct inet6_ifaddr *ifp;
hlist_for_each_entry(ifp, &inet6_addr_lst[hash], addr_lst) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (!dev || ifp->idev->dev == dev)
return true;
}
}
return false;
}
static int ipv6_add_addr_hash(struct net_device *dev, struct inet6_ifaddr *ifa)
{
unsigned int hash = inet6_addr_hash(dev_net(dev), &ifa->addr);
int err = 0;
spin_lock(&addrconf_hash_lock);
/* Ignore adding duplicate addresses on an interface */
if (ipv6_chk_same_addr(dev_net(dev), &ifa->addr, dev, hash)) {
netdev_dbg(dev, "ipv6_add_addr: already assigned\n");
err = -EEXIST;
} else {
hlist_add_head_rcu(&ifa->addr_lst, &inet6_addr_lst[hash]);
}
spin_unlock(&addrconf_hash_lock);
return err;
}
/* On success it returns ifp with increased reference count */
static struct inet6_ifaddr *
ipv6_add_addr(struct inet6_dev *idev, const struct in6_addr *addr,
const struct in6_addr *peer_addr, int pfxlen,
int scope, u32 flags, u32 valid_lft, u32 prefered_lft,
bool can_block, struct netlink_ext_ack *extack)
{
gfp_t gfp_flags = can_block ? GFP_KERNEL : GFP_ATOMIC;
struct net *net = dev_net(idev->dev);
struct inet6_ifaddr *ifa = NULL;
struct rt6_info *rt = NULL;
int err = 0;
int addr_type = ipv6_addr_type(addr);
if (addr_type == IPV6_ADDR_ANY ||
addr_type & IPV6_ADDR_MULTICAST ||
(!(idev->dev->flags & IFF_LOOPBACK) &&
addr_type & IPV6_ADDR_LOOPBACK))
return ERR_PTR(-EADDRNOTAVAIL);
if (idev->dead) {
err = -ENODEV; /*XXX*/
goto out;
}
if (idev->cnf.disable_ipv6) {
err = -EACCES;
goto out;
}
/* validator notifier needs to be blocking;
* do not call in atomic context
*/
if (can_block) {
struct in6_validator_info i6vi = {
.i6vi_addr = *addr,
.i6vi_dev = idev,
.extack = extack,
};
err = inet6addr_validator_notifier_call_chain(NETDEV_UP, &i6vi);
err = notifier_to_errno(err);
if (err < 0)
goto out;
}
ifa = kzalloc(sizeof(*ifa), gfp_flags);
if (!ifa) {
err = -ENOBUFS;
goto out;
}
rt = addrconf_dst_alloc(idev, addr, false);
if (IS_ERR(rt)) {
err = PTR_ERR(rt);
rt = NULL;
goto out;
}
if (net->ipv6.devconf_all->disable_policy ||
idev->cnf.disable_policy)
rt->dst.flags |= DST_NOPOLICY;
neigh_parms_data_state_setall(idev->nd_parms);
ifa->addr = *addr;
if (peer_addr)
ifa->peer_addr = *peer_addr;
spin_lock_init(&ifa->lock);
INIT_DELAYED_WORK(&ifa->dad_work, addrconf_dad_work);
INIT_HLIST_NODE(&ifa->addr_lst);
ifa->scope = scope;
ifa->prefix_len = pfxlen;
ifa->flags = flags;
/* No need to add the TENTATIVE flag for addresses with NODAD */
if (!(flags & IFA_F_NODAD))
ifa->flags |= IFA_F_TENTATIVE;
ifa->valid_lft = valid_lft;
ifa->prefered_lft = prefered_lft;
ifa->cstamp = ifa->tstamp = jiffies;
ifa->tokenized = false;
ifa->rt = rt;
ifa->idev = idev;
in6_dev_hold(idev);
/* For caller */
refcount_set(&ifa->refcnt, 1);
rcu_read_lock_bh();
err = ipv6_add_addr_hash(idev->dev, ifa);
if (err < 0) {
rcu_read_unlock_bh();
goto out;
}
write_lock(&idev->lock);
/* Add to inet6_dev unicast addr list. */
ipv6_link_dev_addr(idev, ifa);
if (ifa->flags&IFA_F_TEMPORARY) {
list_add(&ifa->tmp_list, &idev->tempaddr_list);
in6_ifa_hold(ifa);
}
in6_ifa_hold(ifa);
write_unlock(&idev->lock);
rcu_read_unlock_bh();
inet6addr_notifier_call_chain(NETDEV_UP, ifa);
out:
if (unlikely(err < 0)) {
if (rt)
ip6_rt_put(rt);
if (ifa) {
if (ifa->idev)
in6_dev_put(ifa->idev);
kfree(ifa);
}
ifa = ERR_PTR(err);
}
return ifa;
}
enum cleanup_prefix_rt_t {
CLEANUP_PREFIX_RT_NOP, /* no cleanup action for prefix route */
CLEANUP_PREFIX_RT_DEL, /* delete the prefix route */
CLEANUP_PREFIX_RT_EXPIRE, /* update the lifetime of the prefix route */
};
/*
* Check, whether the prefix for ifp would still need a prefix route
* after deleting ifp. The function returns one of the CLEANUP_PREFIX_RT_*
* constants.
*
* 1) we don't purge prefix if address was not permanent.
* prefix is managed by its own lifetime.
* 2) we also don't purge, if the address was IFA_F_NOPREFIXROUTE.
* 3) if there are no addresses, delete prefix.
* 4) if there are still other permanent address(es),
* corresponding prefix is still permanent.
* 5) if there are still other addresses with IFA_F_NOPREFIXROUTE,
* don't purge the prefix, assume user space is managing it.
* 6) otherwise, update prefix lifetime to the
* longest valid lifetime among the corresponding
* addresses on the device.
* Note: subsequent RA will update lifetime.
**/
static enum cleanup_prefix_rt_t
check_cleanup_prefix_route(struct inet6_ifaddr *ifp, unsigned long *expires)
{
struct inet6_ifaddr *ifa;
struct inet6_dev *idev = ifp->idev;
unsigned long lifetime;
enum cleanup_prefix_rt_t action = CLEANUP_PREFIX_RT_DEL;
*expires = jiffies;
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (ifa == ifp)
continue;
if (!ipv6_prefix_equal(&ifa->addr, &ifp->addr,
ifp->prefix_len))
continue;
if (ifa->flags & (IFA_F_PERMANENT | IFA_F_NOPREFIXROUTE))
return CLEANUP_PREFIX_RT_NOP;
action = CLEANUP_PREFIX_RT_EXPIRE;
spin_lock(&ifa->lock);
lifetime = addrconf_timeout_fixup(ifa->valid_lft, HZ);
/*
* Note: Because this address is
* not permanent, lifetime <
* LONG_MAX / HZ here.
*/
if (time_before(*expires, ifa->tstamp + lifetime * HZ))
*expires = ifa->tstamp + lifetime * HZ;
spin_unlock(&ifa->lock);
}
return action;
}
static void
cleanup_prefix_route(struct inet6_ifaddr *ifp, unsigned long expires, bool del_rt)
{
struct rt6_info *rt;
rt = addrconf_get_prefix_route(&ifp->addr,
ifp->prefix_len,
ifp->idev->dev,
0, RTF_GATEWAY | RTF_DEFAULT);
if (rt) {
if (del_rt)
ip6_del_rt(rt);
else {
if (!(rt->rt6i_flags & RTF_EXPIRES))
rt6_set_expires(rt, expires);
ip6_rt_put(rt);
}
}
}
/* This function wants to get referenced ifp and releases it before return */
static void ipv6_del_addr(struct inet6_ifaddr *ifp)
{
int state;
enum cleanup_prefix_rt_t action = CLEANUP_PREFIX_RT_NOP;
unsigned long expires;
ASSERT_RTNL();
spin_lock_bh(&ifp->lock);
state = ifp->state;
ifp->state = INET6_IFADDR_STATE_DEAD;
spin_unlock_bh(&ifp->lock);
if (state == INET6_IFADDR_STATE_DEAD)
goto out;
spin_lock_bh(&addrconf_hash_lock);
hlist_del_init_rcu(&ifp->addr_lst);
spin_unlock_bh(&addrconf_hash_lock);
write_lock_bh(&ifp->idev->lock);
if (ifp->flags&IFA_F_TEMPORARY) {
list_del(&ifp->tmp_list);
if (ifp->ifpub) {
in6_ifa_put(ifp->ifpub);
ifp->ifpub = NULL;
}
__in6_ifa_put(ifp);
}
if (ifp->flags & IFA_F_PERMANENT && !(ifp->flags & IFA_F_NOPREFIXROUTE))
action = check_cleanup_prefix_route(ifp, &expires);
list_del_rcu(&ifp->if_list);
__in6_ifa_put(ifp);
write_unlock_bh(&ifp->idev->lock);
addrconf_del_dad_work(ifp);
ipv6_ifa_notify(RTM_DELADDR, ifp);
inet6addr_notifier_call_chain(NETDEV_DOWN, ifp);
if (action != CLEANUP_PREFIX_RT_NOP) {
cleanup_prefix_route(ifp, expires,
action == CLEANUP_PREFIX_RT_DEL);
}
/* clean up prefsrc entries */
rt6_remove_prefsrc(ifp);
out:
in6_ifa_put(ifp);
}
static int ipv6_create_tempaddr(struct inet6_ifaddr *ifp,
struct inet6_ifaddr *ift,
bool block)
{
struct inet6_dev *idev = ifp->idev;
struct in6_addr addr, *tmpaddr;
unsigned long tmp_prefered_lft, tmp_valid_lft, tmp_tstamp, age;
unsigned long regen_advance;
int tmp_plen;
int ret = 0;
u32 addr_flags;
unsigned long now = jiffies;
long max_desync_factor;
s32 cnf_temp_preferred_lft;
write_lock_bh(&idev->lock);
if (ift) {
spin_lock_bh(&ift->lock);
memcpy(&addr.s6_addr[8], &ift->addr.s6_addr[8], 8);
spin_unlock_bh(&ift->lock);
tmpaddr = &addr;
} else {
tmpaddr = NULL;
}
retry:
in6_dev_hold(idev);
if (idev->cnf.use_tempaddr <= 0) {
write_unlock_bh(&idev->lock);
pr_info("%s: use_tempaddr is disabled\n", __func__);
in6_dev_put(idev);
ret = -1;
goto out;
}
spin_lock_bh(&ifp->lock);
if (ifp->regen_count++ >= idev->cnf.regen_max_retry) {
idev->cnf.use_tempaddr = -1; /*XXX*/
spin_unlock_bh(&ifp->lock);
write_unlock_bh(&idev->lock);
pr_warn("%s: regeneration time exceeded - disabled temporary address support\n",
__func__);
in6_dev_put(idev);
ret = -1;
goto out;
}
in6_ifa_hold(ifp);
memcpy(addr.s6_addr, ifp->addr.s6_addr, 8);
ipv6_try_regen_rndid(idev, tmpaddr);
memcpy(&addr.s6_addr[8], idev->rndid, 8);
age = (now - ifp->tstamp) / HZ;
regen_advance = idev->cnf.regen_max_retry *
idev->cnf.dad_transmits *
NEIGH_VAR(idev->nd_parms, RETRANS_TIME) / HZ;
/* recalculate max_desync_factor each time and update
* idev->desync_factor if it's larger
*/
cnf_temp_preferred_lft = READ_ONCE(idev->cnf.temp_prefered_lft);
max_desync_factor = min_t(__u32,
idev->cnf.max_desync_factor,
cnf_temp_preferred_lft - regen_advance);
if (unlikely(idev->desync_factor > max_desync_factor)) {
if (max_desync_factor > 0) {
get_random_bytes(&idev->desync_factor,
sizeof(idev->desync_factor));
idev->desync_factor %= max_desync_factor;
} else {
idev->desync_factor = 0;
}
}
tmp_valid_lft = min_t(__u32,
ifp->valid_lft,
idev->cnf.temp_valid_lft + age);
tmp_prefered_lft = cnf_temp_preferred_lft + age -
idev->desync_factor;
tmp_prefered_lft = min_t(__u32, ifp->prefered_lft, tmp_prefered_lft);
tmp_plen = ifp->prefix_len;
tmp_tstamp = ifp->tstamp;
spin_unlock_bh(&ifp->lock);
write_unlock_bh(&idev->lock);
/* A temporary address is created only if this calculated Preferred
* Lifetime is greater than REGEN_ADVANCE time units. In particular,
* an implementation must not create a temporary address with a zero
* Preferred Lifetime.
* Use age calculation as in addrconf_verify to avoid unnecessary
* temporary addresses being generated.
*/
age = (now - tmp_tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
if (tmp_prefered_lft <= regen_advance + age) {
in6_ifa_put(ifp);
in6_dev_put(idev);
ret = -1;
goto out;
}
addr_flags = IFA_F_TEMPORARY;
/* set in addrconf_prefix_rcv() */
if (ifp->flags & IFA_F_OPTIMISTIC)
addr_flags |= IFA_F_OPTIMISTIC;
ift = ipv6_add_addr(idev, &addr, NULL, tmp_plen,
ipv6_addr_scope(&addr), addr_flags,
tmp_valid_lft, tmp_prefered_lft, block, NULL);
if (IS_ERR(ift)) {
in6_ifa_put(ifp);
in6_dev_put(idev);
pr_info("%s: retry temporary address regeneration\n", __func__);
tmpaddr = &addr;
write_lock_bh(&idev->lock);
goto retry;
}
spin_lock_bh(&ift->lock);
ift->ifpub = ifp;
ift->cstamp = now;
ift->tstamp = tmp_tstamp;
spin_unlock_bh(&ift->lock);
addrconf_dad_start(ift);
in6_ifa_put(ift);
in6_dev_put(idev);
out:
return ret;
}
/*
* Choose an appropriate source address (RFC3484)
*/
enum {
IPV6_SADDR_RULE_INIT = 0,
IPV6_SADDR_RULE_LOCAL,
IPV6_SADDR_RULE_SCOPE,
IPV6_SADDR_RULE_PREFERRED,
#ifdef CONFIG_IPV6_MIP6
IPV6_SADDR_RULE_HOA,
#endif
IPV6_SADDR_RULE_OIF,
IPV6_SADDR_RULE_LABEL,
IPV6_SADDR_RULE_PRIVACY,
IPV6_SADDR_RULE_ORCHID,
IPV6_SADDR_RULE_PREFIX,
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
IPV6_SADDR_RULE_NOT_OPTIMISTIC,
#endif
IPV6_SADDR_RULE_MAX
};
struct ipv6_saddr_score {
int rule;
int addr_type;
struct inet6_ifaddr *ifa;
DECLARE_BITMAP(scorebits, IPV6_SADDR_RULE_MAX);
int scopedist;
int matchlen;
};
struct ipv6_saddr_dst {
const struct in6_addr *addr;
int ifindex;
int scope;
int label;
unsigned int prefs;
};
static inline int ipv6_saddr_preferred(int type)
{
if (type & (IPV6_ADDR_MAPPED|IPV6_ADDR_COMPATv4|IPV6_ADDR_LOOPBACK))
return 1;
return 0;
}
static bool ipv6_use_optimistic_addr(struct net *net,
struct inet6_dev *idev)
{
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (!idev)
return false;
if (!net->ipv6.devconf_all->optimistic_dad && !idev->cnf.optimistic_dad)
return false;
if (!net->ipv6.devconf_all->use_optimistic && !idev->cnf.use_optimistic)
return false;
return true;
#else
return false;
#endif
}
static bool ipv6_allow_optimistic_dad(struct net *net,
struct inet6_dev *idev)
{
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if (!idev)
return false;
if (!net->ipv6.devconf_all->optimistic_dad && !idev->cnf.optimistic_dad)
return false;
return true;
#else
return false;
#endif
}
static int ipv6_get_saddr_eval(struct net *net,
struct ipv6_saddr_score *score,
struct ipv6_saddr_dst *dst,
int i)
{
int ret;
if (i <= score->rule) {
switch (i) {
case IPV6_SADDR_RULE_SCOPE:
ret = score->scopedist;
break;
case IPV6_SADDR_RULE_PREFIX:
ret = score->matchlen;
break;
default:
ret = !!test_bit(i, score->scorebits);
}
goto out;
}
switch (i) {
case IPV6_SADDR_RULE_INIT:
/* Rule 0: remember if hiscore is not ready yet */
ret = !!score->ifa;
break;
case IPV6_SADDR_RULE_LOCAL:
/* Rule 1: Prefer same address */
ret = ipv6_addr_equal(&score->ifa->addr, dst->addr);
break;
case IPV6_SADDR_RULE_SCOPE:
/* Rule 2: Prefer appropriate scope
*
* ret
* ^
* -1 | d 15
* ---+--+-+---> scope
* |
* | d is scope of the destination.
* B-d | \
* | \ <- smaller scope is better if
* B-15 | \ if scope is enough for destination.
* | ret = B - scope (-1 <= scope >= d <= 15).
* d-C-1 | /
* |/ <- greater is better
* -C / if scope is not enough for destination.
* /| ret = scope - C (-1 <= d < scope <= 15).
*
* d - C - 1 < B -15 (for all -1 <= d <= 15).
* C > d + 14 - B >= 15 + 14 - B = 29 - B.
* Assume B = 0 and we get C > 29.
*/
ret = __ipv6_addr_src_scope(score->addr_type);
if (ret >= dst->scope)
ret = -ret;
else
ret -= 128; /* 30 is enough */
score->scopedist = ret;
break;
case IPV6_SADDR_RULE_PREFERRED:
{
/* Rule 3: Avoid deprecated and optimistic addresses */
u8 avoid = IFA_F_DEPRECATED;
if (!ipv6_use_optimistic_addr(net, score->ifa->idev))
avoid |= IFA_F_OPTIMISTIC;
ret = ipv6_saddr_preferred(score->addr_type) ||
!(score->ifa->flags & avoid);
break;
}
#ifdef CONFIG_IPV6_MIP6
case IPV6_SADDR_RULE_HOA:
{
/* Rule 4: Prefer home address */
int prefhome = !(dst->prefs & IPV6_PREFER_SRC_COA);
ret = !(score->ifa->flags & IFA_F_HOMEADDRESS) ^ prefhome;
break;
}
#endif
case IPV6_SADDR_RULE_OIF:
/* Rule 5: Prefer outgoing interface */
ret = (!dst->ifindex ||
dst->ifindex == score->ifa->idev->dev->ifindex);
break;
case IPV6_SADDR_RULE_LABEL:
/* Rule 6: Prefer matching label */
ret = ipv6_addr_label(net,
&score->ifa->addr, score->addr_type,
score->ifa->idev->dev->ifindex) == dst->label;
break;
case IPV6_SADDR_RULE_PRIVACY:
{
/* Rule 7: Prefer public address
* Note: prefer temporary address if use_tempaddr >= 2
*/
int preftmp = dst->prefs & (IPV6_PREFER_SRC_PUBLIC|IPV6_PREFER_SRC_TMP) ?
!!(dst->prefs & IPV6_PREFER_SRC_TMP) :
score->ifa->idev->cnf.use_tempaddr >= 2;
ret = (!(score->ifa->flags & IFA_F_TEMPORARY)) ^ preftmp;
break;
}
case IPV6_SADDR_RULE_ORCHID:
/* Rule 8-: Prefer ORCHID vs ORCHID or
* non-ORCHID vs non-ORCHID
*/
ret = !(ipv6_addr_orchid(&score->ifa->addr) ^
ipv6_addr_orchid(dst->addr));
break;
case IPV6_SADDR_RULE_PREFIX:
/* Rule 8: Use longest matching prefix */
ret = ipv6_addr_diff(&score->ifa->addr, dst->addr);
if (ret > score->ifa->prefix_len)
ret = score->ifa->prefix_len;
score->matchlen = ret;
break;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
case IPV6_SADDR_RULE_NOT_OPTIMISTIC:
/* Optimistic addresses still have lower precedence than other
* preferred addresses.
*/
ret = !(score->ifa->flags & IFA_F_OPTIMISTIC);
break;
#endif
default:
ret = 0;
}
if (ret)
__set_bit(i, score->scorebits);
score->rule = i;
out:
return ret;
}
static int __ipv6_dev_get_saddr(struct net *net,
struct ipv6_saddr_dst *dst,
struct inet6_dev *idev,
struct ipv6_saddr_score *scores,
int hiscore_idx)
{
struct ipv6_saddr_score *score = &scores[1 - hiscore_idx], *hiscore = &scores[hiscore_idx];
list_for_each_entry_rcu(score->ifa, &idev->addr_list, if_list) {
int i;
/*
* - Tentative Address (RFC2462 section 5.4)
* - A tentative address is not considered
* "assigned to an interface" in the traditional
* sense, unless it is also flagged as optimistic.
* - Candidate Source Address (section 4)
* - In any case, anycast addresses, multicast
* addresses, and the unspecified address MUST
* NOT be included in a candidate set.
*/
if ((score->ifa->flags & IFA_F_TENTATIVE) &&
(!(score->ifa->flags & IFA_F_OPTIMISTIC)))
continue;
score->addr_type = __ipv6_addr_type(&score->ifa->addr);
if (unlikely(score->addr_type == IPV6_ADDR_ANY ||
score->addr_type & IPV6_ADDR_MULTICAST)) {
net_dbg_ratelimited("ADDRCONF: unspecified / multicast address assigned as unicast address on %s",
idev->dev->name);
continue;
}
score->rule = -1;
bitmap_zero(score->scorebits, IPV6_SADDR_RULE_MAX);
for (i = 0; i < IPV6_SADDR_RULE_MAX; i++) {
int minihiscore, miniscore;
minihiscore = ipv6_get_saddr_eval(net, hiscore, dst, i);
miniscore = ipv6_get_saddr_eval(net, score, dst, i);
if (minihiscore > miniscore) {
if (i == IPV6_SADDR_RULE_SCOPE &&
score->scopedist > 0) {
/*
* special case:
* each remaining entry
* has too small (not enough)
* scope, because ifa entries
* are sorted by their scope
* values.
*/
goto out;
}
break;
} else if (minihiscore < miniscore) {
swap(hiscore, score);
hiscore_idx = 1 - hiscore_idx;
/* restore our iterator */
score->ifa = hiscore->ifa;
break;
}
}
}
out:
return hiscore_idx;
}
static int ipv6_get_saddr_master(struct net *net,
const struct net_device *dst_dev,
const struct net_device *master,
struct ipv6_saddr_dst *dst,
struct ipv6_saddr_score *scores,
int hiscore_idx)
{
struct inet6_dev *idev;
idev = __in6_dev_get(dst_dev);
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, dst, idev,
scores, hiscore_idx);
idev = __in6_dev_get(master);
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, dst, idev,
scores, hiscore_idx);
return hiscore_idx;
}
int ipv6_dev_get_saddr(struct net *net, const struct net_device *dst_dev,
const struct in6_addr *daddr, unsigned int prefs,
struct in6_addr *saddr)
{
struct ipv6_saddr_score scores[2], *hiscore;
struct ipv6_saddr_dst dst;
struct inet6_dev *idev;
struct net_device *dev;
int dst_type;
bool use_oif_addr = false;
int hiscore_idx = 0;
int ret = 0;
dst_type = __ipv6_addr_type(daddr);
dst.addr = daddr;
dst.ifindex = dst_dev ? dst_dev->ifindex : 0;
dst.scope = __ipv6_addr_src_scope(dst_type);
dst.label = ipv6_addr_label(net, daddr, dst_type, dst.ifindex);
dst.prefs = prefs;
scores[hiscore_idx].rule = -1;
scores[hiscore_idx].ifa = NULL;
rcu_read_lock();
/* Candidate Source Address (section 4)
* - multicast and link-local destination address,
* the set of candidate source address MUST only
* include addresses assigned to interfaces
* belonging to the same link as the outgoing
* interface.
* (- For site-local destination addresses, the
* set of candidate source addresses MUST only
* include addresses assigned to interfaces
* belonging to the same site as the outgoing
* interface.)
* - "It is RECOMMENDED that the candidate source addresses
* be the set of unicast addresses assigned to the
* interface that will be used to send to the destination
* (the 'outgoing' interface)." (RFC 6724)
*/
if (dst_dev) {
idev = __in6_dev_get(dst_dev);
if ((dst_type & IPV6_ADDR_MULTICAST) ||
dst.scope <= IPV6_ADDR_SCOPE_LINKLOCAL ||
(idev && idev->cnf.use_oif_addrs_only)) {
use_oif_addr = true;
}
}
if (use_oif_addr) {
if (idev)
hiscore_idx = __ipv6_dev_get_saddr(net, &dst, idev, scores, hiscore_idx);
} else {
const struct net_device *master;
int master_idx = 0;
/* if dst_dev exists and is enslaved to an L3 device, then
* prefer addresses from dst_dev and then the master over
* any other enslaved devices in the L3 domain.
*/
master = l3mdev_master_dev_rcu(dst_dev);
if (master) {
master_idx = master->ifindex;
hiscore_idx = ipv6_get_saddr_master(net, dst_dev,
master, &dst,
scores, hiscore_idx);
if (scores[hiscore_idx].ifa)
goto out;
}
for_each_netdev_rcu(net, dev) {
/* only consider addresses on devices in the
* same L3 domain
*/
if (l3mdev_master_ifindex_rcu(dev) != master_idx)
continue;
idev = __in6_dev_get(dev);
if (!idev)
continue;
hiscore_idx = __ipv6_dev_get_saddr(net, &dst, idev, scores, hiscore_idx);
}
}
out:
hiscore = &scores[hiscore_idx];
if (!hiscore->ifa)
ret = -EADDRNOTAVAIL;
else
*saddr = hiscore->ifa->addr;
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(ipv6_dev_get_saddr);
int __ipv6_get_lladdr(struct inet6_dev *idev, struct in6_addr *addr,
u32 banned_flags)
{
struct inet6_ifaddr *ifp;
int err = -EADDRNOTAVAIL;
list_for_each_entry_reverse(ifp, &idev->addr_list, if_list) {
if (ifp->scope > IFA_LINK)
break;
if (ifp->scope == IFA_LINK &&
!(ifp->flags & banned_flags)) {
*addr = ifp->addr;
err = 0;
break;
}
}
return err;
}
int ipv6_get_lladdr(struct net_device *dev, struct in6_addr *addr,
u32 banned_flags)
{
struct inet6_dev *idev;
int err = -EADDRNOTAVAIL;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
read_lock_bh(&idev->lock);
err = __ipv6_get_lladdr(idev, addr, banned_flags);
read_unlock_bh(&idev->lock);
}
rcu_read_unlock();
return err;
}
static int ipv6_count_addresses(const struct inet6_dev *idev)
{
const struct inet6_ifaddr *ifp;
int cnt = 0;
rcu_read_lock();
list_for_each_entry_rcu(ifp, &idev->addr_list, if_list)
cnt++;
rcu_read_unlock();
return cnt;
}
int ipv6_chk_addr(struct net *net, const struct in6_addr *addr,
const struct net_device *dev, int strict)
{
return ipv6_chk_addr_and_flags(net, addr, dev, !dev,
strict, IFA_F_TENTATIVE);
}
EXPORT_SYMBOL(ipv6_chk_addr);
/* device argument is used to find the L3 domain of interest. If
* skip_dev_check is set, then the ifp device is not checked against
* the passed in dev argument. So the 2 cases for addresses checks are:
* 1. does the address exist in the L3 domain that dev is part of
* (skip_dev_check = true), or
*
* 2. does the address exist on the specific device
* (skip_dev_check = false)
*/
int ipv6_chk_addr_and_flags(struct net *net, const struct in6_addr *addr,
const struct net_device *dev, bool skip_dev_check,
int strict, u32 banned_flags)
{
unsigned int hash = inet6_addr_hash(net, addr);
const struct net_device *l3mdev;
struct inet6_ifaddr *ifp;
u32 ifp_flags;
rcu_read_lock();
l3mdev = l3mdev_master_dev_rcu(dev);
if (skip_dev_check)
dev = NULL;
hlist_for_each_entry_rcu(ifp, &inet6_addr_lst[hash], addr_lst) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (l3mdev_master_dev_rcu(ifp->idev->dev) != l3mdev)
continue;
/* Decouple optimistic from tentative for evaluation here.
* Ban optimistic addresses explicitly, when required.
*/
ifp_flags = (ifp->flags&IFA_F_OPTIMISTIC)
? (ifp->flags&~IFA_F_TENTATIVE)
: ifp->flags;
if (ipv6_addr_equal(&ifp->addr, addr) &&
!(ifp_flags&banned_flags) &&
(!dev || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict))) {
rcu_read_unlock();
return 1;
}
}
rcu_read_unlock();
return 0;
}
EXPORT_SYMBOL(ipv6_chk_addr_and_flags);
/* Compares an address/prefix_len with addresses on device @dev.
* If one is found it returns true.
*/
bool ipv6_chk_custom_prefix(const struct in6_addr *addr,
const unsigned int prefix_len, struct net_device *dev)
{
const struct inet6_ifaddr *ifa;
const struct inet6_dev *idev;
bool ret = false;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
list_for_each_entry_rcu(ifa, &idev->addr_list, if_list) {
ret = ipv6_prefix_equal(addr, &ifa->addr, prefix_len);
if (ret)
break;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL(ipv6_chk_custom_prefix);
int ipv6_chk_prefix(const struct in6_addr *addr, struct net_device *dev)
{
const struct inet6_ifaddr *ifa;
const struct inet6_dev *idev;
int onlink;
onlink = 0;
rcu_read_lock();
idev = __in6_dev_get(dev);
if (idev) {
list_for_each_entry_rcu(ifa, &idev->addr_list, if_list) {
onlink = ipv6_prefix_equal(addr, &ifa->addr,
ifa->prefix_len);
if (onlink)
break;
}
}
rcu_read_unlock();
return onlink;
}
EXPORT_SYMBOL(ipv6_chk_prefix);
struct inet6_ifaddr *ipv6_get_ifaddr(struct net *net, const struct in6_addr *addr,
struct net_device *dev, int strict)
{
unsigned int hash = inet6_addr_hash(net, addr);
struct inet6_ifaddr *ifp, *result = NULL;
rcu_read_lock();
hlist_for_each_entry_rcu(ifp, &inet6_addr_lst[hash], addr_lst) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr)) {
if (!dev || ifp->idev->dev == dev ||
!(ifp->scope&(IFA_LINK|IFA_HOST) || strict)) {
result = ifp;
in6_ifa_hold(ifp);
break;
}
}
}
rcu_read_unlock();
return result;
}
/* Gets referenced address, destroys ifaddr */
static void addrconf_dad_stop(struct inet6_ifaddr *ifp, int dad_failed)
{
if (dad_failed)
ifp->flags |= IFA_F_DADFAILED;
if (ifp->flags&IFA_F_TEMPORARY) {
struct inet6_ifaddr *ifpub;
spin_lock_bh(&ifp->lock);
ifpub = ifp->ifpub;
if (ifpub) {
in6_ifa_hold(ifpub);
spin_unlock_bh(&ifp->lock);
ipv6_create_tempaddr(ifpub, ifp, true);
in6_ifa_put(ifpub);
} else {
spin_unlock_bh(&ifp->lock);
}
ipv6_del_addr(ifp);
} else if (ifp->flags&IFA_F_PERMANENT || !dad_failed) {
spin_lock_bh(&ifp->lock);
addrconf_del_dad_work(ifp);
ifp->flags |= IFA_F_TENTATIVE;
if (dad_failed)
ifp->flags &= ~IFA_F_OPTIMISTIC;
spin_unlock_bh(&ifp->lock);
if (dad_failed)
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
} else {
ipv6_del_addr(ifp);
}
}
static int addrconf_dad_end(struct inet6_ifaddr *ifp)
{
int err = -ENOENT;
spin_lock_bh(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DAD) {
ifp->state = INET6_IFADDR_STATE_POSTDAD;
err = 0;
}
spin_unlock_bh(&ifp->lock);
return err;
}
void addrconf_dad_failure(struct sk_buff *skb, struct inet6_ifaddr *ifp)
{
struct inet6_dev *idev = ifp->idev;
struct net *net = dev_net(ifp->idev->dev);
if (addrconf_dad_end(ifp)) {
in6_ifa_put(ifp);
return;
}
net_info_ratelimited("%s: IPv6 duplicate address %pI6c used by %pM detected!\n",
ifp->idev->dev->name, &ifp->addr, eth_hdr(skb)->h_source);
spin_lock_bh(&ifp->lock);
if (ifp->flags & IFA_F_STABLE_PRIVACY) {
int scope = ifp->scope;
u32 flags = ifp->flags;
struct in6_addr new_addr;
struct inet6_ifaddr *ifp2;
u32 valid_lft, preferred_lft;
int pfxlen = ifp->prefix_len;
int retries = ifp->stable_privacy_retry + 1;
if (retries > net->ipv6.sysctl.idgen_retries) {
net_info_ratelimited("%s: privacy stable address generation failed because of DAD conflicts!\n",
ifp->idev->dev->name);
goto errdad;
}
new_addr = ifp->addr;
if (ipv6_generate_stable_address(&new_addr, retries,
idev))
goto errdad;
valid_lft = ifp->valid_lft;
preferred_lft = ifp->prefered_lft;
spin_unlock_bh(&ifp->lock);
if (idev->cnf.max_addresses &&
ipv6_count_addresses(idev) >=
idev->cnf.max_addresses)
goto lock_errdad;
net_info_ratelimited("%s: generating new stable privacy address because of DAD conflict\n",
ifp->idev->dev->name);
ifp2 = ipv6_add_addr(idev, &new_addr, NULL, pfxlen,
scope, flags, valid_lft,
preferred_lft, false, NULL);
if (IS_ERR(ifp2))
goto lock_errdad;
spin_lock_bh(&ifp2->lock);
ifp2->stable_privacy_retry = retries;
ifp2->state = INET6_IFADDR_STATE_PREDAD;
spin_unlock_bh(&ifp2->lock);
addrconf_mod_dad_work(ifp2, net->ipv6.sysctl.idgen_delay);
in6_ifa_put(ifp2);
lock_errdad:
spin_lock_bh(&ifp->lock);
}
errdad:
/* transition from _POSTDAD to _ERRDAD */
ifp->state = INET6_IFADDR_STATE_ERRDAD;
spin_unlock_bh(&ifp->lock);
addrconf_mod_dad_work(ifp, 0);
in6_ifa_put(ifp);
}
/* Join to solicited addr multicast group.
* caller must hold RTNL */
void addrconf_join_solict(struct net_device *dev, const struct in6_addr *addr)
{
struct in6_addr maddr;
if (dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
ipv6_dev_mc_inc(dev, &maddr);
}
/* caller must hold RTNL */
void addrconf_leave_solict(struct inet6_dev *idev, const struct in6_addr *addr)
{
struct in6_addr maddr;
if (idev->dev->flags&(IFF_LOOPBACK|IFF_NOARP))
return;
addrconf_addr_solict_mult(addr, &maddr);
__ipv6_dev_mc_dec(idev, &maddr);
}
/* caller must hold RTNL */
static void addrconf_join_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
if (ifp->prefix_len >= 127) /* RFC 6164 */
return;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_inc(ifp->idev, &addr);
}
/* caller must hold RTNL */
static void addrconf_leave_anycast(struct inet6_ifaddr *ifp)
{
struct in6_addr addr;
if (ifp->prefix_len >= 127) /* RFC 6164 */
return;
ipv6_addr_prefix(&addr, &ifp->addr, ifp->prefix_len);
if (ipv6_addr_any(&addr))
return;
__ipv6_dev_ac_dec(ifp->idev, &addr);
}
static int addrconf_ifid_6lowpan(u8 *eui, struct net_device *dev)
{
switch (dev->addr_len) {
case ETH_ALEN:
memcpy(eui, dev->dev_addr, 3);
eui[3] = 0xFF;
eui[4] = 0xFE;
memcpy(eui + 5, dev->dev_addr + 3, 3);
break;
case EUI64_ADDR_LEN:
memcpy(eui, dev->dev_addr, EUI64_ADDR_LEN);
eui[0] ^= 2;
break;
default:
return -1;
}
return 0;
}
static int addrconf_ifid_ieee1394(u8 *eui, struct net_device *dev)
{
union fwnet_hwaddr *ha;
if (dev->addr_len != FWNET_ALEN)
return -1;
ha = (union fwnet_hwaddr *)dev->dev_addr;
memcpy(eui, &ha->uc.uniq_id, sizeof(ha->uc.uniq_id));
eui[0] ^= 2;
return 0;
}
static int addrconf_ifid_arcnet(u8 *eui, struct net_device *dev)
{
/* XXX: inherit EUI-64 from other interface -- yoshfuji */
if (dev->addr_len != ARCNET_ALEN)
return -1;
memset(eui, 0, 7);
eui[7] = *(u8 *)dev->dev_addr;
return 0;
}
static int addrconf_ifid_infiniband(u8 *eui, struct net_device *dev)
{
if (dev->addr_len != INFINIBAND_ALEN)
return -1;
memcpy(eui, dev->dev_addr + 12, 8);
eui[0] |= 2;
return 0;
}
static int __ipv6_isatap_ifid(u8 *eui, __be32 addr)
{
if (addr == 0)
return -1;
eui[0] = (ipv4_is_zeronet(addr) || ipv4_is_private_10(addr) ||
ipv4_is_loopback(addr) || ipv4_is_linklocal_169(addr) ||
ipv4_is_private_172(addr) || ipv4_is_test_192(addr) ||
ipv4_is_anycast_6to4(addr) || ipv4_is_private_192(addr) ||
ipv4_is_test_198(addr) || ipv4_is_multicast(addr) ||
ipv4_is_lbcast(addr)) ? 0x00 : 0x02;
eui[1] = 0;
eui[2] = 0x5E;
eui[3] = 0xFE;
memcpy(eui + 4, &addr, 4);
return 0;
}
static int addrconf_ifid_sit(u8 *eui, struct net_device *dev)
{
if (dev->priv_flags & IFF_ISATAP)
return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr);
return -1;
}
static int addrconf_ifid_gre(u8 *eui, struct net_device *dev)
{
return __ipv6_isatap_ifid(eui, *(__be32 *)dev->dev_addr);
}
static int addrconf_ifid_ip6tnl(u8 *eui, struct net_device *dev)
{
memcpy(eui, dev->perm_addr, 3);
memcpy(eui + 5, dev->perm_addr + 3, 3);
eui[3] = 0xFF;
eui[4] = 0xFE;
eui[0] ^= 2;
return 0;
}
static int ipv6_generate_eui64(u8 *eui, struct net_device *dev)
{
switch (dev->type) {
case ARPHRD_ETHER:
case ARPHRD_FDDI:
return addrconf_ifid_eui48(eui, dev);
case ARPHRD_ARCNET:
return addrconf_ifid_arcnet(eui, dev);
case ARPHRD_INFINIBAND:
return addrconf_ifid_infiniband(eui, dev);
case ARPHRD_SIT:
return addrconf_ifid_sit(eui, dev);
case ARPHRD_IPGRE:
case ARPHRD_TUNNEL:
return addrconf_ifid_gre(eui, dev);
case ARPHRD_6LOWPAN:
return addrconf_ifid_6lowpan(eui, dev);
case ARPHRD_IEEE1394:
return addrconf_ifid_ieee1394(eui, dev);
case ARPHRD_TUNNEL6:
case ARPHRD_IP6GRE:
return addrconf_ifid_ip6tnl(eui, dev);
}
return -1;
}
static int ipv6_inherit_eui64(u8 *eui, struct inet6_dev *idev)
{
int err = -1;
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry_reverse(ifp, &idev->addr_list, if_list) {
if (ifp->scope > IFA_LINK)
break;
if (ifp->scope == IFA_LINK && !(ifp->flags&IFA_F_TENTATIVE)) {
memcpy(eui, ifp->addr.s6_addr+8, 8);
err = 0;
break;
}
}
read_unlock_bh(&idev->lock);
return err;
}
/* (re)generation of randomized interface identifier (RFC 3041 3.2, 3.5) */
static void ipv6_regen_rndid(struct inet6_dev *idev)
{
regen:
get_random_bytes(idev->rndid, sizeof(idev->rndid));
idev->rndid[0] &= ~0x02;
/*
* <draft-ietf-ipngwg-temp-addresses-v2-00.txt>:
* check if generated address is not inappropriate
*
* - Reserved subnet anycast (RFC 2526)
* 11111101 11....11 1xxxxxxx
* - ISATAP (RFC4214) 6.1
* 00-00-5E-FE-xx-xx-xx-xx
* - value 0
* - XXX: already assigned to an address on the device
*/
if (idev->rndid[0] == 0xfd &&
(idev->rndid[1]&idev->rndid[2]&idev->rndid[3]&idev->rndid[4]&idev->rndid[5]&idev->rndid[6]) == 0xff &&
(idev->rndid[7]&0x80))
goto regen;
if ((idev->rndid[0]|idev->rndid[1]) == 0) {
if (idev->rndid[2] == 0x5e && idev->rndid[3] == 0xfe)
goto regen;
if ((idev->rndid[2]|idev->rndid[3]|idev->rndid[4]|idev->rndid[5]|idev->rndid[6]|idev->rndid[7]) == 0x00)
goto regen;
}
}
static void ipv6_try_regen_rndid(struct inet6_dev *idev, struct in6_addr *tmpaddr)
{
if (tmpaddr && memcmp(idev->rndid, &tmpaddr->s6_addr[8], 8) == 0)
ipv6_regen_rndid(idev);
}
/*
* Add prefix route.
*/
static void
addrconf_prefix_route(struct in6_addr *pfx, int plen, struct net_device *dev,
unsigned long expires, u32 flags)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_PREFIX,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_expires = expires,
.fc_dst_len = plen,
.fc_flags = RTF_UP | flags,
.fc_nlinfo.nl_net = dev_net(dev),
.fc_protocol = RTPROT_KERNEL,
};
cfg.fc_dst = *pfx;
/* Prevent useless cloning on PtP SIT.
This thing is done here expecting that the whole
class of non-broadcast devices need not cloning.
*/
#if IS_ENABLED(CONFIG_IPV6_SIT)
if (dev->type == ARPHRD_SIT && (dev->flags & IFF_POINTOPOINT))
cfg.fc_flags |= RTF_NONEXTHOP;
#endif
ip6_route_add(&cfg, NULL);
}
static struct rt6_info *addrconf_get_prefix_route(const struct in6_addr *pfx,
int plen,
const struct net_device *dev,
u32 flags, u32 noflags)
{
struct fib6_node *fn;
struct rt6_info *rt = NULL;
struct fib6_table *table;
u32 tb_id = l3mdev_fib_table(dev) ? : RT6_TABLE_PREFIX;
table = fib6_get_table(dev_net(dev), tb_id);
if (!table)
return NULL;
rcu_read_lock();
fn = fib6_locate(&table->tb6_root, pfx, plen, NULL, 0, true);
if (!fn)
goto out;
for_each_fib6_node_rt_rcu(fn) {
if (rt->dst.dev->ifindex != dev->ifindex)
continue;
if ((rt->rt6i_flags & flags) != flags)
continue;
if ((rt->rt6i_flags & noflags) != 0)
continue;
if (!dst_hold_safe(&rt->dst))
rt = NULL;
break;
}
out:
rcu_read_unlock();
return rt;
}
/* Create "default" multicast route to the interface */
static void addrconf_add_mroute(struct net_device *dev)
{
struct fib6_config cfg = {
.fc_table = l3mdev_fib_table(dev) ? : RT6_TABLE_LOCAL,
.fc_metric = IP6_RT_PRIO_ADDRCONF,
.fc_ifindex = dev->ifindex,
.fc_dst_len = 8,
.fc_flags = RTF_UP,
.fc_nlinfo.nl_net = dev_net(dev),
};
ipv6_addr_set(&cfg.fc_dst, htonl(0xFF000000), 0, 0, 0);
ip6_route_add(&cfg, NULL);
}
static struct inet6_dev *addrconf_add_dev(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (!idev)
return ERR_PTR(-ENOBUFS);
if (idev->cnf.disable_ipv6)
return ERR_PTR(-EACCES);
/* Add default multicast route */
if (!(dev->flags & IFF_LOOPBACK) && !netif_is_l3_master(dev))
addrconf_add_mroute(dev);
return idev;
}
static void manage_tempaddrs(struct inet6_dev *idev,
struct inet6_ifaddr *ifp,
__u32 valid_lft, __u32 prefered_lft,
bool create, unsigned long now)
{
u32 flags;
struct inet6_ifaddr *ift;
read_lock_bh(&idev->lock);
/* update all temporary addresses in the list */
list_for_each_entry(ift, &idev->tempaddr_list, tmp_list) {
int age, max_valid, max_prefered;
if (ifp != ift->ifpub)
continue;
/* RFC 4941 section 3.3:
* If a received option will extend the lifetime of a public
* address, the lifetimes of temporary addresses should
* be extended, subject to the overall constraint that no
* temporary addresses should ever remain "valid" or "preferred"
* for a time longer than (TEMP_VALID_LIFETIME) or
* (TEMP_PREFERRED_LIFETIME - DESYNC_FACTOR), respectively.
*/
age = (now - ift->cstamp) / HZ;
max_valid = idev->cnf.temp_valid_lft - age;
if (max_valid < 0)
max_valid = 0;
max_prefered = idev->cnf.temp_prefered_lft -
idev->desync_factor - age;
if (max_prefered < 0)
max_prefered = 0;
if (valid_lft > max_valid)
valid_lft = max_valid;
if (prefered_lft > max_prefered)
prefered_lft = max_prefered;
spin_lock(&ift->lock);
flags = ift->flags;
ift->valid_lft = valid_lft;
ift->prefered_lft = prefered_lft;
ift->tstamp = now;
if (prefered_lft > 0)
ift->flags &= ~IFA_F_DEPRECATED;
spin_unlock(&ift->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ift);
}
if ((create || list_empty(&idev->tempaddr_list)) &&
idev->cnf.use_tempaddr > 0) {
/* When a new public address is created as described
* in [ADDRCONF], also create a new temporary address.
* Also create a temporary address if it's enabled but
* no temporary address currently exists.
*/
read_unlock_bh(&idev->lock);
ipv6_create_tempaddr(ifp, NULL, false);
} else {
read_unlock_bh(&idev->lock);
}
}
static bool is_addr_mode_generate_stable(struct inet6_dev *idev)
{
return idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_STABLE_PRIVACY ||
idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_RANDOM;
}
int addrconf_prefix_rcv_add_addr(struct net *net, struct net_device *dev,
const struct prefix_info *pinfo,
struct inet6_dev *in6_dev,
const struct in6_addr *addr, int addr_type,
u32 addr_flags, bool sllao, bool tokenized,
__u32 valid_lft, u32 prefered_lft)
{
struct inet6_ifaddr *ifp = ipv6_get_ifaddr(net, addr, dev, 1);
int create = 0, update_lft = 0;
if (!ifp && valid_lft) {
int max_addresses = in6_dev->cnf.max_addresses;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if ((net->ipv6.devconf_all->optimistic_dad ||
in6_dev->cnf.optimistic_dad) &&
!net->ipv6.devconf_all->forwarding && sllao)
addr_flags |= IFA_F_OPTIMISTIC;
#endif
/* Do not allow to create too much of autoconfigured
* addresses; this would be too easy way to crash kernel.
*/
if (!max_addresses ||
ipv6_count_addresses(in6_dev) < max_addresses)
ifp = ipv6_add_addr(in6_dev, addr, NULL,
pinfo->prefix_len,
addr_type&IPV6_ADDR_SCOPE_MASK,
addr_flags, valid_lft,
prefered_lft, false, NULL);
if (IS_ERR_OR_NULL(ifp))
return -1;
update_lft = 0;
create = 1;
spin_lock_bh(&ifp->lock);
ifp->flags |= IFA_F_MANAGETEMPADDR;
ifp->cstamp = jiffies;
ifp->tokenized = tokenized;
spin_unlock_bh(&ifp->lock);
addrconf_dad_start(ifp);
}
if (ifp) {
u32 flags;
unsigned long now;
u32 stored_lft;
/* update lifetime (RFC2462 5.5.3 e) */
spin_lock_bh(&ifp->lock);
now = jiffies;
if (ifp->valid_lft > (now - ifp->tstamp) / HZ)
stored_lft = ifp->valid_lft - (now - ifp->tstamp) / HZ;
else
stored_lft = 0;
if (!update_lft && !create && stored_lft) {
const u32 minimum_lft = min_t(u32,
stored_lft, MIN_VALID_LIFETIME);
valid_lft = max(valid_lft, minimum_lft);
/* RFC4862 Section 5.5.3e:
* "Note that the preferred lifetime of the
* corresponding address is always reset to
* the Preferred Lifetime in the received
* Prefix Information option, regardless of
* whether the valid lifetime is also reset or
* ignored."
*
* So we should always update prefered_lft here.
*/
update_lft = 1;
}
if (update_lft) {
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
ifp->tstamp = now;
flags = ifp->flags;
ifp->flags &= ~IFA_F_DEPRECATED;
spin_unlock_bh(&ifp->lock);
if (!(flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
} else
spin_unlock_bh(&ifp->lock);
manage_tempaddrs(in6_dev, ifp, valid_lft, prefered_lft,
create, now);
in6_ifa_put(ifp);
addrconf_verify();
}
return 0;
}
EXPORT_SYMBOL_GPL(addrconf_prefix_rcv_add_addr);
void addrconf_prefix_rcv(struct net_device *dev, u8 *opt, int len, bool sllao)
{
struct prefix_info *pinfo;
__u32 valid_lft;
__u32 prefered_lft;
int addr_type, err;
u32 addr_flags = 0;
struct inet6_dev *in6_dev;
struct net *net = dev_net(dev);
pinfo = (struct prefix_info *) opt;
if (len < sizeof(struct prefix_info)) {
netdev_dbg(dev, "addrconf: prefix option too short\n");
return;
}
/*
* Validation checks ([ADDRCONF], page 19)
*/
addr_type = ipv6_addr_type(&pinfo->prefix);
if (addr_type & (IPV6_ADDR_MULTICAST|IPV6_ADDR_LINKLOCAL))
return;
valid_lft = ntohl(pinfo->valid);
prefered_lft = ntohl(pinfo->prefered);
if (prefered_lft > valid_lft) {
net_warn_ratelimited("addrconf: prefix option has invalid lifetime\n");
return;
}
in6_dev = in6_dev_get(dev);
if (!in6_dev) {
net_dbg_ratelimited("addrconf: device %s not configured\n",
dev->name);
return;
}
/*
* Two things going on here:
* 1) Add routes for on-link prefixes
* 2) Configure prefixes with the auto flag set
*/
if (pinfo->onlink) {
struct rt6_info *rt;
unsigned long rt_expires;
/* Avoid arithmetic overflow. Really, we could
* save rt_expires in seconds, likely valid_lft,
* but it would require division in fib gc, that it
* not good.
*/
if (HZ > USER_HZ)
rt_expires = addrconf_timeout_fixup(valid_lft, HZ);
else
rt_expires = addrconf_timeout_fixup(valid_lft, USER_HZ);
if (addrconf_finite_timeout(rt_expires))
rt_expires *= HZ;
rt = addrconf_get_prefix_route(&pinfo->prefix,
pinfo->prefix_len,
dev,
RTF_ADDRCONF | RTF_PREFIX_RT,
RTF_GATEWAY | RTF_DEFAULT);
if (rt) {
/* Autoconf prefix route */
if (valid_lft == 0) {
ip6_del_rt(rt);
rt = NULL;
} else if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
rt6_set_expires(rt, jiffies + rt_expires);
} else {
rt6_clean_expires(rt);
}
} else if (valid_lft) {
clock_t expires = 0;
int flags = RTF_ADDRCONF | RTF_PREFIX_RT;
if (addrconf_finite_timeout(rt_expires)) {
/* not infinity */
flags |= RTF_EXPIRES;
expires = jiffies_to_clock_t(rt_expires);
}
addrconf_prefix_route(&pinfo->prefix, pinfo->prefix_len,
dev, expires, flags);
}
ip6_rt_put(rt);
}
/* Try to figure out our local address for this prefix */
if (pinfo->autoconf && in6_dev->cnf.autoconf) {
struct in6_addr addr;
bool tokenized = false, dev_addr_generated = false;
if (pinfo->prefix_len == 64) {
memcpy(&addr, &pinfo->prefix, 8);
if (!ipv6_addr_any(&in6_dev->token)) {
read_lock_bh(&in6_dev->lock);
memcpy(addr.s6_addr + 8,
in6_dev->token.s6_addr + 8, 8);
read_unlock_bh(&in6_dev->lock);
tokenized = true;
} else if (is_addr_mode_generate_stable(in6_dev) &&
!ipv6_generate_stable_address(&addr, 0,
in6_dev)) {
addr_flags |= IFA_F_STABLE_PRIVACY;
goto ok;
} else if (ipv6_generate_eui64(addr.s6_addr + 8, dev) &&
ipv6_inherit_eui64(addr.s6_addr + 8, in6_dev)) {
goto put;
} else {
dev_addr_generated = true;
}
goto ok;
}
net_dbg_ratelimited("IPv6 addrconf: prefix with wrong length %d\n",
pinfo->prefix_len);
goto put;
ok:
err = addrconf_prefix_rcv_add_addr(net, dev, pinfo, in6_dev,
&addr, addr_type,
addr_flags, sllao,
tokenized, valid_lft,
prefered_lft);
if (err)
goto put;
/* Ignore error case here because previous prefix add addr was
* successful which will be notified.
*/
ndisc_ops_prefix_rcv_add_addr(net, dev, pinfo, in6_dev, &addr,
addr_type, addr_flags, sllao,
tokenized, valid_lft,
prefered_lft,
dev_addr_generated);
}
inet6_prefix_notify(RTM_NEWPREFIX, in6_dev, pinfo);
put:
in6_dev_put(in6_dev);
}
/*
* Set destination address.
* Special case for SIT interfaces where we create a new "virtual"
* device.
*/
int addrconf_set_dstaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
struct net_device *dev;
int err = -EINVAL;
rtnl_lock();
err = -EFAULT;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
goto err_exit;
dev = __dev_get_by_index(net, ireq.ifr6_ifindex);
err = -ENODEV;
if (!dev)
goto err_exit;
#if IS_ENABLED(CONFIG_IPV6_SIT)
if (dev->type == ARPHRD_SIT) {
const struct net_device_ops *ops = dev->netdev_ops;
struct ifreq ifr;
struct ip_tunnel_parm p;
err = -EADDRNOTAVAIL;
if (!(ipv6_addr_type(&ireq.ifr6_addr) & IPV6_ADDR_COMPATv4))
goto err_exit;
memset(&p, 0, sizeof(p));
p.iph.daddr = ireq.ifr6_addr.s6_addr32[3];
p.iph.saddr = 0;
p.iph.version = 4;
p.iph.ihl = 5;
p.iph.protocol = IPPROTO_IPV6;
p.iph.ttl = 64;
ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
if (ops->ndo_do_ioctl) {
mm_segment_t oldfs = get_fs();
set_fs(KERNEL_DS);
err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
set_fs(oldfs);
} else
err = -EOPNOTSUPP;
if (err == 0) {
err = -ENOBUFS;
dev = __dev_get_by_name(net, p.name);
if (!dev)
goto err_exit;
err = dev_open(dev);
}
}
#endif
err_exit:
rtnl_unlock();
return err;
}
static int ipv6_mc_config(struct sock *sk, bool join,
const struct in6_addr *addr, int ifindex)
{
int ret;
ASSERT_RTNL();
lock_sock(sk);
if (join)
ret = ipv6_sock_mc_join(sk, ifindex, addr);
else
ret = ipv6_sock_mc_drop(sk, ifindex, addr);
release_sock(sk);
return ret;
}
/*
* Manual configuration of address on an interface
*/
static int inet6_addr_add(struct net *net, int ifindex,
const struct in6_addr *pfx,
const struct in6_addr *peer_pfx,
unsigned int plen, __u32 ifa_flags,
__u32 prefered_lft, __u32 valid_lft,
struct netlink_ext_ack *extack)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
unsigned long timeout;
clock_t expires;
int scope;
u32 flags;
ASSERT_RTNL();
if (plen > 128)
return -EINVAL;
/* check the lifetime */
if (!valid_lft || prefered_lft > valid_lft)
return -EINVAL;
if (ifa_flags & IFA_F_MANAGETEMPADDR && plen != 64)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
idev = addrconf_add_dev(dev);
if (IS_ERR(idev))
return PTR_ERR(idev);
if (ifa_flags & IFA_F_MCAUTOJOIN) {
int ret = ipv6_mc_config(net->ipv6.mc_autojoin_sk,
true, pfx, ifindex);
if (ret < 0)
return ret;
}
scope = ipv6_addr_scope(pfx);
timeout = addrconf_timeout_fixup(valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(prefered_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
ifa_flags |= IFA_F_DEPRECATED;
prefered_lft = timeout;
}
ifp = ipv6_add_addr(idev, pfx, peer_pfx, plen, scope, ifa_flags,
valid_lft, prefered_lft, true, extack);
if (!IS_ERR(ifp)) {
if (!(ifa_flags & IFA_F_NOPREFIXROUTE)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, dev,
expires, flags);
}
/*
* Note that section 3.1 of RFC 4429 indicates
* that the Optimistic flag should not be set for
* manually configured addresses
*/
addrconf_dad_start(ifp);
if (ifa_flags & IFA_F_MANAGETEMPADDR)
manage_tempaddrs(idev, ifp, valid_lft, prefered_lft,
true, jiffies);
in6_ifa_put(ifp);
addrconf_verify_rtnl();
return 0;
} else if (ifa_flags & IFA_F_MCAUTOJOIN) {
ipv6_mc_config(net->ipv6.mc_autojoin_sk,
false, pfx, ifindex);
}
return PTR_ERR(ifp);
}
static int inet6_addr_del(struct net *net, int ifindex, u32 ifa_flags,
const struct in6_addr *pfx, unsigned int plen)
{
struct inet6_ifaddr *ifp;
struct inet6_dev *idev;
struct net_device *dev;
if (plen > 128)
return -EINVAL;
dev = __dev_get_by_index(net, ifindex);
if (!dev)
return -ENODEV;
idev = __in6_dev_get(dev);
if (!idev)
return -ENXIO;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
if (ifp->prefix_len == plen &&
ipv6_addr_equal(pfx, &ifp->addr)) {
in6_ifa_hold(ifp);
read_unlock_bh(&idev->lock);
if (!(ifp->flags & IFA_F_TEMPORARY) &&
(ifa_flags & IFA_F_MANAGETEMPADDR))
manage_tempaddrs(idev, ifp, 0, 0, false,
jiffies);
ipv6_del_addr(ifp);
addrconf_verify_rtnl();
if (ipv6_addr_is_multicast(pfx)) {
ipv6_mc_config(net->ipv6.mc_autojoin_sk,
false, pfx, dev->ifindex);
}
return 0;
}
}
read_unlock_bh(&idev->lock);
return -EADDRNOTAVAIL;
}
int addrconf_add_ifaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_add(net, ireq.ifr6_ifindex, &ireq.ifr6_addr, NULL,
ireq.ifr6_prefixlen, IFA_F_PERMANENT,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME, NULL);
rtnl_unlock();
return err;
}
int addrconf_del_ifaddr(struct net *net, void __user *arg)
{
struct in6_ifreq ireq;
int err;
if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&ireq, arg, sizeof(struct in6_ifreq)))
return -EFAULT;
rtnl_lock();
err = inet6_addr_del(net, ireq.ifr6_ifindex, 0, &ireq.ifr6_addr,
ireq.ifr6_prefixlen);
rtnl_unlock();
return err;
}
static void add_addr(struct inet6_dev *idev, const struct in6_addr *addr,
int plen, int scope)
{
struct inet6_ifaddr *ifp;
ifp = ipv6_add_addr(idev, addr, NULL, plen,
scope, IFA_F_PERMANENT,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME,
true, NULL);
if (!IS_ERR(ifp)) {
spin_lock_bh(&ifp->lock);
ifp->flags &= ~IFA_F_TENTATIVE;
spin_unlock_bh(&ifp->lock);
rt_genid_bump_ipv6(dev_net(idev->dev));
ipv6_ifa_notify(RTM_NEWADDR, ifp);
in6_ifa_put(ifp);
}
}
#if IS_ENABLED(CONFIG_IPV6_SIT)
static void sit_add_v4_addrs(struct inet6_dev *idev)
{
struct in6_addr addr;
struct net_device *dev;
struct net *net = dev_net(idev->dev);
int scope, plen;
u32 pflags = 0;
ASSERT_RTNL();
memset(&addr, 0, sizeof(struct in6_addr));
memcpy(&addr.s6_addr32[3], idev->dev->dev_addr, 4);
if (idev->dev->flags&IFF_POINTOPOINT) {
addr.s6_addr32[0] = htonl(0xfe800000);
scope = IFA_LINK;
plen = 64;
} else {
scope = IPV6_ADDR_COMPATv4;
plen = 96;
pflags |= RTF_NONEXTHOP;
}
if (addr.s6_addr32[3]) {
add_addr(idev, &addr, plen, scope);
addrconf_prefix_route(&addr, plen, idev->dev, 0, pflags);
return;
}
for_each_netdev(net, dev) {
struct in_device *in_dev = __in_dev_get_rtnl(dev);
if (in_dev && (dev->flags & IFF_UP)) {
struct in_ifaddr *ifa;
int flag = scope;
for (ifa = in_dev->ifa_list; ifa; ifa = ifa->ifa_next) {
addr.s6_addr32[3] = ifa->ifa_local;
if (ifa->ifa_scope == RT_SCOPE_LINK)
continue;
if (ifa->ifa_scope >= RT_SCOPE_HOST) {
if (idev->dev->flags&IFF_POINTOPOINT)
continue;
flag |= IFA_HOST;
}
add_addr(idev, &addr, plen, flag);
addrconf_prefix_route(&addr, plen, idev->dev, 0,
pflags);
}
}
}
}
#endif
static void init_loopback(struct net_device *dev)
{
struct inet6_dev *idev;
/* ::1 */
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (!idev) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
add_addr(idev, &in6addr_loopback, 128, IFA_HOST);
}
void addrconf_add_linklocal(struct inet6_dev *idev,
const struct in6_addr *addr, u32 flags)
{
struct inet6_ifaddr *ifp;
u32 addr_flags = flags | IFA_F_PERMANENT;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
if ((dev_net(idev->dev)->ipv6.devconf_all->optimistic_dad ||
idev->cnf.optimistic_dad) &&
!dev_net(idev->dev)->ipv6.devconf_all->forwarding)
addr_flags |= IFA_F_OPTIMISTIC;
#endif
ifp = ipv6_add_addr(idev, addr, NULL, 64, IFA_LINK, addr_flags,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME, true, NULL);
if (!IS_ERR(ifp)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, idev->dev, 0, 0);
addrconf_dad_start(ifp);
in6_ifa_put(ifp);
}
}
EXPORT_SYMBOL_GPL(addrconf_add_linklocal);
static bool ipv6_reserved_interfaceid(struct in6_addr address)
{
if ((address.s6_addr32[2] | address.s6_addr32[3]) == 0)
return true;
if (address.s6_addr32[2] == htonl(0x02005eff) &&
((address.s6_addr32[3] & htonl(0xfe000000)) == htonl(0xfe000000)))
return true;
if (address.s6_addr32[2] == htonl(0xfdffffff) &&
((address.s6_addr32[3] & htonl(0xffffff80)) == htonl(0xffffff80)))
return true;
return false;
}
static int ipv6_generate_stable_address(struct in6_addr *address,
u8 dad_count,
const struct inet6_dev *idev)
{
static DEFINE_SPINLOCK(lock);
static __u32 digest[SHA_DIGEST_WORDS];
static __u32 workspace[SHA_WORKSPACE_WORDS];
static union {
char __data[SHA_MESSAGE_BYTES];
struct {
struct in6_addr secret;
__be32 prefix[2];
unsigned char hwaddr[MAX_ADDR_LEN];
u8 dad_count;
} __packed;
} data;
struct in6_addr secret;
struct in6_addr temp;
struct net *net = dev_net(idev->dev);
BUILD_BUG_ON(sizeof(data.__data) != sizeof(data));
if (idev->cnf.stable_secret.initialized)
secret = idev->cnf.stable_secret.secret;
else if (net->ipv6.devconf_dflt->stable_secret.initialized)
secret = net->ipv6.devconf_dflt->stable_secret.secret;
else
return -1;
retry:
spin_lock_bh(&lock);
sha_init(digest);
memset(&data, 0, sizeof(data));
memset(workspace, 0, sizeof(workspace));
memcpy(data.hwaddr, idev->dev->perm_addr, idev->dev->addr_len);
data.prefix[0] = address->s6_addr32[0];
data.prefix[1] = address->s6_addr32[1];
data.secret = secret;
data.dad_count = dad_count;
sha_transform(digest, data.__data, workspace);
temp = *address;
temp.s6_addr32[2] = (__force __be32)digest[0];
temp.s6_addr32[3] = (__force __be32)digest[1];
spin_unlock_bh(&lock);
if (ipv6_reserved_interfaceid(temp)) {
dad_count++;
if (dad_count > dev_net(idev->dev)->ipv6.sysctl.idgen_retries)
return -1;
goto retry;
}
*address = temp;
return 0;
}
static void ipv6_gen_mode_random_init(struct inet6_dev *idev)
{
struct ipv6_stable_secret *s = &idev->cnf.stable_secret;
if (s->initialized)
return;
s = &idev->cnf.stable_secret;
get_random_bytes(&s->secret, sizeof(s->secret));
s->initialized = true;
}
static void addrconf_addr_gen(struct inet6_dev *idev, bool prefix_route)
{
struct in6_addr addr;
/* no link local addresses on L3 master devices */
if (netif_is_l3_master(idev->dev))
return;
ipv6_addr_set(&addr, htonl(0xFE800000), 0, 0, 0);
switch (idev->cnf.addr_gen_mode) {
case IN6_ADDR_GEN_MODE_RANDOM:
ipv6_gen_mode_random_init(idev);
/* fallthrough */
case IN6_ADDR_GEN_MODE_STABLE_PRIVACY:
if (!ipv6_generate_stable_address(&addr, 0, idev))
addrconf_add_linklocal(idev, &addr,
IFA_F_STABLE_PRIVACY);
else if (prefix_route)
addrconf_prefix_route(&addr, 64, idev->dev, 0, 0);
break;
case IN6_ADDR_GEN_MODE_EUI64:
/* addrconf_add_linklocal also adds a prefix_route and we
* only need to care about prefix routes if ipv6_generate_eui64
* couldn't generate one.
*/
if (ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) == 0)
addrconf_add_linklocal(idev, &addr, 0);
else if (prefix_route)
addrconf_prefix_route(&addr, 64, idev->dev, 0, 0);
break;
case IN6_ADDR_GEN_MODE_NONE:
default:
/* will not add any link local address */
break;
}
}
static void addrconf_dev_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
if ((dev->type != ARPHRD_ETHER) &&
(dev->type != ARPHRD_FDDI) &&
(dev->type != ARPHRD_ARCNET) &&
(dev->type != ARPHRD_INFINIBAND) &&
(dev->type != ARPHRD_IEEE1394) &&
(dev->type != ARPHRD_TUNNEL6) &&
(dev->type != ARPHRD_6LOWPAN) &&
(dev->type != ARPHRD_IP6GRE) &&
(dev->type != ARPHRD_IPGRE) &&
(dev->type != ARPHRD_TUNNEL) &&
(dev->type != ARPHRD_NONE)) {
/* Alas, we support only Ethernet autoconfiguration. */
return;
}
idev = addrconf_add_dev(dev);
if (IS_ERR(idev))
return;
/* this device type has no EUI support */
if (dev->type == ARPHRD_NONE &&
idev->cnf.addr_gen_mode == IN6_ADDR_GEN_MODE_EUI64)
idev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_RANDOM;
addrconf_addr_gen(idev, false);
}
#if IS_ENABLED(CONFIG_IPV6_SIT)
static void addrconf_sit_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
/*
* Configure the tunnel with one of our IPv4
* addresses... we should configure all of
* our v4 addrs in the tunnel
*/
idev = ipv6_find_idev(dev);
if (!idev) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
if (dev->priv_flags & IFF_ISATAP) {
addrconf_addr_gen(idev, false);
return;
}
sit_add_v4_addrs(idev);
if (dev->flags&IFF_POINTOPOINT)
addrconf_add_mroute(dev);
}
#endif
#if IS_ENABLED(CONFIG_NET_IPGRE)
static void addrconf_gre_config(struct net_device *dev)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = ipv6_find_idev(dev);
if (!idev) {
pr_debug("%s: add_dev failed\n", __func__);
return;
}
addrconf_addr_gen(idev, true);
if (dev->flags & IFF_POINTOPOINT)
addrconf_add_mroute(dev);
}
#endif
static int fixup_permanent_addr(struct inet6_dev *idev,
struct inet6_ifaddr *ifp)
{
/* !rt6i_node means the host route was removed from the
* FIB, for example, if 'lo' device is taken down. In that
* case regenerate the host route.
*/
if (!ifp->rt || !ifp->rt->rt6i_node) {
struct rt6_info *rt, *prev;
rt = addrconf_dst_alloc(idev, &ifp->addr, false);
if (IS_ERR(rt))
return PTR_ERR(rt);
/* ifp->rt can be accessed outside of rtnl */
spin_lock(&ifp->lock);
prev = ifp->rt;
ifp->rt = rt;
spin_unlock(&ifp->lock);
ip6_rt_put(prev);
}
if (!(ifp->flags & IFA_F_NOPREFIXROUTE)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len,
idev->dev, 0, 0);
}
if (ifp->state == INET6_IFADDR_STATE_PREDAD)
addrconf_dad_start(ifp);
return 0;
}
static void addrconf_permanent_addr(struct net_device *dev)
{
struct inet6_ifaddr *ifp, *tmp;
struct inet6_dev *idev;
idev = __in6_dev_get(dev);
if (!idev)
return;
write_lock_bh(&idev->lock);
list_for_each_entry_safe(ifp, tmp, &idev->addr_list, if_list) {
if ((ifp->flags & IFA_F_PERMANENT) &&
fixup_permanent_addr(idev, ifp) < 0) {
write_unlock_bh(&idev->lock);
in6_ifa_hold(ifp);
ipv6_del_addr(ifp);
write_lock_bh(&idev->lock);
net_info_ratelimited("%s: Failed to add prefix route for address %pI6c; dropping\n",
idev->dev->name, &ifp->addr);
}
}
write_unlock_bh(&idev->lock);
}
static int addrconf_notify(struct notifier_block *this, unsigned long event,
void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct netdev_notifier_changeupper_info *info;
struct inet6_dev *idev = __in6_dev_get(dev);
struct net *net = dev_net(dev);
int run_pending = 0;
int err;
switch (event) {
case NETDEV_REGISTER:
if (!idev && dev->mtu >= IPV6_MIN_MTU) {
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
return notifier_from_errno(PTR_ERR(idev));
}
break;
case NETDEV_CHANGEMTU:
/* if MTU under IPV6_MIN_MTU stop IPv6 on this interface. */
if (dev->mtu < IPV6_MIN_MTU) {
addrconf_ifdown(dev, dev != net->loopback_dev);
break;
}
if (idev) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
break;
}
/* allocate new idev */
idev = ipv6_add_dev(dev);
if (IS_ERR(idev))
break;
/* device is still not ready */
if (!(idev->if_flags & IF_READY))
break;
run_pending = 1;
/* fall through */
case NETDEV_UP:
case NETDEV_CHANGE:
if (dev->flags & IFF_SLAVE)
break;
if (idev && idev->cnf.disable_ipv6)
break;
if (event == NETDEV_UP) {
/* restore routes for permanent addresses */
addrconf_permanent_addr(dev);
if (!addrconf_link_ready(dev)) {
/* device is not ready yet. */
pr_info("ADDRCONF(NETDEV_UP): %s: link is not ready\n",
dev->name);
break;
}
if (!idev && dev->mtu >= IPV6_MIN_MTU)
idev = ipv6_add_dev(dev);
if (!IS_ERR_OR_NULL(idev)) {
idev->if_flags |= IF_READY;
run_pending = 1;
}
} else if (event == NETDEV_CHANGE) {
if (!addrconf_link_ready(dev)) {
/* device is still not ready. */
rt6_sync_down_dev(dev, event);
break;
}
if (idev) {
if (idev->if_flags & IF_READY) {
/* device is already configured -
* but resend MLD reports, we might
* have roamed and need to update
* multicast snooping switches
*/
ipv6_mc_up(idev);
rt6_sync_up(dev, RTNH_F_LINKDOWN);
break;
}
idev->if_flags |= IF_READY;
}
pr_info("ADDRCONF(NETDEV_CHANGE): %s: link becomes ready\n",
dev->name);
run_pending = 1;
}
switch (dev->type) {
#if IS_ENABLED(CONFIG_IPV6_SIT)
case ARPHRD_SIT:
addrconf_sit_config(dev);
break;
#endif
#if IS_ENABLED(CONFIG_NET_IPGRE)
case ARPHRD_IPGRE:
addrconf_gre_config(dev);
break;
#endif
case ARPHRD_LOOPBACK:
init_loopback(dev);
break;
default:
addrconf_dev_config(dev);
break;
}
if (!IS_ERR_OR_NULL(idev)) {
if (run_pending)
addrconf_dad_run(idev);
/* Device has an address by now */
rt6_sync_up(dev, RTNH_F_DEAD);
/*
* If the MTU changed during the interface down,
* when the interface up, the changed MTU must be
* reflected in the idev as well as routers.
*/
if (idev->cnf.mtu6 != dev->mtu &&
dev->mtu >= IPV6_MIN_MTU) {
rt6_mtu_change(dev, dev->mtu);
idev->cnf.mtu6 = dev->mtu;
}
idev->tstamp = jiffies;
inet6_ifinfo_notify(RTM_NEWLINK, idev);
/*
* If the changed mtu during down is lower than
* IPV6_MIN_MTU stop IPv6 on this interface.
*/
if (dev->mtu < IPV6_MIN_MTU)
addrconf_ifdown(dev, dev != net->loopback_dev);
}
break;
case NETDEV_DOWN:
case NETDEV_UNREGISTER:
/*
* Remove all addresses from this interface.
*/
addrconf_ifdown(dev, event != NETDEV_DOWN);
break;
case NETDEV_CHANGENAME:
if (idev) {
snmp6_unregister_dev(idev);
addrconf_sysctl_unregister(idev);
err = addrconf_sysctl_register(idev);
if (err)
return notifier_from_errno(err);
err = snmp6_register_dev(idev);
if (err) {
addrconf_sysctl_unregister(idev);
return notifier_from_errno(err);
}
}
break;
case NETDEV_PRE_TYPE_CHANGE:
case NETDEV_POST_TYPE_CHANGE:
if (idev)
addrconf_type_change(dev, event);
break;
case NETDEV_CHANGEUPPER:
info = ptr;
/* flush all routes if dev is linked to or unlinked from
* an L3 master device (e.g., VRF)
*/
if (info->upper_dev && netif_is_l3_master(info->upper_dev))
addrconf_ifdown(dev, 0);
}
return NOTIFY_OK;
}
/*
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
.notifier_call = addrconf_notify,
.priority = ADDRCONF_NOTIFY_PRIORITY,
};
static void addrconf_type_change(struct net_device *dev, unsigned long event)
{
struct inet6_dev *idev;
ASSERT_RTNL();
idev = __in6_dev_get(dev);
if (event == NETDEV_POST_TYPE_CHANGE)
ipv6_mc_remap(idev);
else if (event == NETDEV_PRE_TYPE_CHANGE)
ipv6_mc_unmap(idev);
}
static bool addr_is_local(const struct in6_addr *addr)
{
return ipv6_addr_type(addr) &
(IPV6_ADDR_LINKLOCAL | IPV6_ADDR_LOOPBACK);
}
static int addrconf_ifdown(struct net_device *dev, int how)
{
unsigned long event = how ? NETDEV_UNREGISTER : NETDEV_DOWN;
struct net *net = dev_net(dev);
struct inet6_dev *idev;
struct inet6_ifaddr *ifa, *tmp;
int _keep_addr;
bool keep_addr;
int state, i;
ASSERT_RTNL();
rt6_disable_ip(dev, event);
idev = __in6_dev_get(dev);
if (!idev)
return -ENODEV;
/*
* Step 1: remove reference to ipv6 device from parent device.
* Do not dev_put!
*/
if (how) {
idev->dead = 1;
/* protected by rtnl_lock */
RCU_INIT_POINTER(dev->ip6_ptr, NULL);
/* Step 1.5: remove snmp6 entry */
snmp6_unregister_dev(idev);
}
/* aggregate the system setting and interface setting */
_keep_addr = net->ipv6.devconf_all->keep_addr_on_down;
if (!_keep_addr)
_keep_addr = idev->cnf.keep_addr_on_down;
/* combine the user config with event to determine if permanent
* addresses are to be removed from address hash table
*/
keep_addr = !(how || _keep_addr <= 0 || idev->cnf.disable_ipv6);
/* Step 2: clear hash table */
for (i = 0; i < IN6_ADDR_HSIZE; i++) {
struct hlist_head *h = &inet6_addr_lst[i];
spin_lock_bh(&addrconf_hash_lock);
restart:
hlist_for_each_entry_rcu(ifa, h, addr_lst) {
if (ifa->idev == idev) {
addrconf_del_dad_work(ifa);
/* combined flag + permanent flag decide if
* address is retained on a down event
*/
if (!keep_addr ||
!(ifa->flags & IFA_F_PERMANENT) ||
addr_is_local(&ifa->addr)) {
hlist_del_init_rcu(&ifa->addr_lst);
goto restart;
}
}
}
spin_unlock_bh(&addrconf_hash_lock);
}
write_lock_bh(&idev->lock);
addrconf_del_rs_timer(idev);
/* Step 2: clear flags for stateless addrconf */
if (!how)
idev->if_flags &= ~(IF_RS_SENT|IF_RA_RCVD|IF_READY);
/* Step 3: clear tempaddr list */
while (!list_empty(&idev->tempaddr_list)) {
ifa = list_first_entry(&idev->tempaddr_list,
struct inet6_ifaddr, tmp_list);
list_del(&ifa->tmp_list);
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (ifa->ifpub) {
in6_ifa_put(ifa->ifpub);
ifa->ifpub = NULL;
}
spin_unlock_bh(&ifa->lock);
in6_ifa_put(ifa);
write_lock_bh(&idev->lock);
}
/* re-combine the user config with event to determine if permanent
* addresses are to be removed from the interface list
*/
keep_addr = (!how && _keep_addr > 0 && !idev->cnf.disable_ipv6);
list_for_each_entry_safe(ifa, tmp, &idev->addr_list, if_list) {
struct rt6_info *rt = NULL;
bool keep;
addrconf_del_dad_work(ifa);
keep = keep_addr && (ifa->flags & IFA_F_PERMANENT) &&
!addr_is_local(&ifa->addr);
write_unlock_bh(&idev->lock);
spin_lock_bh(&ifa->lock);
if (keep) {
/* set state to skip the notifier below */
state = INET6_IFADDR_STATE_DEAD;
ifa->state = INET6_IFADDR_STATE_PREDAD;
if (!(ifa->flags & IFA_F_NODAD))
ifa->flags |= IFA_F_TENTATIVE;
rt = ifa->rt;
ifa->rt = NULL;
} else {
state = ifa->state;
ifa->state = INET6_IFADDR_STATE_DEAD;
}
spin_unlock_bh(&ifa->lock);
if (rt)
ip6_del_rt(rt);
if (state != INET6_IFADDR_STATE_DEAD) {
__ipv6_ifa_notify(RTM_DELADDR, ifa);
inet6addr_notifier_call_chain(NETDEV_DOWN, ifa);
} else {
if (idev->cnf.forwarding)
addrconf_leave_anycast(ifa);
addrconf_leave_solict(ifa->idev, &ifa->addr);
}
write_lock_bh(&idev->lock);
if (!keep) {
list_del_rcu(&ifa->if_list);
in6_ifa_put(ifa);
}
}
write_unlock_bh(&idev->lock);
/* Step 5: Discard anycast and multicast list */
if (how) {
ipv6_ac_destroy_dev(idev);
ipv6_mc_destroy_dev(idev);
} else {
ipv6_mc_down(idev);
}
idev->tstamp = jiffies;
/* Last: Shot the device (if unregistered) */
if (how) {
addrconf_sysctl_unregister(idev);
neigh_parms_release(&nd_tbl, idev->nd_parms);
neigh_ifdown(&nd_tbl, dev);
in6_dev_put(idev);
}
return 0;
}
static void addrconf_rs_timer(struct timer_list *t)
{
struct inet6_dev *idev = from_timer(idev, t, rs_timer);
struct net_device *dev = idev->dev;
struct in6_addr lladdr;
write_lock(&idev->lock);
if (idev->dead || !(idev->if_flags & IF_READY))
goto out;
if (!ipv6_accept_ra(idev))
goto out;
/* Announcement received after solicitation was sent */
if (idev->if_flags & IF_RA_RCVD)
goto out;
if (idev->rs_probes++ < idev->cnf.rtr_solicits || idev->cnf.rtr_solicits < 0) {
write_unlock(&idev->lock);
if (!ipv6_get_lladdr(dev, &lladdr, IFA_F_TENTATIVE))
ndisc_send_rs(dev, &lladdr,
&in6addr_linklocal_allrouters);
else
goto put;
write_lock(&idev->lock);
idev->rs_interval = rfc3315_s14_backoff_update(
idev->rs_interval, idev->cnf.rtr_solicit_max_interval);
/* The wait after the last probe can be shorter */
addrconf_mod_rs_timer(idev, (idev->rs_probes ==
idev->cnf.rtr_solicits) ?
idev->cnf.rtr_solicit_delay :
idev->rs_interval);
} else {
/*
* Note: we do not support deprecated "all on-link"
* assumption any longer.
*/
pr_debug("%s: no IPv6 routers present\n", idev->dev->name);
}
out:
write_unlock(&idev->lock);
put:
in6_dev_put(idev);
}
/*
* Duplicate Address Detection
*/
static void addrconf_dad_kick(struct inet6_ifaddr *ifp)
{
unsigned long rand_num;
struct inet6_dev *idev = ifp->idev;
u64 nonce;
if (ifp->flags & IFA_F_OPTIMISTIC)
rand_num = 0;
else
rand_num = prandom_u32() % (idev->cnf.rtr_solicit_delay ? : 1);
nonce = 0;
if (idev->cnf.enhanced_dad ||
dev_net(idev->dev)->ipv6.devconf_all->enhanced_dad) {
do
get_random_bytes(&nonce, 6);
while (nonce == 0);
}
ifp->dad_nonce = nonce;
ifp->dad_probes = idev->cnf.dad_transmits;
addrconf_mod_dad_work(ifp, rand_num);
}
static void addrconf_dad_begin(struct inet6_ifaddr *ifp)
{
struct inet6_dev *idev = ifp->idev;
struct net_device *dev = idev->dev;
bool bump_id, notify = false;
addrconf_join_solict(dev, &ifp->addr);
prandom_seed((__force u32) ifp->addr.s6_addr32[3]);
read_lock_bh(&idev->lock);
spin_lock(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DEAD)
goto out;
if (dev->flags&(IFF_NOARP|IFF_LOOPBACK) ||
(dev_net(dev)->ipv6.devconf_all->accept_dad < 1 &&
idev->cnf.accept_dad < 1) ||
!(ifp->flags&IFA_F_TENTATIVE) ||
ifp->flags & IFA_F_NODAD) {
bool send_na = false;
if (ifp->flags & IFA_F_TENTATIVE &&
!(ifp->flags & IFA_F_OPTIMISTIC))
send_na = true;
bump_id = ifp->flags & IFA_F_TENTATIVE;
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC|IFA_F_DADFAILED);
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp, bump_id, send_na);
return;
}
if (!(idev->if_flags & IF_READY)) {
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
/*
* If the device is not ready:
* - keep it tentative if it is a permanent address.
* - otherwise, kill it.
*/
in6_ifa_hold(ifp);
addrconf_dad_stop(ifp, 0);
return;
}
/*
* Optimistic nodes can start receiving
* Frames right away
*/
if (ifp->flags & IFA_F_OPTIMISTIC) {
ip6_ins_rt(ifp->rt);
if (ipv6_use_optimistic_addr(dev_net(dev), idev)) {
/* Because optimistic nodes can use this address,
* notify listeners. If DAD fails, RTM_DELADDR is sent.
*/
notify = true;
}
}
addrconf_dad_kick(ifp);
out:
spin_unlock(&ifp->lock);
read_unlock_bh(&idev->lock);
if (notify)
ipv6_ifa_notify(RTM_NEWADDR, ifp);
}
static void addrconf_dad_start(struct inet6_ifaddr *ifp)
{
bool begin_dad = false;
spin_lock_bh(&ifp->lock);
if (ifp->state != INET6_IFADDR_STATE_DEAD) {
ifp->state = INET6_IFADDR_STATE_PREDAD;
begin_dad = true;
}
spin_unlock_bh(&ifp->lock);
if (begin_dad)
addrconf_mod_dad_work(ifp, 0);
}
static void addrconf_dad_work(struct work_struct *w)
{
struct inet6_ifaddr *ifp = container_of(to_delayed_work(w),
struct inet6_ifaddr,
dad_work);
struct inet6_dev *idev = ifp->idev;
bool bump_id, disable_ipv6 = false;
struct in6_addr mcaddr;
enum {
DAD_PROCESS,
DAD_BEGIN,
DAD_ABORT,
} action = DAD_PROCESS;
rtnl_lock();
spin_lock_bh(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_PREDAD) {
action = DAD_BEGIN;
ifp->state = INET6_IFADDR_STATE_DAD;
} else if (ifp->state == INET6_IFADDR_STATE_ERRDAD) {
action = DAD_ABORT;
ifp->state = INET6_IFADDR_STATE_POSTDAD;
if ((dev_net(idev->dev)->ipv6.devconf_all->accept_dad > 1 ||
idev->cnf.accept_dad > 1) &&
!idev->cnf.disable_ipv6 &&
!(ifp->flags & IFA_F_STABLE_PRIVACY)) {
struct in6_addr addr;
addr.s6_addr32[0] = htonl(0xfe800000);
addr.s6_addr32[1] = 0;
if (!ipv6_generate_eui64(addr.s6_addr + 8, idev->dev) &&
ipv6_addr_equal(&ifp->addr, &addr)) {
/* DAD failed for link-local based on MAC */
idev->cnf.disable_ipv6 = 1;
pr_info("%s: IPv6 being disabled!\n",
ifp->idev->dev->name);
disable_ipv6 = true;
}
}
}
spin_unlock_bh(&ifp->lock);
if (action == DAD_BEGIN) {
addrconf_dad_begin(ifp);
goto out;
} else if (action == DAD_ABORT) {
in6_ifa_hold(ifp);
addrconf_dad_stop(ifp, 1);
if (disable_ipv6)
addrconf_ifdown(idev->dev, 0);
goto out;
}
if (!ifp->dad_probes && addrconf_dad_end(ifp))
goto out;
write_lock_bh(&idev->lock);
if (idev->dead || !(idev->if_flags & IF_READY)) {
write_unlock_bh(&idev->lock);
goto out;
}
spin_lock(&ifp->lock);
if (ifp->state == INET6_IFADDR_STATE_DEAD) {
spin_unlock(&ifp->lock);
write_unlock_bh(&idev->lock);
goto out;
}
if (ifp->dad_probes == 0) {
bool send_na = false;
/*
* DAD was successful
*/
if (ifp->flags & IFA_F_TENTATIVE &&
!(ifp->flags & IFA_F_OPTIMISTIC))
send_na = true;
bump_id = ifp->flags & IFA_F_TENTATIVE;
ifp->flags &= ~(IFA_F_TENTATIVE|IFA_F_OPTIMISTIC|IFA_F_DADFAILED);
spin_unlock(&ifp->lock);
write_unlock_bh(&idev->lock);
addrconf_dad_completed(ifp, bump_id, send_na);
goto out;
}
ifp->dad_probes--;
addrconf_mod_dad_work(ifp,
NEIGH_VAR(ifp->idev->nd_parms, RETRANS_TIME));
spin_unlock(&ifp->lock);
write_unlock_bh(&idev->lock);
/* send a neighbour solicitation for our addr */
addrconf_addr_solict_mult(&ifp->addr, &mcaddr);
ndisc_send_ns(ifp->idev->dev, &ifp->addr, &mcaddr, &in6addr_any,
ifp->dad_nonce);
out:
in6_ifa_put(ifp);
rtnl_unlock();
}
/* ifp->idev must be at least read locked */
static bool ipv6_lonely_lladdr(struct inet6_ifaddr *ifp)
{
struct inet6_ifaddr *ifpiter;
struct inet6_dev *idev = ifp->idev;
list_for_each_entry_reverse(ifpiter, &idev->addr_list, if_list) {
if (ifpiter->scope > IFA_LINK)
break;
if (ifp != ifpiter && ifpiter->scope == IFA_LINK &&
(ifpiter->flags & (IFA_F_PERMANENT|IFA_F_TENTATIVE|
IFA_F_OPTIMISTIC|IFA_F_DADFAILED)) ==
IFA_F_PERMANENT)
return false;
}
return true;
}
static void addrconf_dad_completed(struct inet6_ifaddr *ifp, bool bump_id,
bool send_na)
{
struct net_device *dev = ifp->idev->dev;
struct in6_addr lladdr;
bool send_rs, send_mld;
addrconf_del_dad_work(ifp);
/*
* Configure the address for reception. Now it is valid.
*/
ipv6_ifa_notify(RTM_NEWADDR, ifp);
/* If added prefix is link local and we are prepared to process
router advertisements, start sending router solicitations.
*/
read_lock_bh(&ifp->idev->lock);
send_mld = ifp->scope == IFA_LINK && ipv6_lonely_lladdr(ifp);
send_rs = send_mld &&
ipv6_accept_ra(ifp->idev) &&
ifp->idev->cnf.rtr_solicits != 0 &&
(dev->flags&IFF_LOOPBACK) == 0;
read_unlock_bh(&ifp->idev->lock);
/* While dad is in progress mld report's source address is in6_addrany.
* Resend with proper ll now.
*/
if (send_mld)
ipv6_mc_dad_complete(ifp->idev);
/* send unsolicited NA if enabled */
if (send_na &&
(ifp->idev->cnf.ndisc_notify ||
dev_net(dev)->ipv6.devconf_all->ndisc_notify)) {
ndisc_send_na(dev, &in6addr_linklocal_allnodes, &ifp->addr,
/*router=*/ !!ifp->idev->cnf.forwarding,
/*solicited=*/ false, /*override=*/ true,
/*inc_opt=*/ true);
}
if (send_rs) {
/*
* If a host as already performed a random delay
* [...] as part of DAD [...] there is no need
* to delay again before sending the first RS
*/
if (ipv6_get_lladdr(dev, &lladdr, IFA_F_TENTATIVE))
return;
ndisc_send_rs(dev, &lladdr, &in6addr_linklocal_allrouters);
write_lock_bh(&ifp->idev->lock);
spin_lock(&ifp->lock);
ifp->idev->rs_interval = rfc3315_s14_backoff_init(
ifp->idev->cnf.rtr_solicit_interval);
ifp->idev->rs_probes = 1;
ifp->idev->if_flags |= IF_RS_SENT;
addrconf_mod_rs_timer(ifp->idev, ifp->idev->rs_interval);
spin_unlock(&ifp->lock);
write_unlock_bh(&ifp->idev->lock);
}
if (bump_id)
rt_genid_bump_ipv6(dev_net(dev));
/* Make sure that a new temporary address will be created
* before this temporary address becomes deprecated.
*/
if (ifp->flags & IFA_F_TEMPORARY)
addrconf_verify_rtnl();
}
static void addrconf_dad_run(struct inet6_dev *idev)
{
struct inet6_ifaddr *ifp;
read_lock_bh(&idev->lock);
list_for_each_entry(ifp, &idev->addr_list, if_list) {
spin_lock(&ifp->lock);
if (ifp->flags & IFA_F_TENTATIVE &&
ifp->state == INET6_IFADDR_STATE_DAD)
addrconf_dad_kick(ifp);
spin_unlock(&ifp->lock);
}
read_unlock_bh(&idev->lock);
}
#ifdef CONFIG_PROC_FS
struct if6_iter_state {
struct seq_net_private p;
int bucket;
int offset;
};
static struct inet6_ifaddr *if6_get_first(struct seq_file *seq, loff_t pos)
{
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
struct inet6_ifaddr *ifa = NULL;
int p = 0;
/* initial bucket if pos is 0 */
if (pos == 0) {
state->bucket = 0;
state->offset = 0;
}
for (; state->bucket < IN6_ADDR_HSIZE; ++state->bucket) {
hlist_for_each_entry_rcu(ifa, &inet6_addr_lst[state->bucket],
addr_lst) {
if (!net_eq(dev_net(ifa->idev->dev), net))
continue;
/* sync with offset */
if (p < state->offset) {
p++;
continue;
}
state->offset++;
return ifa;
}
/* prepare for next bucket */
state->offset = 0;
p = 0;
}
return NULL;
}
static struct inet6_ifaddr *if6_get_next(struct seq_file *seq,
struct inet6_ifaddr *ifa)
{
struct if6_iter_state *state = seq->private;
struct net *net = seq_file_net(seq);
hlist_for_each_entry_continue_rcu(ifa, addr_lst) {
if (!net_eq(dev_net(ifa->idev->dev), net))
continue;
state->offset++;
return ifa;
}
while (++state->bucket < IN6_ADDR_HSIZE) {
state->offset = 0;
hlist_for_each_entry_rcu(ifa,
&inet6_addr_lst[state->bucket], addr_lst) {
if (!net_eq(dev_net(ifa->idev->dev), net))
continue;
state->offset++;
return ifa;
}
}
return NULL;
}
static void *if6_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(rcu)
{
rcu_read_lock();
return if6_get_first(seq, *pos);
}
static void *if6_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct inet6_ifaddr *ifa;
ifa = if6_get_next(seq, v);
++*pos;
return ifa;
}
static void if6_seq_stop(struct seq_file *seq, void *v)
__releases(rcu)
{
rcu_read_unlock();
}
static int if6_seq_show(struct seq_file *seq, void *v)
{
struct inet6_ifaddr *ifp = (struct inet6_ifaddr *)v;
seq_printf(seq, "%pi6 %02x %02x %02x %02x %8s\n",
&ifp->addr,
ifp->idev->dev->ifindex,
ifp->prefix_len,
ifp->scope,
(u8) ifp->flags,
ifp->idev->dev->name);
return 0;
}
static const struct seq_operations if6_seq_ops = {
.start = if6_seq_start,
.next = if6_seq_next,
.show = if6_seq_show,
.stop = if6_seq_stop,
};
static int if6_seq_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &if6_seq_ops,
sizeof(struct if6_iter_state));
}
static const struct file_operations if6_fops = {
.open = if6_seq_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
static int __net_init if6_proc_net_init(struct net *net)
{
if (!proc_create("if_inet6", 0444, net->proc_net, &if6_fops))
return -ENOMEM;
return 0;
}
static void __net_exit if6_proc_net_exit(struct net *net)
{
remove_proc_entry("if_inet6", net->proc_net);
}
static struct pernet_operations if6_proc_net_ops = {
.init = if6_proc_net_init,
.exit = if6_proc_net_exit,
};
int __init if6_proc_init(void)
{
return register_pernet_subsys(&if6_proc_net_ops);
}
void if6_proc_exit(void)
{
unregister_pernet_subsys(&if6_proc_net_ops);
}
#endif /* CONFIG_PROC_FS */
#if IS_ENABLED(CONFIG_IPV6_MIP6)
/* Check if address is a home address configured on any interface. */
int ipv6_chk_home_addr(struct net *net, const struct in6_addr *addr)
{
unsigned int hash = inet6_addr_hash(net, addr);
struct inet6_ifaddr *ifp = NULL;
int ret = 0;
rcu_read_lock();
hlist_for_each_entry_rcu(ifp, &inet6_addr_lst[hash], addr_lst) {
if (!net_eq(dev_net(ifp->idev->dev), net))
continue;
if (ipv6_addr_equal(&ifp->addr, addr) &&
(ifp->flags & IFA_F_HOMEADDRESS)) {
ret = 1;
break;
}
}
rcu_read_unlock();
return ret;
}
#endif
/*
* Periodic address status verification
*/
static void addrconf_verify_rtnl(void)
{
unsigned long now, next, next_sec, next_sched;
struct inet6_ifaddr *ifp;
int i;
ASSERT_RTNL();
rcu_read_lock_bh();
now = jiffies;
next = round_jiffies_up(now + ADDR_CHECK_FREQUENCY);
cancel_delayed_work(&addr_chk_work);
for (i = 0; i < IN6_ADDR_HSIZE; i++) {
restart:
hlist_for_each_entry_rcu_bh(ifp, &inet6_addr_lst[i], addr_lst) {
unsigned long age;
/* When setting preferred_lft to a value not zero or
* infinity, while valid_lft is infinity
* IFA_F_PERMANENT has a non-infinity life time.
*/
if ((ifp->flags & IFA_F_PERMANENT) &&
(ifp->prefered_lft == INFINITY_LIFE_TIME))
continue;
spin_lock(&ifp->lock);
/* We try to batch several events at once. */
age = (now - ifp->tstamp + ADDRCONF_TIMER_FUZZ_MINUS) / HZ;
if (ifp->valid_lft != INFINITY_LIFE_TIME &&
age >= ifp->valid_lft) {
spin_unlock(&ifp->lock);
in6_ifa_hold(ifp);
ipv6_del_addr(ifp);
goto restart;
} else if (ifp->prefered_lft == INFINITY_LIFE_TIME) {
spin_unlock(&ifp->lock);
continue;
} else if (age >= ifp->prefered_lft) {
/* jiffies - ifp->tstamp > age >= ifp->prefered_lft */
int deprecate = 0;
if (!(ifp->flags&IFA_F_DEPRECATED)) {
deprecate = 1;
ifp->flags |= IFA_F_DEPRECATED;
}
if ((ifp->valid_lft != INFINITY_LIFE_TIME) &&
(time_before(ifp->tstamp + ifp->valid_lft * HZ, next)))
next = ifp->tstamp + ifp->valid_lft * HZ;
spin_unlock(&ifp->lock);
if (deprecate) {
in6_ifa_hold(ifp);
ipv6_ifa_notify(0, ifp);
in6_ifa_put(ifp);
goto restart;
}
} else if ((ifp->flags&IFA_F_TEMPORARY) &&
!(ifp->flags&IFA_F_TENTATIVE)) {
unsigned long regen_advance = ifp->idev->cnf.regen_max_retry *
ifp->idev->cnf.dad_transmits *
NEIGH_VAR(ifp->idev->nd_parms, RETRANS_TIME) / HZ;
if (age >= ifp->prefered_lft - regen_advance) {
struct inet6_ifaddr *ifpub = ifp->ifpub;
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
if (!ifp->regen_count && ifpub) {
ifp->regen_count++;
in6_ifa_hold(ifp);
in6_ifa_hold(ifpub);
spin_unlock(&ifp->lock);
spin_lock(&ifpub->lock);
ifpub->regen_count = 0;
spin_unlock(&ifpub->lock);
rcu_read_unlock_bh();
ipv6_create_tempaddr(ifpub, ifp, true);
in6_ifa_put(ifpub);
in6_ifa_put(ifp);
rcu_read_lock_bh();
goto restart;
}
} else if (time_before(ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ - regen_advance * HZ;
spin_unlock(&ifp->lock);
} else {
/* ifp->prefered_lft <= ifp->valid_lft */
if (time_before(ifp->tstamp + ifp->prefered_lft * HZ, next))
next = ifp->tstamp + ifp->prefered_lft * HZ;
spin_unlock(&ifp->lock);
}
}
}
next_sec = round_jiffies_up(next);
next_sched = next;
/* If rounded timeout is accurate enough, accept it. */
if (time_before(next_sec, next + ADDRCONF_TIMER_FUZZ))
next_sched = next_sec;
/* And minimum interval is ADDRCONF_TIMER_FUZZ_MAX. */
if (time_before(next_sched, jiffies + ADDRCONF_TIMER_FUZZ_MAX))
next_sched = jiffies + ADDRCONF_TIMER_FUZZ_MAX;
pr_debug("now = %lu, schedule = %lu, rounded schedule = %lu => %lu\n",
now, next, next_sec, next_sched);
mod_delayed_work(addrconf_wq, &addr_chk_work, next_sched - now);
rcu_read_unlock_bh();
}
static void addrconf_verify_work(struct work_struct *w)
{
rtnl_lock();
addrconf_verify_rtnl();
rtnl_unlock();
}
static void addrconf_verify(void)
{
mod_delayed_work(addrconf_wq, &addr_chk_work, 0);
}
static struct in6_addr *extract_addr(struct nlattr *addr, struct nlattr *local,
struct in6_addr **peer_pfx)
{
struct in6_addr *pfx = NULL;
*peer_pfx = NULL;
if (addr)
pfx = nla_data(addr);
if (local) {
if (pfx && nla_memcmp(local, pfx, sizeof(*pfx)))
*peer_pfx = pfx;
pfx = nla_data(local);
}
return pfx;
}
static const struct nla_policy ifa_ipv6_policy[IFA_MAX+1] = {
[IFA_ADDRESS] = { .len = sizeof(struct in6_addr) },
[IFA_LOCAL] = { .len = sizeof(struct in6_addr) },
[IFA_CACHEINFO] = { .len = sizeof(struct ifa_cacheinfo) },
[IFA_FLAGS] = { .len = sizeof(u32) },
};
static int
inet6_rtm_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx, *peer_pfx;
u32 ifa_flags;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy,
extack);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer_pfx);
if (!pfx)
return -EINVAL;
ifa_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) : ifm->ifa_flags;
/* We ignore other flags so far. */
ifa_flags &= IFA_F_MANAGETEMPADDR;
return inet6_addr_del(net, ifm->ifa_index, ifa_flags, pfx,
ifm->ifa_prefixlen);
}
static int inet6_addr_modify(struct inet6_ifaddr *ifp, u32 ifa_flags,
u32 prefered_lft, u32 valid_lft)
{
u32 flags;
clock_t expires;
unsigned long timeout;
bool was_managetempaddr;
bool had_prefixroute;
ASSERT_RTNL();
if (!valid_lft || (prefered_lft > valid_lft))
return -EINVAL;
if (ifa_flags & IFA_F_MANAGETEMPADDR &&
(ifp->flags & IFA_F_TEMPORARY || ifp->prefix_len != 64))
return -EINVAL;
if (!(ifp->flags & IFA_F_TENTATIVE) || ifp->flags & IFA_F_DADFAILED)
ifa_flags &= ~IFA_F_OPTIMISTIC;
timeout = addrconf_timeout_fixup(valid_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
expires = jiffies_to_clock_t(timeout * HZ);
valid_lft = timeout;
flags = RTF_EXPIRES;
} else {
expires = 0;
flags = 0;
ifa_flags |= IFA_F_PERMANENT;
}
timeout = addrconf_timeout_fixup(prefered_lft, HZ);
if (addrconf_finite_timeout(timeout)) {
if (timeout == 0)
ifa_flags |= IFA_F_DEPRECATED;
prefered_lft = timeout;
}
spin_lock_bh(&ifp->lock);
was_managetempaddr = ifp->flags & IFA_F_MANAGETEMPADDR;
had_prefixroute = ifp->flags & IFA_F_PERMANENT &&
!(ifp->flags & IFA_F_NOPREFIXROUTE);
ifp->flags &= ~(IFA_F_DEPRECATED | IFA_F_PERMANENT | IFA_F_NODAD |
IFA_F_HOMEADDRESS | IFA_F_MANAGETEMPADDR |
IFA_F_NOPREFIXROUTE);
ifp->flags |= ifa_flags;
ifp->tstamp = jiffies;
ifp->valid_lft = valid_lft;
ifp->prefered_lft = prefered_lft;
spin_unlock_bh(&ifp->lock);
if (!(ifp->flags&IFA_F_TENTATIVE))
ipv6_ifa_notify(0, ifp);
if (!(ifa_flags & IFA_F_NOPREFIXROUTE)) {
addrconf_prefix_route(&ifp->addr, ifp->prefix_len, ifp->idev->dev,
expires, flags);
} else if (had_prefixroute) {
enum cleanup_prefix_rt_t action;
unsigned long rt_expires;
write_lock_bh(&ifp->idev->lock);
action = check_cleanup_prefix_route(ifp, &rt_expires);
write_unlock_bh(&ifp->idev->lock);
if (action != CLEANUP_PREFIX_RT_NOP) {
cleanup_prefix_route(ifp, rt_expires,
action == CLEANUP_PREFIX_RT_DEL);
}
}
if (was_managetempaddr || ifp->flags & IFA_F_MANAGETEMPADDR) {
if (was_managetempaddr && !(ifp->flags & IFA_F_MANAGETEMPADDR))
valid_lft = prefered_lft = 0;
manage_tempaddrs(ifp->idev, ifp, valid_lft, prefered_lft,
!was_managetempaddr, jiffies);
}
addrconf_verify_rtnl();
return 0;
}
static int
inet6_rtm_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *pfx, *peer_pfx;
struct inet6_ifaddr *ifa;
struct net_device *dev;
struct inet6_dev *idev;
u32 valid_lft = INFINITY_LIFE_TIME, preferred_lft = INFINITY_LIFE_TIME;
u32 ifa_flags;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy,
extack);
if (err < 0)
return err;
ifm = nlmsg_data(nlh);
pfx = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer_pfx);
if (!pfx)
return -EINVAL;
if (tb[IFA_CACHEINFO]) {
struct ifa_cacheinfo *ci;
ci = nla_data(tb[IFA_CACHEINFO]);
valid_lft = ci->ifa_valid;
preferred_lft = ci->ifa_prefered;
} else {
preferred_lft = INFINITY_LIFE_TIME;
valid_lft = INFINITY_LIFE_TIME;
}
dev = __dev_get_by_index(net, ifm->ifa_index);
if (!dev)
return -ENODEV;
ifa_flags = tb[IFA_FLAGS] ? nla_get_u32(tb[IFA_FLAGS]) : ifm->ifa_flags;
/* We ignore other flags so far. */
ifa_flags &= IFA_F_NODAD | IFA_F_HOMEADDRESS | IFA_F_MANAGETEMPADDR |
IFA_F_NOPREFIXROUTE | IFA_F_MCAUTOJOIN | IFA_F_OPTIMISTIC;
idev = ipv6_find_idev(dev);
if (IS_ERR(idev))
return PTR_ERR(idev);
if (!ipv6_allow_optimistic_dad(net, idev))
ifa_flags &= ~IFA_F_OPTIMISTIC;
if (ifa_flags & IFA_F_NODAD && ifa_flags & IFA_F_OPTIMISTIC) {
NL_SET_ERR_MSG(extack, "IFA_F_NODAD and IFA_F_OPTIMISTIC are mutually exclusive");
return -EINVAL;
}
ifa = ipv6_get_ifaddr(net, pfx, dev, 1);
if (!ifa) {
/*
* It would be best to check for !NLM_F_CREATE here but
* userspace already relies on not having to provide this.
*/
return inet6_addr_add(net, ifm->ifa_index, pfx, peer_pfx,
ifm->ifa_prefixlen, ifa_flags,
preferred_lft, valid_lft, extack);
}
if (nlh->nlmsg_flags & NLM_F_EXCL ||
!(nlh->nlmsg_flags & NLM_F_REPLACE))
err = -EEXIST;
else
err = inet6_addr_modify(ifa, ifa_flags, preferred_lft, valid_lft);
in6_ifa_put(ifa);
return err;
}
static void put_ifaddrmsg(struct nlmsghdr *nlh, u8 prefixlen, u32 flags,
u8 scope, int ifindex)
{
struct ifaddrmsg *ifm;
ifm = nlmsg_data(nlh);
ifm->ifa_family = AF_INET6;
ifm->ifa_prefixlen = prefixlen;
ifm->ifa_flags = flags;
ifm->ifa_scope = scope;
ifm->ifa_index = ifindex;
}
static int put_cacheinfo(struct sk_buff *skb, unsigned long cstamp,
unsigned long tstamp, u32 preferred, u32 valid)
{
struct ifa_cacheinfo ci;
ci.cstamp = cstamp_delta(cstamp);
ci.tstamp = cstamp_delta(tstamp);
ci.ifa_prefered = preferred;
ci.ifa_valid = valid;
return nla_put(skb, IFA_CACHEINFO, sizeof(ci), &ci);
}
static inline int rt_scope(int ifa_scope)
{
if (ifa_scope & IFA_HOST)
return RT_SCOPE_HOST;
else if (ifa_scope & IFA_LINK)
return RT_SCOPE_LINK;
else if (ifa_scope & IFA_SITE)
return RT_SCOPE_SITE;
else
return RT_SCOPE_UNIVERSE;
}
static inline int inet6_ifaddr_msgsize(void)
{
return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
+ nla_total_size(16) /* IFA_LOCAL */
+ nla_total_size(16) /* IFA_ADDRESS */
+ nla_total_size(sizeof(struct ifa_cacheinfo))
+ nla_total_size(4) /* IFA_FLAGS */;
}
static int inet6_fill_ifaddr(struct sk_buff *skb, struct inet6_ifaddr *ifa,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u32 preferred, valid;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct ifaddrmsg), flags);
if (!nlh)
return -EMSGSIZE;
put_ifaddrmsg(nlh, ifa->prefix_len, ifa->flags, rt_scope(ifa->scope),
ifa->idev->dev->ifindex);
if (!((ifa->flags&IFA_F_PERMANENT) &&
(ifa->prefered_lft == INFINITY_LIFE_TIME))) {
preferred = ifa->prefered_lft;
valid = ifa->valid_lft;
if (preferred != INFINITY_LIFE_TIME) {
long tval = (jiffies - ifa->tstamp)/HZ;
if (preferred > tval)
preferred -= tval;
else
preferred = 0;
if (valid != INFINITY_LIFE_TIME) {
if (valid > tval)
valid -= tval;
else
valid = 0;
}
}
} else {
preferred = INFINITY_LIFE_TIME;
valid = INFINITY_LIFE_TIME;
}
if (!ipv6_addr_any(&ifa->peer_addr)) {
if (nla_put_in6_addr(skb, IFA_LOCAL, &ifa->addr) < 0 ||
nla_put_in6_addr(skb, IFA_ADDRESS, &ifa->peer_addr) < 0)
goto error;
} else
if (nla_put_in6_addr(skb, IFA_ADDRESS, &ifa->addr) < 0)
goto error;
if (put_cacheinfo(skb, ifa->cstamp, ifa->tstamp, preferred, valid) < 0)
goto error;
if (nla_put_u32(skb, IFA_FLAGS, ifa->flags) < 0)
goto error;
nlmsg_end(skb, nlh);
return 0;
error:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_fill_ifmcaddr(struct sk_buff *skb, struct ifmcaddr6 *ifmca,
u32 portid, u32 seq, int event, u16 flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifmca->idev->dev->ifindex;
if (ipv6_addr_scope(&ifmca->mca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct ifaddrmsg), flags);
if (!nlh)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put_in6_addr(skb, IFA_MULTICAST, &ifmca->mca_addr) < 0 ||
put_cacheinfo(skb, ifmca->mca_cstamp, ifmca->mca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
nlmsg_end(skb, nlh);
return 0;
}
static int inet6_fill_ifacaddr(struct sk_buff *skb, struct ifacaddr6 *ifaca,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct nlmsghdr *nlh;
u8 scope = RT_SCOPE_UNIVERSE;
int ifindex = ifaca->aca_idev->dev->ifindex;
if (ipv6_addr_scope(&ifaca->aca_addr) & IFA_SITE)
scope = RT_SCOPE_SITE;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(struct ifaddrmsg), flags);
if (!nlh)
return -EMSGSIZE;
put_ifaddrmsg(nlh, 128, IFA_F_PERMANENT, scope, ifindex);
if (nla_put_in6_addr(skb, IFA_ANYCAST, &ifaca->aca_addr) < 0 ||
put_cacheinfo(skb, ifaca->aca_cstamp, ifaca->aca_tstamp,
INFINITY_LIFE_TIME, INFINITY_LIFE_TIME) < 0) {
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
nlmsg_end(skb, nlh);
return 0;
}
enum addr_type_t {
UNICAST_ADDR,
MULTICAST_ADDR,
ANYCAST_ADDR,
};
/* called with rcu_read_lock() */
static int in6_dump_addrs(struct inet6_dev *idev, struct sk_buff *skb,
struct netlink_callback *cb, enum addr_type_t type,
int s_ip_idx, int *p_ip_idx)
{
struct ifmcaddr6 *ifmca;
struct ifacaddr6 *ifaca;
int err = 1;
int ip_idx = *p_ip_idx;
read_lock_bh(&idev->lock);
switch (type) {
case UNICAST_ADDR: {
struct inet6_ifaddr *ifa;
/* unicast address incl. temp addr */
list_for_each_entry(ifa, &idev->addr_list, if_list) {
if (++ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifaddr(skb, ifa,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWADDR,
NLM_F_MULTI);
if (err < 0)
break;
nl_dump_check_consistent(cb, nlmsg_hdr(skb));
}
break;
}
case MULTICAST_ADDR:
/* multicast address */
for (ifmca = idev->mc_list; ifmca;
ifmca = ifmca->next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifmcaddr(skb, ifmca,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_GETMULTICAST,
NLM_F_MULTI);
if (err < 0)
break;
}
break;
case ANYCAST_ADDR:
/* anycast address */
for (ifaca = idev->ac_list; ifaca;
ifaca = ifaca->aca_next, ip_idx++) {
if (ip_idx < s_ip_idx)
continue;
err = inet6_fill_ifacaddr(skb, ifaca,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_GETANYCAST,
NLM_F_MULTI);
if (err < 0)
break;
}
break;
default:
break;
}
read_unlock_bh(&idev->lock);
*p_ip_idx = ip_idx;
return err;
}
static int inet6_dump_addr(struct sk_buff *skb, struct netlink_callback *cb,
enum addr_type_t type)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx, ip_idx;
int s_idx, s_ip_idx;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
s_h = cb->args[0];
s_idx = idx = cb->args[1];
s_ip_idx = ip_idx = cb->args[2];
rcu_read_lock();
cb->seq = atomic_read(&net->ipv6.dev_addr_genid) ^ net->dev_base_seq;
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
if (h > s_h || idx > s_idx)
s_ip_idx = 0;
ip_idx = 0;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (in6_dump_addrs(idev, skb, cb, type,
s_ip_idx, &ip_idx) < 0)
goto done;
cont:
idx++;
}
}
done:
rcu_read_unlock();
cb->args[0] = h;
cb->args[1] = idx;
cb->args[2] = ip_idx;
return skb->len;
}
static int inet6_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = UNICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifmcaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = MULTICAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_dump_ifacaddr(struct sk_buff *skb, struct netlink_callback *cb)
{
enum addr_type_t type = ANYCAST_ADDR;
return inet6_dump_addr(skb, cb, type);
}
static int inet6_rtm_getaddr(struct sk_buff *in_skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
struct net *net = sock_net(in_skb->sk);
struct ifaddrmsg *ifm;
struct nlattr *tb[IFA_MAX+1];
struct in6_addr *addr = NULL, *peer;
struct net_device *dev = NULL;
struct inet6_ifaddr *ifa;
struct sk_buff *skb;
int err;
err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, ifa_ipv6_policy,
extack);
if (err < 0)
return err;
addr = extract_addr(tb[IFA_ADDRESS], tb[IFA_LOCAL], &peer);
if (!addr)
return -EINVAL;
ifm = nlmsg_data(nlh);
if (ifm->ifa_index)
dev = dev_get_by_index(net, ifm->ifa_index);
ifa = ipv6_get_ifaddr(net, addr, dev, 1);
if (!ifa) {
err = -EADDRNOTAVAIL;
goto errout;
}
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_KERNEL);
if (!skb) {
err = -ENOBUFS;
goto errout_ifa;
}
err = inet6_fill_ifaddr(skb, ifa, NETLINK_CB(in_skb).portid,
nlh->nlmsg_seq, RTM_NEWADDR, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout_ifa;
}
err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
errout_ifa:
in6_ifa_put(ifa);
errout:
if (dev)
dev_put(dev);
return err;
}
static void inet6_ifa_notify(int event, struct inet6_ifaddr *ifa)
{
struct sk_buff *skb;
struct net *net = dev_net(ifa->idev->dev);
int err = -ENOBUFS;
/* Don't send DELADDR notification for TENTATIVE address,
* since NEWADDR notification is sent only after removing
* TENTATIVE flag, if DAD has not failed.
*/
if (ifa->flags & IFA_F_TENTATIVE && !(ifa->flags & IFA_F_DADFAILED) &&
event == RTM_DELADDR)
return;
skb = nlmsg_new(inet6_ifaddr_msgsize(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_ifaddr(skb, ifa, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_ifaddr_msgsize() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFADDR, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFADDR, err);
}
static inline void ipv6_store_devconf(struct ipv6_devconf *cnf,
__s32 *array, int bytes)
{
BUG_ON(bytes < (DEVCONF_MAX * 4));
memset(array, 0, bytes);
array[DEVCONF_FORWARDING] = cnf->forwarding;
array[DEVCONF_HOPLIMIT] = cnf->hop_limit;
array[DEVCONF_MTU6] = cnf->mtu6;
array[DEVCONF_ACCEPT_RA] = cnf->accept_ra;
array[DEVCONF_ACCEPT_REDIRECTS] = cnf->accept_redirects;
array[DEVCONF_AUTOCONF] = cnf->autoconf;
array[DEVCONF_DAD_TRANSMITS] = cnf->dad_transmits;
array[DEVCONF_RTR_SOLICITS] = cnf->rtr_solicits;
array[DEVCONF_RTR_SOLICIT_INTERVAL] =
jiffies_to_msecs(cnf->rtr_solicit_interval);
array[DEVCONF_RTR_SOLICIT_MAX_INTERVAL] =
jiffies_to_msecs(cnf->rtr_solicit_max_interval);
array[DEVCONF_RTR_SOLICIT_DELAY] =
jiffies_to_msecs(cnf->rtr_solicit_delay);
array[DEVCONF_FORCE_MLD_VERSION] = cnf->force_mld_version;
array[DEVCONF_MLDV1_UNSOLICITED_REPORT_INTERVAL] =
jiffies_to_msecs(cnf->mldv1_unsolicited_report_interval);
array[DEVCONF_MLDV2_UNSOLICITED_REPORT_INTERVAL] =
jiffies_to_msecs(cnf->mldv2_unsolicited_report_interval);
array[DEVCONF_USE_TEMPADDR] = cnf->use_tempaddr;
array[DEVCONF_TEMP_VALID_LFT] = cnf->temp_valid_lft;
array[DEVCONF_TEMP_PREFERED_LFT] = cnf->temp_prefered_lft;
array[DEVCONF_REGEN_MAX_RETRY] = cnf->regen_max_retry;
array[DEVCONF_MAX_DESYNC_FACTOR] = cnf->max_desync_factor;
array[DEVCONF_MAX_ADDRESSES] = cnf->max_addresses;
array[DEVCONF_ACCEPT_RA_DEFRTR] = cnf->accept_ra_defrtr;
array[DEVCONF_ACCEPT_RA_MIN_HOP_LIMIT] = cnf->accept_ra_min_hop_limit;
array[DEVCONF_ACCEPT_RA_PINFO] = cnf->accept_ra_pinfo;
#ifdef CONFIG_IPV6_ROUTER_PREF
array[DEVCONF_ACCEPT_RA_RTR_PREF] = cnf->accept_ra_rtr_pref;
array[DEVCONF_RTR_PROBE_INTERVAL] =
jiffies_to_msecs(cnf->rtr_probe_interval);
#ifdef CONFIG_IPV6_ROUTE_INFO
array[DEVCONF_ACCEPT_RA_RT_INFO_MIN_PLEN] = cnf->accept_ra_rt_info_min_plen;
array[DEVCONF_ACCEPT_RA_RT_INFO_MAX_PLEN] = cnf->accept_ra_rt_info_max_plen;
#endif
#endif
array[DEVCONF_PROXY_NDP] = cnf->proxy_ndp;
array[DEVCONF_ACCEPT_SOURCE_ROUTE] = cnf->accept_source_route;
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
array[DEVCONF_OPTIMISTIC_DAD] = cnf->optimistic_dad;
array[DEVCONF_USE_OPTIMISTIC] = cnf->use_optimistic;
#endif
#ifdef CONFIG_IPV6_MROUTE
array[DEVCONF_MC_FORWARDING] = cnf->mc_forwarding;
#endif
array[DEVCONF_DISABLE_IPV6] = cnf->disable_ipv6;
array[DEVCONF_ACCEPT_DAD] = cnf->accept_dad;
array[DEVCONF_FORCE_TLLAO] = cnf->force_tllao;
array[DEVCONF_NDISC_NOTIFY] = cnf->ndisc_notify;
array[DEVCONF_SUPPRESS_FRAG_NDISC] = cnf->suppress_frag_ndisc;
array[DEVCONF_ACCEPT_RA_FROM_LOCAL] = cnf->accept_ra_from_local;
array[DEVCONF_ACCEPT_RA_MTU] = cnf->accept_ra_mtu;
array[DEVCONF_IGNORE_ROUTES_WITH_LINKDOWN] = cnf->ignore_routes_with_linkdown;
/* we omit DEVCONF_STABLE_SECRET for now */
array[DEVCONF_USE_OIF_ADDRS_ONLY] = cnf->use_oif_addrs_only;
array[DEVCONF_DROP_UNICAST_IN_L2_MULTICAST] = cnf->drop_unicast_in_l2_multicast;
array[DEVCONF_DROP_UNSOLICITED_NA] = cnf->drop_unsolicited_na;
array[DEVCONF_KEEP_ADDR_ON_DOWN] = cnf->keep_addr_on_down;
array[DEVCONF_SEG6_ENABLED] = cnf->seg6_enabled;
#ifdef CONFIG_IPV6_SEG6_HMAC
array[DEVCONF_SEG6_REQUIRE_HMAC] = cnf->seg6_require_hmac;
#endif
array[DEVCONF_ENHANCED_DAD] = cnf->enhanced_dad;
array[DEVCONF_ADDR_GEN_MODE] = cnf->addr_gen_mode;
array[DEVCONF_DISABLE_POLICY] = cnf->disable_policy;
array[DEVCONF_NDISC_TCLASS] = cnf->ndisc_tclass;
}
static inline size_t inet6_ifla6_size(void)
{
return nla_total_size(4) /* IFLA_INET6_FLAGS */
+ nla_total_size(sizeof(struct ifla_cacheinfo))
+ nla_total_size(DEVCONF_MAX * 4) /* IFLA_INET6_CONF */
+ nla_total_size(IPSTATS_MIB_MAX * 8) /* IFLA_INET6_STATS */
+ nla_total_size(ICMP6_MIB_MAX * 8) /* IFLA_INET6_ICMP6STATS */
+ nla_total_size(sizeof(struct in6_addr)); /* IFLA_INET6_TOKEN */
}
static inline size_t inet6_if_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct ifinfomsg))
+ nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
+ nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
+ nla_total_size(4) /* IFLA_MTU */
+ nla_total_size(4) /* IFLA_LINK */
+ nla_total_size(1) /* IFLA_OPERSTATE */
+ nla_total_size(inet6_ifla6_size()); /* IFLA_PROTINFO */
}
static inline void __snmp6_fill_statsdev(u64 *stats, atomic_long_t *mib,
int bytes)
{
int i;
int pad = bytes - sizeof(u64) * ICMP6_MIB_MAX;
BUG_ON(pad < 0);
/* Use put_unaligned() because stats may not be aligned for u64. */
put_unaligned(ICMP6_MIB_MAX, &stats[0]);
for (i = 1; i < ICMP6_MIB_MAX; i++)
put_unaligned(atomic_long_read(&mib[i]), &stats[i]);
memset(&stats[ICMP6_MIB_MAX], 0, pad);
}
static inline void __snmp6_fill_stats64(u64 *stats, void __percpu *mib,
int bytes, size_t syncpoff)
{
int i, c;
u64 buff[IPSTATS_MIB_MAX];
int pad = bytes - sizeof(u64) * IPSTATS_MIB_MAX;
BUG_ON(pad < 0);
memset(buff, 0, sizeof(buff));
buff[0] = IPSTATS_MIB_MAX;
for_each_possible_cpu(c) {
for (i = 1; i < IPSTATS_MIB_MAX; i++)
buff[i] += snmp_get_cpu_field64(mib, c, i, syncpoff);
}
memcpy(stats, buff, IPSTATS_MIB_MAX * sizeof(u64));
memset(&stats[IPSTATS_MIB_MAX], 0, pad);
}
static void snmp6_fill_stats(u64 *stats, struct inet6_dev *idev, int attrtype,
int bytes)
{
switch (attrtype) {
case IFLA_INET6_STATS:
__snmp6_fill_stats64(stats, idev->stats.ipv6, bytes,
offsetof(struct ipstats_mib, syncp));
break;
case IFLA_INET6_ICMP6STATS:
__snmp6_fill_statsdev(stats, idev->stats.icmpv6dev->mibs, bytes);
break;
}
}
static int inet6_fill_ifla6_attrs(struct sk_buff *skb, struct inet6_dev *idev,
u32 ext_filter_mask)
{
struct nlattr *nla;
struct ifla_cacheinfo ci;
if (nla_put_u32(skb, IFLA_INET6_FLAGS, idev->if_flags))
goto nla_put_failure;
ci.max_reasm_len = IPV6_MAXPLEN;
ci.tstamp = cstamp_delta(idev->tstamp);
ci.reachable_time = jiffies_to_msecs(idev->nd_parms->reachable_time);
ci.retrans_time = jiffies_to_msecs(NEIGH_VAR(idev->nd_parms, RETRANS_TIME));
if (nla_put(skb, IFLA_INET6_CACHEINFO, sizeof(ci), &ci))
goto nla_put_failure;
nla = nla_reserve(skb, IFLA_INET6_CONF, DEVCONF_MAX * sizeof(s32));
if (!nla)
goto nla_put_failure;
ipv6_store_devconf(&idev->cnf, nla_data(nla), nla_len(nla));
/* XXX - MC not implemented */
if (ext_filter_mask & RTEXT_FILTER_SKIP_STATS)
return 0;
nla = nla_reserve(skb, IFLA_INET6_STATS, IPSTATS_MIB_MAX * sizeof(u64));
if (!nla)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_STATS, nla_len(nla));
nla = nla_reserve(skb, IFLA_INET6_ICMP6STATS, ICMP6_MIB_MAX * sizeof(u64));
if (!nla)
goto nla_put_failure;
snmp6_fill_stats(nla_data(nla), idev, IFLA_INET6_ICMP6STATS, nla_len(nla));
nla = nla_reserve(skb, IFLA_INET6_TOKEN, sizeof(struct in6_addr));
if (!nla)
goto nla_put_failure;
if (nla_put_u8(skb, IFLA_INET6_ADDR_GEN_MODE, idev->cnf.addr_gen_mode))
goto nla_put_failure;
read_lock_bh(&idev->lock);
memcpy(nla_data(nla), idev->token.s6_addr, nla_len(nla));
read_unlock_bh(&idev->lock);
return 0;
nla_put_failure:
return -EMSGSIZE;
}
static size_t inet6_get_link_af_size(const struct net_device *dev,
u32 ext_filter_mask)
{
if (!__in6_dev_get(dev))
return 0;
return inet6_ifla6_size();
}
static int inet6_fill_link_af(struct sk_buff *skb, const struct net_device *dev,
u32 ext_filter_mask)
{
struct inet6_dev *idev = __in6_dev_get(dev);
if (!idev)
return -ENODATA;
if (inet6_fill_ifla6_attrs(skb, idev, ext_filter_mask) < 0)
return -EMSGSIZE;
return 0;
}
static int inet6_set_iftoken(struct inet6_dev *idev, struct in6_addr *token)
{
struct inet6_ifaddr *ifp;
struct net_device *dev = idev->dev;
bool clear_token, update_rs = false;
struct in6_addr ll_addr;
ASSERT_RTNL();
if (!token)
return -EINVAL;
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP))
return -EINVAL;
if (!ipv6_accept_ra(idev))
return -EINVAL;
if (idev->cnf.rtr_solicits == 0)
return -EINVAL;
write_lock_bh(&idev->lock);
BUILD_BUG_ON(sizeof(token->s6_addr) != 16);
memcpy(idev->token.s6_addr + 8, token->s6_addr + 8, 8);
write_unlock_bh(&idev->lock);
clear_token = ipv6_addr_any(token);
if (clear_token)
goto update_lft;
if (!idev->dead && (idev->if_flags & IF_READY) &&
!ipv6_get_lladdr(dev, &ll_addr, IFA_F_TENTATIVE |
IFA_F_OPTIMISTIC)) {
/* If we're not ready, then normal ifup will take care
* of this. Otherwise, we need to request our rs here.
*/
ndisc_send_rs(dev, &ll_addr, &in6addr_linklocal_allrouters);
update_rs = true;
}
update_lft:
write_lock_bh(&idev->lock);
if (update_rs) {
idev->if_flags |= IF_RS_SENT;
idev->rs_interval = rfc3315_s14_backoff_init(
idev->cnf.rtr_solicit_interval);
idev->rs_probes = 1;
addrconf_mod_rs_timer(idev, idev->rs_interval);
}
/* Well, that's kinda nasty ... */
list_for_each_entry(ifp, &idev->addr_list, if_list) {
spin_lock(&ifp->lock);
if (ifp->tokenized) {
ifp->valid_lft = 0;
ifp->prefered_lft = 0;
}
spin_unlock(&ifp->lock);
}
write_unlock_bh(&idev->lock);
inet6_ifinfo_notify(RTM_NEWLINK, idev);
addrconf_verify_rtnl();
return 0;
}
static const struct nla_policy inet6_af_policy[IFLA_INET6_MAX + 1] = {
[IFLA_INET6_ADDR_GEN_MODE] = { .type = NLA_U8 },
[IFLA_INET6_TOKEN] = { .len = sizeof(struct in6_addr) },
};
static int inet6_validate_link_af(const struct net_device *dev,
const struct nlattr *nla)
{
struct nlattr *tb[IFLA_INET6_MAX + 1];
if (dev && !__in6_dev_get(dev))
return -EAFNOSUPPORT;
return nla_parse_nested(tb, IFLA_INET6_MAX, nla, inet6_af_policy,
NULL);
}
static int check_addr_gen_mode(int mode)
{
if (mode != IN6_ADDR_GEN_MODE_EUI64 &&
mode != IN6_ADDR_GEN_MODE_NONE &&
mode != IN6_ADDR_GEN_MODE_STABLE_PRIVACY &&
mode != IN6_ADDR_GEN_MODE_RANDOM)
return -EINVAL;
return 1;
}
static int check_stable_privacy(struct inet6_dev *idev, struct net *net,
int mode)
{
if (mode == IN6_ADDR_GEN_MODE_STABLE_PRIVACY &&
!idev->cnf.stable_secret.initialized &&
!net->ipv6.devconf_dflt->stable_secret.initialized)
return -EINVAL;
return 1;
}
static int inet6_set_link_af(struct net_device *dev, const struct nlattr *nla)
{
int err = -EINVAL;
struct inet6_dev *idev = __in6_dev_get(dev);
struct nlattr *tb[IFLA_INET6_MAX + 1];
if (!idev)
return -EAFNOSUPPORT;
if (nla_parse_nested(tb, IFLA_INET6_MAX, nla, NULL, NULL) < 0)
BUG();
if (tb[IFLA_INET6_TOKEN]) {
err = inet6_set_iftoken(idev, nla_data(tb[IFLA_INET6_TOKEN]));
if (err)
return err;
}
if (tb[IFLA_INET6_ADDR_GEN_MODE]) {
u8 mode = nla_get_u8(tb[IFLA_INET6_ADDR_GEN_MODE]);
if (check_addr_gen_mode(mode) < 0 ||
check_stable_privacy(idev, dev_net(dev), mode) < 0)
return -EINVAL;
idev->cnf.addr_gen_mode = mode;
err = 0;
}
return err;
}
static int inet6_fill_ifinfo(struct sk_buff *skb, struct inet6_dev *idev,
u32 portid, u32 seq, int event, unsigned int flags)
{
struct net_device *dev = idev->dev;
struct ifinfomsg *hdr;
struct nlmsghdr *nlh;
void *protoinfo;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*hdr), flags);
if (!nlh)
return -EMSGSIZE;
hdr = nlmsg_data(nlh);
hdr->ifi_family = AF_INET6;
hdr->__ifi_pad = 0;
hdr->ifi_type = dev->type;
hdr->ifi_index = dev->ifindex;
hdr->ifi_flags = dev_get_flags(dev);
hdr->ifi_change = 0;
if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
(dev->addr_len &&
nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
(dev->ifindex != dev_get_iflink(dev) &&
nla_put_u32(skb, IFLA_LINK, dev_get_iflink(dev))) ||
nla_put_u8(skb, IFLA_OPERSTATE,
netif_running(dev) ? dev->operstate : IF_OPER_DOWN))
goto nla_put_failure;
protoinfo = nla_nest_start(skb, IFLA_PROTINFO);
if (!protoinfo)
goto nla_put_failure;
if (inet6_fill_ifla6_attrs(skb, idev, 0) < 0)
goto nla_put_failure;
nla_nest_end(skb, protoinfo);
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static int inet6_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
{
struct net *net = sock_net(skb->sk);
int h, s_h;
int idx = 0, s_idx;
struct net_device *dev;
struct inet6_dev *idev;
struct hlist_head *head;
s_h = cb->args[0];
s_idx = cb->args[1];
rcu_read_lock();
for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
idx = 0;
head = &net->dev_index_head[h];
hlist_for_each_entry_rcu(dev, head, index_hlist) {
if (idx < s_idx)
goto cont;
idev = __in6_dev_get(dev);
if (!idev)
goto cont;
if (inet6_fill_ifinfo(skb, idev,
NETLINK_CB(cb->skb).portid,
cb->nlh->nlmsg_seq,
RTM_NEWLINK, NLM_F_MULTI) < 0)
goto out;
cont:
idx++;
}
}
out:
rcu_read_unlock();
cb->args[1] = idx;
cb->args[0] = h;
return skb->len;
}
void inet6_ifinfo_notify(int event, struct inet6_dev *idev)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_if_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_ifinfo(skb, idev, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_if_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_IFINFO, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_IFINFO, err);
}
static inline size_t inet6_prefix_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct prefixmsg))
+ nla_total_size(sizeof(struct in6_addr))
+ nla_total_size(sizeof(struct prefix_cacheinfo));
}
static int inet6_fill_prefix(struct sk_buff *skb, struct inet6_dev *idev,
struct prefix_info *pinfo, u32 portid, u32 seq,
int event, unsigned int flags)
{
struct prefixmsg *pmsg;
struct nlmsghdr *nlh;
struct prefix_cacheinfo ci;
nlh = nlmsg_put(skb, portid, seq, event, sizeof(*pmsg), flags);
if (!nlh)
return -EMSGSIZE;
pmsg = nlmsg_data(nlh);
pmsg->prefix_family = AF_INET6;
pmsg->prefix_pad1 = 0;
pmsg->prefix_pad2 = 0;
pmsg->prefix_ifindex = idev->dev->ifindex;
pmsg->prefix_len = pinfo->prefix_len;
pmsg->prefix_type = pinfo->type;
pmsg->prefix_pad3 = 0;
pmsg->prefix_flags = 0;
if (pinfo->onlink)
pmsg->prefix_flags |= IF_PREFIX_ONLINK;
if (pinfo->autoconf)
pmsg->prefix_flags |= IF_PREFIX_AUTOCONF;
if (nla_put(skb, PREFIX_ADDRESS, sizeof(pinfo->prefix), &pinfo->prefix))
goto nla_put_failure;
ci.preferred_time = ntohl(pinfo->prefered);
ci.valid_time = ntohl(pinfo->valid);
if (nla_put(skb, PREFIX_CACHEINFO, sizeof(ci), &ci))
goto nla_put_failure;
nlmsg_end(skb, nlh);
return 0;
nla_put_failure:
nlmsg_cancel(skb, nlh);
return -EMSGSIZE;
}
static void inet6_prefix_notify(int event, struct inet6_dev *idev,
struct prefix_info *pinfo)
{
struct sk_buff *skb;
struct net *net = dev_net(idev->dev);
int err = -ENOBUFS;
skb = nlmsg_new(inet6_prefix_nlmsg_size(), GFP_ATOMIC);
if (!skb)
goto errout;
err = inet6_fill_prefix(skb, idev, pinfo, 0, 0, event, 0);
if (err < 0) {
/* -EMSGSIZE implies BUG in inet6_prefix_nlmsg_size() */
WARN_ON(err == -EMSGSIZE);
kfree_skb(skb);
goto errout;
}
rtnl_notify(skb, net, 0, RTNLGRP_IPV6_PREFIX, NULL, GFP_ATOMIC);
return;
errout:
if (err < 0)
rtnl_set_sk_err(net, RTNLGRP_IPV6_PREFIX, err);
}
static void __ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
struct net *net = dev_net(ifp->idev->dev);
if (event)
ASSERT_RTNL();
inet6_ifa_notify(event ? : RTM_NEWADDR, ifp);
switch (event) {
case RTM_NEWADDR:
/*
* If the address was optimistic
* we inserted the route at the start of
* our DAD process, so we don't need
* to do it again
*/
if (!rcu_access_pointer(ifp->rt->rt6i_node))
ip6_ins_rt(ifp->rt);
if (ifp->idev->cnf.forwarding)
addrconf_join_anycast(ifp);
if (!ipv6_addr_any(&ifp->peer_addr))
addrconf_prefix_route(&ifp->peer_addr, 128,
ifp->idev->dev, 0, 0);
break;
case RTM_DELADDR:
if (ifp->idev->cnf.forwarding)
addrconf_leave_anycast(ifp);
addrconf_leave_solict(ifp->idev, &ifp->addr);
if (!ipv6_addr_any(&ifp->peer_addr)) {
struct rt6_info *rt;
rt = addrconf_get_prefix_route(&ifp->peer_addr, 128,
ifp->idev->dev, 0, 0);
if (rt)
ip6_del_rt(rt);
}
if (ifp->rt) {
if (dst_hold_safe(&ifp->rt->dst))
ip6_del_rt(ifp->rt);
}
rt_genid_bump_ipv6(net);
break;
}
atomic_inc(&net->ipv6.dev_addr_genid);
}
static void ipv6_ifa_notify(int event, struct inet6_ifaddr *ifp)
{
rcu_read_lock_bh();
if (likely(ifp->idev->dead == 0))
__ipv6_ifa_notify(event, ifp);
rcu_read_unlock_bh();
}
#ifdef CONFIG_SYSCTL
static
int addrconf_sysctl_forward(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/*
* ctl->data points to idev->cnf.forwarding, we should
* not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_fixup_forwarding(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static
int addrconf_sysctl_mtu(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct inet6_dev *idev = ctl->extra1;
int min_mtu = IPV6_MIN_MTU;
struct ctl_table lctl;
lctl = *ctl;
lctl.extra1 = &min_mtu;
lctl.extra2 = idev ? &idev->dev->mtu : NULL;
return proc_dointvec_minmax(&lctl, write, buffer, lenp, ppos);
}
static void dev_disable_change(struct inet6_dev *idev)
{
struct netdev_notifier_info info;
if (!idev || !idev->dev)
return;
netdev_notifier_info_init(&info, idev->dev);
if (idev->cnf.disable_ipv6)
addrconf_notify(NULL, NETDEV_DOWN, &info);
else
addrconf_notify(NULL, NETDEV_UP, &info);
}
static void addrconf_disable_change(struct net *net, __s32 newf)
{
struct net_device *dev;
struct inet6_dev *idev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev) {
int changed = (!idev->cnf.disable_ipv6) ^ (!newf);
idev->cnf.disable_ipv6 = newf;
if (changed)
dev_disable_change(idev);
}
}
}
static int addrconf_disable_ipv6(struct ctl_table *table, int *p, int newf)
{
struct net *net;
int old;
if (!rtnl_trylock())
return restart_syscall();
net = (struct net *)table->extra2;
old = *p;
*p = newf;
if (p == &net->ipv6.devconf_dflt->disable_ipv6) {
rtnl_unlock();
return 0;
}
if (p == &net->ipv6.devconf_all->disable_ipv6) {
net->ipv6.devconf_dflt->disable_ipv6 = newf;
addrconf_disable_change(net, newf);
} else if ((!newf) ^ (!old))
dev_disable_change((struct inet6_dev *)table->extra1);
rtnl_unlock();
return 0;
}
static
int addrconf_sysctl_disable(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/*
* ctl->data points to idev->cnf.disable_ipv6, we should
* not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_disable_ipv6(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static
int addrconf_sysctl_proxy_ndp(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
int *valp = ctl->data;
int ret;
int old, new;
old = *valp;
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
new = *valp;
if (write && old != new) {
struct net *net = ctl->extra2;
if (!rtnl_trylock())
return restart_syscall();
if (valp == &net->ipv6.devconf_dflt->proxy_ndp)
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
NETCONFA_IFINDEX_DEFAULT,
net->ipv6.devconf_dflt);
else if (valp == &net->ipv6.devconf_all->proxy_ndp)
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
NETCONFA_IFINDEX_ALL,
net->ipv6.devconf_all);
else {
struct inet6_dev *idev = ctl->extra1;
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF,
NETCONFA_PROXY_NEIGH,
idev->dev->ifindex,
&idev->cnf);
}
rtnl_unlock();
}
return ret;
}
static int addrconf_sysctl_addr_gen_mode(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int ret = 0;
int new_val;
struct inet6_dev *idev = (struct inet6_dev *)ctl->extra1;
struct net *net = (struct net *)ctl->extra2;
if (!rtnl_trylock())
return restart_syscall();
ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
if (write) {
new_val = *((int *)ctl->data);
if (check_addr_gen_mode(new_val) < 0) {
ret = -EINVAL;
goto out;
}
/* request for default */
if (&net->ipv6.devconf_dflt->addr_gen_mode == ctl->data) {
ipv6_devconf_dflt.addr_gen_mode = new_val;
/* request for individual net device */
} else {
if (!idev)
goto out;
if (check_stable_privacy(idev, net, new_val) < 0) {
ret = -EINVAL;
goto out;
}
if (idev->cnf.addr_gen_mode != new_val) {
idev->cnf.addr_gen_mode = new_val;
addrconf_dev_config(idev->dev);
}
}
}
out:
rtnl_unlock();
return ret;
}
static int addrconf_sysctl_stable_secret(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int err;
struct in6_addr addr;
char str[IPV6_MAX_STRLEN];
struct ctl_table lctl = *ctl;
struct net *net = ctl->extra2;
struct ipv6_stable_secret *secret = ctl->data;
if (&net->ipv6.devconf_all->stable_secret == ctl->data)
return -EIO;
lctl.maxlen = IPV6_MAX_STRLEN;
lctl.data = str;
if (!rtnl_trylock())
return restart_syscall();
if (!write && !secret->initialized) {
err = -EIO;
goto out;
}
err = snprintf(str, sizeof(str), "%pI6", &secret->secret);
if (err >= sizeof(str)) {
err = -EIO;
goto out;
}
err = proc_dostring(&lctl, write, buffer, lenp, ppos);
if (err || !write)
goto out;
if (in6_pton(str, -1, addr.in6_u.u6_addr8, -1, NULL) != 1) {
err = -EIO;
goto out;
}
secret->initialized = true;
secret->secret = addr;
if (&net->ipv6.devconf_dflt->stable_secret == ctl->data) {
struct net_device *dev;
for_each_netdev(net, dev) {
struct inet6_dev *idev = __in6_dev_get(dev);
if (idev) {
idev->cnf.addr_gen_mode =
IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
}
}
} else {
struct inet6_dev *idev = ctl->extra1;
idev->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_STABLE_PRIVACY;
}
out:
rtnl_unlock();
return err;
}
static
int addrconf_sysctl_ignore_routes_with_linkdown(struct ctl_table *ctl,
int write,
void __user *buffer,
size_t *lenp,
loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
/* ctl->data points to idev->cnf.ignore_routes_when_linkdown
* we should not modify it until we get the rtnl lock.
*/
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write)
ret = addrconf_fixup_linkdown(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static
void addrconf_set_nopolicy(struct rt6_info *rt, int action)
{
if (rt) {
if (action)
rt->dst.flags |= DST_NOPOLICY;
else
rt->dst.flags &= ~DST_NOPOLICY;
}
}
static
void addrconf_disable_policy_idev(struct inet6_dev *idev, int val)
{
struct inet6_ifaddr *ifa;
read_lock_bh(&idev->lock);
list_for_each_entry(ifa, &idev->addr_list, if_list) {
spin_lock(&ifa->lock);
if (ifa->rt) {
struct rt6_info *rt = ifa->rt;
int cpu;
rcu_read_lock();
addrconf_set_nopolicy(ifa->rt, val);
if (rt->rt6i_pcpu) {
for_each_possible_cpu(cpu) {
struct rt6_info **rtp;
rtp = per_cpu_ptr(rt->rt6i_pcpu, cpu);
addrconf_set_nopolicy(*rtp, val);
}
}
rcu_read_unlock();
}
spin_unlock(&ifa->lock);
}
read_unlock_bh(&idev->lock);
}
static
int addrconf_disable_policy(struct ctl_table *ctl, int *valp, int val)
{
struct inet6_dev *idev;
struct net *net;
if (!rtnl_trylock())
return restart_syscall();
*valp = val;
net = (struct net *)ctl->extra2;
if (valp == &net->ipv6.devconf_dflt->disable_policy) {
rtnl_unlock();
return 0;
}
if (valp == &net->ipv6.devconf_all->disable_policy) {
struct net_device *dev;
for_each_netdev(net, dev) {
idev = __in6_dev_get(dev);
if (idev)
addrconf_disable_policy_idev(idev, val);
}
} else {
idev = (struct inet6_dev *)ctl->extra1;
addrconf_disable_policy_idev(idev, val);
}
rtnl_unlock();
return 0;
}
static
int addrconf_sysctl_disable_policy(struct ctl_table *ctl, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos)
{
int *valp = ctl->data;
int val = *valp;
loff_t pos = *ppos;
struct ctl_table lctl;
int ret;
lctl = *ctl;
lctl.data = &val;
ret = proc_dointvec(&lctl, write, buffer, lenp, ppos);
if (write && (*valp != val))
ret = addrconf_disable_policy(ctl, valp, val);
if (ret)
*ppos = pos;
return ret;
}
static int minus_one = -1;
static const int zero = 0;
static const int one = 1;
static const int two_five_five = 255;
static const struct ctl_table addrconf_sysctl[] = {
{
.procname = "forwarding",
.data = &ipv6_devconf.forwarding,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_forward,
},
{
.procname = "hop_limit",
.data = &ipv6_devconf.hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = (void *)&one,
.extra2 = (void *)&two_five_five,
},
{
.procname = "mtu",
.data = &ipv6_devconf.mtu6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_mtu,
},
{
.procname = "accept_ra",
.data = &ipv6_devconf.accept_ra,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_redirects",
.data = &ipv6_devconf.accept_redirects,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "autoconf",
.data = &ipv6_devconf.autoconf,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "dad_transmits",
.data = &ipv6_devconf.dad_transmits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "router_solicitations",
.data = &ipv6_devconf.rtr_solicits,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = &minus_one,
},
{
.procname = "router_solicitation_interval",
.data = &ipv6_devconf.rtr_solicit_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "router_solicitation_max_interval",
.data = &ipv6_devconf.rtr_solicit_max_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "router_solicitation_delay",
.data = &ipv6_devconf.rtr_solicit_delay,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
{
.procname = "force_mld_version",
.data = &ipv6_devconf.force_mld_version,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "mldv1_unsolicited_report_interval",
.data =
&ipv6_devconf.mldv1_unsolicited_report_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{
.procname = "mldv2_unsolicited_report_interval",
.data =
&ipv6_devconf.mldv2_unsolicited_report_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_ms_jiffies,
},
{
.procname = "use_tempaddr",
.data = &ipv6_devconf.use_tempaddr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "temp_valid_lft",
.data = &ipv6_devconf.temp_valid_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "temp_prefered_lft",
.data = &ipv6_devconf.temp_prefered_lft,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "regen_max_retry",
.data = &ipv6_devconf.regen_max_retry,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "max_desync_factor",
.data = &ipv6_devconf.max_desync_factor,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "max_addresses",
.data = &ipv6_devconf.max_addresses,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_defrtr",
.data = &ipv6_devconf.accept_ra_defrtr,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_min_hop_limit",
.data = &ipv6_devconf.accept_ra_min_hop_limit,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_pinfo",
.data = &ipv6_devconf.accept_ra_pinfo,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_ROUTER_PREF
{
.procname = "accept_ra_rtr_pref",
.data = &ipv6_devconf.accept_ra_rtr_pref,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "router_probe_interval",
.data = &ipv6_devconf.rtr_probe_interval,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_jiffies,
},
#ifdef CONFIG_IPV6_ROUTE_INFO
{
.procname = "accept_ra_rt_info_min_plen",
.data = &ipv6_devconf.accept_ra_rt_info_min_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_rt_info_max_plen",
.data = &ipv6_devconf.accept_ra_rt_info_max_plen,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#endif
{
.procname = "proxy_ndp",
.data = &ipv6_devconf.proxy_ndp,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_proxy_ndp,
},
{
.procname = "accept_source_route",
.data = &ipv6_devconf.accept_source_route,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_OPTIMISTIC_DAD
{
.procname = "optimistic_dad",
.data = &ipv6_devconf.optimistic_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "use_optimistic",
.data = &ipv6_devconf.use_optimistic,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
#ifdef CONFIG_IPV6_MROUTE
{
.procname = "mc_forwarding",
.data = &ipv6_devconf.mc_forwarding,
.maxlen = sizeof(int),
.mode = 0444,
.proc_handler = proc_dointvec,
},
#endif
{
.procname = "disable_ipv6",
.data = &ipv6_devconf.disable_ipv6,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_disable,
},
{
.procname = "accept_dad",
.data = &ipv6_devconf.accept_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "force_tllao",
.data = &ipv6_devconf.force_tllao,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "ndisc_notify",
.data = &ipv6_devconf.ndisc_notify,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "suppress_frag_ndisc",
.data = &ipv6_devconf.suppress_frag_ndisc,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec
},
{
.procname = "accept_ra_from_local",
.data = &ipv6_devconf.accept_ra_from_local,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "accept_ra_mtu",
.data = &ipv6_devconf.accept_ra_mtu,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "stable_secret",
.data = &ipv6_devconf.stable_secret,
.maxlen = IPV6_MAX_STRLEN,
.mode = 0600,
.proc_handler = addrconf_sysctl_stable_secret,
},
{
.procname = "use_oif_addrs_only",
.data = &ipv6_devconf.use_oif_addrs_only,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "ignore_routes_with_linkdown",
.data = &ipv6_devconf.ignore_routes_with_linkdown,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_ignore_routes_with_linkdown,
},
{
.procname = "drop_unicast_in_l2_multicast",
.data = &ipv6_devconf.drop_unicast_in_l2_multicast,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "drop_unsolicited_na",
.data = &ipv6_devconf.drop_unsolicited_na,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "keep_addr_on_down",
.data = &ipv6_devconf.keep_addr_on_down,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "seg6_enabled",
.data = &ipv6_devconf.seg6_enabled,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#ifdef CONFIG_IPV6_SEG6_HMAC
{
.procname = "seg6_require_hmac",
.data = &ipv6_devconf.seg6_require_hmac,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
#endif
{
.procname = "enhanced_dad",
.data = &ipv6_devconf.enhanced_dad,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec,
},
{
.procname = "addr_gen_mode",
.data = &ipv6_devconf.addr_gen_mode,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_addr_gen_mode,
},
{
.procname = "disable_policy",
.data = &ipv6_devconf.disable_policy,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = addrconf_sysctl_disable_policy,
},
{
.procname = "ndisc_tclass",
.data = &ipv6_devconf.ndisc_tclass,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = (void *)&zero,
.extra2 = (void *)&two_five_five,
},
{
/* sentinel */
}
};
static int __addrconf_sysctl_register(struct net *net, char *dev_name,
struct inet6_dev *idev, struct ipv6_devconf *p)
{
int i, ifindex;
struct ctl_table *table;
char path[sizeof("net/ipv6/conf/") + IFNAMSIZ];
table = kmemdup(addrconf_sysctl, sizeof(addrconf_sysctl), GFP_KERNEL);
if (!table)
goto out;
for (i = 0; table[i].data; i++) {
table[i].data += (char *)p - (char *)&ipv6_devconf;
/* If one of these is already set, then it is not safe to
* overwrite either of them: this makes proc_dointvec_minmax
* usable.
*/
if (!table[i].extra1 && !table[i].extra2) {
table[i].extra1 = idev; /* embedded; no ref */
table[i].extra2 = net;
}
}
snprintf(path, sizeof(path), "net/ipv6/conf/%s", dev_name);
p->sysctl_header = register_net_sysctl(net, path, table);
if (!p->sysctl_header)
goto free;
if (!strcmp(dev_name, "all"))
ifindex = NETCONFA_IFINDEX_ALL;
else if (!strcmp(dev_name, "default"))
ifindex = NETCONFA_IFINDEX_DEFAULT;
else
ifindex = idev->dev->ifindex;
inet6_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_ALL,
ifindex, p);
return 0;
free:
kfree(table);
out:
return -ENOBUFS;
}
static void __addrconf_sysctl_unregister(struct net *net,
struct ipv6_devconf *p, int ifindex)
{
struct ctl_table *table;
if (!p->sysctl_header)
return;
table = p->sysctl_header->ctl_table_arg;
unregister_net_sysctl_table(p->sysctl_header);
p->sysctl_header = NULL;
kfree(table);
inet6_netconf_notify_devconf(net, RTM_DELNETCONF, 0, ifindex, NULL);
}
static int addrconf_sysctl_register(struct inet6_dev *idev)
{
int err;
if (!sysctl_dev_name_is_allowed(idev->dev->name))
return -EINVAL;
err = neigh_sysctl_register(idev->dev, idev->nd_parms,
&ndisc_ifinfo_sysctl_change);
if (err)
return err;
err = __addrconf_sysctl_register(dev_net(idev->dev), idev->dev->name,
idev, &idev->cnf);
if (err)
neigh_sysctl_unregister(idev->nd_parms);
return err;
}
static void addrconf_sysctl_unregister(struct inet6_dev *idev)
{
__addrconf_sysctl_unregister(dev_net(idev->dev), &idev->cnf,
idev->dev->ifindex);
neigh_sysctl_unregister(idev->nd_parms);
}
#endif
static int __net_init addrconf_init_net(struct net *net)
{
int err = -ENOMEM;
struct ipv6_devconf *all, *dflt;
all = kmemdup(&ipv6_devconf, sizeof(ipv6_devconf), GFP_KERNEL);
if (!all)
goto err_alloc_all;
dflt = kmemdup(&ipv6_devconf_dflt, sizeof(ipv6_devconf_dflt), GFP_KERNEL);
if (!dflt)
goto err_alloc_dflt;
/* these will be inherited by all namespaces */
dflt->autoconf = ipv6_defaults.autoconf;
dflt->disable_ipv6 = ipv6_defaults.disable_ipv6;
dflt->stable_secret.initialized = false;
all->stable_secret.initialized = false;
net->ipv6.devconf_all = all;
net->ipv6.devconf_dflt = dflt;
#ifdef CONFIG_SYSCTL
err = __addrconf_sysctl_register(net, "all", NULL, all);
if (err < 0)
goto err_reg_all;
err = __addrconf_sysctl_register(net, "default", NULL, dflt);
if (err < 0)
goto err_reg_dflt;
#endif
return 0;
#ifdef CONFIG_SYSCTL
err_reg_dflt:
__addrconf_sysctl_unregister(net, all, NETCONFA_IFINDEX_ALL);
err_reg_all:
kfree(dflt);
#endif
err_alloc_dflt:
kfree(all);
err_alloc_all:
return err;
}
static void __net_exit addrconf_exit_net(struct net *net)
{
#ifdef CONFIG_SYSCTL
__addrconf_sysctl_unregister(net, net->ipv6.devconf_dflt,
NETCONFA_IFINDEX_DEFAULT);
__addrconf_sysctl_unregister(net, net->ipv6.devconf_all,
NETCONFA_IFINDEX_ALL);
#endif
kfree(net->ipv6.devconf_dflt);
kfree(net->ipv6.devconf_all);
}
static struct pernet_operations addrconf_ops = {
.init = addrconf_init_net,
.exit = addrconf_exit_net,
};
static struct rtnl_af_ops inet6_ops __read_mostly = {
.family = AF_INET6,
.fill_link_af = inet6_fill_link_af,
.get_link_af_size = inet6_get_link_af_size,
.validate_link_af = inet6_validate_link_af,
.set_link_af = inet6_set_link_af,
};
/*
* Init / cleanup code
*/
int __init addrconf_init(void)
{
struct inet6_dev *idev;
int i, err;
err = ipv6_addr_label_init();
if (err < 0) {
pr_crit("%s: cannot initialize default policy table: %d\n",
__func__, err);
goto out;
}
err = register_pernet_subsys(&addrconf_ops);
if (err < 0)
goto out_addrlabel;
addrconf_wq = create_workqueue("ipv6_addrconf");
if (!addrconf_wq) {
err = -ENOMEM;
goto out_nowq;
}
/* The addrconf netdev notifier requires that loopback_dev
* has it's ipv6 private information allocated and setup
* before it can bring up and give link-local addresses
* to other devices which are up.
*
* Unfortunately, loopback_dev is not necessarily the first
* entry in the global dev_base list of net devices. In fact,
* it is likely to be the very last entry on that list.
* So this causes the notifier registry below to try and
* give link-local addresses to all devices besides loopback_dev
* first, then loopback_dev, which cases all the non-loopback_dev
* devices to fail to get a link-local address.
*
* So, as a temporary fix, allocate the ipv6 structure for
* loopback_dev first by hand.
* Longer term, all of the dependencies ipv6 has upon the loopback
* device and it being up should be removed.
*/
rtnl_lock();
idev = ipv6_add_dev(init_net.loopback_dev);
rtnl_unlock();
if (IS_ERR(idev)) {
err = PTR_ERR(idev);
goto errlo;
}
ip6_route_init_special_entries();
for (i = 0; i < IN6_ADDR_HSIZE; i++)
INIT_HLIST_HEAD(&inet6_addr_lst[i]);
register_netdevice_notifier(&ipv6_dev_notf);
addrconf_verify();
rtnl_af_register(&inet6_ops);
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETLINK,
NULL, inet6_dump_ifinfo, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_NEWADDR,
inet6_rtm_newaddr, NULL, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_DELADDR,
inet6_rtm_deladdr, NULL, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETADDR,
inet6_rtm_getaddr, inet6_dump_ifaddr,
RTNL_FLAG_DOIT_UNLOCKED);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETMULTICAST,
NULL, inet6_dump_ifmcaddr, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETANYCAST,
NULL, inet6_dump_ifacaddr, 0);
if (err < 0)
goto errout;
err = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETNETCONF,
inet6_netconf_get_devconf,
inet6_netconf_dump_devconf,
RTNL_FLAG_DOIT_UNLOCKED);
if (err < 0)
goto errout;
err = ipv6_addr_label_rtnl_register();
if (err < 0)
goto errout;
return 0;
errout:
rtnl_unregister_all(PF_INET6);
rtnl_af_unregister(&inet6_ops);
unregister_netdevice_notifier(&ipv6_dev_notf);
errlo:
destroy_workqueue(addrconf_wq);
out_nowq:
unregister_pernet_subsys(&addrconf_ops);
out_addrlabel:
ipv6_addr_label_cleanup();
out:
return err;
}
void addrconf_cleanup(void)
{
struct net_device *dev;
int i;
unregister_netdevice_notifier(&ipv6_dev_notf);
unregister_pernet_subsys(&addrconf_ops);
ipv6_addr_label_cleanup();
rtnl_af_unregister(&inet6_ops);
rtnl_lock();
/* clean dev list */
for_each_netdev(&init_net, dev) {
if (__in6_dev_get(dev) == NULL)
continue;
addrconf_ifdown(dev, 1);
}
addrconf_ifdown(init_net.loopback_dev, 2);
/*
* Check hash table.
*/
spin_lock_bh(&addrconf_hash_lock);
for (i = 0; i < IN6_ADDR_HSIZE; i++)
WARN_ON(!hlist_empty(&inet6_addr_lst[i]));
spin_unlock_bh(&addrconf_hash_lock);
cancel_delayed_work(&addr_chk_work);
rtnl_unlock();
destroy_workqueue(addrconf_wq);
}