| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * AMD Memory Encryption Support |
| * |
| * Copyright (C) 2016 Advanced Micro Devices, Inc. |
| * |
| * Author: Tom Lendacky <thomas.lendacky@amd.com> |
| */ |
| |
| #define DISABLE_BRANCH_PROFILING |
| |
| /* |
| * Since we're dealing with identity mappings, physical and virtual |
| * addresses are the same, so override these defines which are ultimately |
| * used by the headers in misc.h. |
| */ |
| #define __pa(x) ((unsigned long)(x)) |
| #define __va(x) ((void *)((unsigned long)(x))) |
| |
| /* |
| * Special hack: we have to be careful, because no indirections are |
| * allowed here, and paravirt_ops is a kind of one. As it will only run in |
| * baremetal anyway, we just keep it from happening. (This list needs to |
| * be extended when new paravirt and debugging variants are added.) |
| */ |
| #undef CONFIG_PARAVIRT |
| #undef CONFIG_PARAVIRT_XXL |
| #undef CONFIG_PARAVIRT_SPINLOCKS |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/mem_encrypt.h> |
| |
| #include <asm/setup.h> |
| #include <asm/sections.h> |
| #include <asm/cmdline.h> |
| |
| #include "mm_internal.h" |
| |
| #define PGD_FLAGS _KERNPG_TABLE_NOENC |
| #define P4D_FLAGS _KERNPG_TABLE_NOENC |
| #define PUD_FLAGS _KERNPG_TABLE_NOENC |
| #define PMD_FLAGS _KERNPG_TABLE_NOENC |
| |
| #define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL) |
| |
| #define PMD_FLAGS_DEC PMD_FLAGS_LARGE |
| #define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \ |
| (_PAGE_PAT_LARGE | _PAGE_PWT)) |
| |
| #define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC) |
| |
| #define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL) |
| |
| #define PTE_FLAGS_DEC PTE_FLAGS |
| #define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \ |
| (_PAGE_PAT | _PAGE_PWT)) |
| |
| #define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC) |
| |
| struct sme_populate_pgd_data { |
| void *pgtable_area; |
| pgd_t *pgd; |
| |
| pmdval_t pmd_flags; |
| pteval_t pte_flags; |
| unsigned long paddr; |
| |
| unsigned long vaddr; |
| unsigned long vaddr_end; |
| }; |
| |
| /* |
| * This work area lives in the .init.scratch section, which lives outside of |
| * the kernel proper. It is sized to hold the intermediate copy buffer and |
| * more than enough pagetable pages. |
| * |
| * By using this section, the kernel can be encrypted in place and it |
| * avoids any possibility of boot parameters or initramfs images being |
| * placed such that the in-place encryption logic overwrites them. This |
| * section is 2MB aligned to allow for simple pagetable setup using only |
| * PMD entries (see vmlinux.lds.S). |
| */ |
| static char sme_workarea[2 * PMD_PAGE_SIZE] __section(".init.scratch"); |
| |
| static char sme_cmdline_arg[] __initdata = "mem_encrypt"; |
| static char sme_cmdline_on[] __initdata = "on"; |
| static char sme_cmdline_off[] __initdata = "off"; |
| |
| static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd) |
| { |
| unsigned long pgd_start, pgd_end, pgd_size; |
| pgd_t *pgd_p; |
| |
| pgd_start = ppd->vaddr & PGDIR_MASK; |
| pgd_end = ppd->vaddr_end & PGDIR_MASK; |
| |
| pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t); |
| |
| pgd_p = ppd->pgd + pgd_index(ppd->vaddr); |
| |
| memset(pgd_p, 0, pgd_size); |
| } |
| |
| static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd) |
| { |
| pgd_t *pgd; |
| p4d_t *p4d; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd = ppd->pgd + pgd_index(ppd->vaddr); |
| if (pgd_none(*pgd)) { |
| p4d = ppd->pgtable_area; |
| memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D); |
| ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D; |
| set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d))); |
| } |
| |
| p4d = p4d_offset(pgd, ppd->vaddr); |
| if (p4d_none(*p4d)) { |
| pud = ppd->pgtable_area; |
| memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD); |
| ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD; |
| set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud))); |
| } |
| |
| pud = pud_offset(p4d, ppd->vaddr); |
| if (pud_none(*pud)) { |
| pmd = ppd->pgtable_area; |
| memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD); |
| ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD; |
| set_pud(pud, __pud(PUD_FLAGS | __pa(pmd))); |
| } |
| |
| if (pud_large(*pud)) |
| return NULL; |
| |
| return pud; |
| } |
| |
| static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pud = sme_prepare_pgd(ppd); |
| if (!pud) |
| return; |
| |
| pmd = pmd_offset(pud, ppd->vaddr); |
| if (pmd_large(*pmd)) |
| return; |
| |
| set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags)); |
| } |
| |
| static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| pud = sme_prepare_pgd(ppd); |
| if (!pud) |
| return; |
| |
| pmd = pmd_offset(pud, ppd->vaddr); |
| if (pmd_none(*pmd)) { |
| pte = ppd->pgtable_area; |
| memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE); |
| ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE; |
| set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte))); |
| } |
| |
| if (pmd_large(*pmd)) |
| return; |
| |
| pte = pte_offset_map(pmd, ppd->vaddr); |
| if (pte_none(*pte)) |
| set_pte(pte, __pte(ppd->paddr | ppd->pte_flags)); |
| } |
| |
| static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd) |
| { |
| while (ppd->vaddr < ppd->vaddr_end) { |
| sme_populate_pgd_large(ppd); |
| |
| ppd->vaddr += PMD_PAGE_SIZE; |
| ppd->paddr += PMD_PAGE_SIZE; |
| } |
| } |
| |
| static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd) |
| { |
| while (ppd->vaddr < ppd->vaddr_end) { |
| sme_populate_pgd(ppd); |
| |
| ppd->vaddr += PAGE_SIZE; |
| ppd->paddr += PAGE_SIZE; |
| } |
| } |
| |
| static void __init __sme_map_range(struct sme_populate_pgd_data *ppd, |
| pmdval_t pmd_flags, pteval_t pte_flags) |
| { |
| unsigned long vaddr_end; |
| |
| ppd->pmd_flags = pmd_flags; |
| ppd->pte_flags = pte_flags; |
| |
| /* Save original end value since we modify the struct value */ |
| vaddr_end = ppd->vaddr_end; |
| |
| /* If start is not 2MB aligned, create PTE entries */ |
| ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE); |
| __sme_map_range_pte(ppd); |
| |
| /* Create PMD entries */ |
| ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK; |
| __sme_map_range_pmd(ppd); |
| |
| /* If end is not 2MB aligned, create PTE entries */ |
| ppd->vaddr_end = vaddr_end; |
| __sme_map_range_pte(ppd); |
| } |
| |
| static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd) |
| { |
| __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC); |
| } |
| |
| static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd) |
| { |
| __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC); |
| } |
| |
| static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd) |
| { |
| __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP); |
| } |
| |
| static unsigned long __init sme_pgtable_calc(unsigned long len) |
| { |
| unsigned long entries = 0, tables = 0; |
| |
| /* |
| * Perform a relatively simplistic calculation of the pagetable |
| * entries that are needed. Those mappings will be covered mostly |
| * by 2MB PMD entries so we can conservatively calculate the required |
| * number of P4D, PUD and PMD structures needed to perform the |
| * mappings. For mappings that are not 2MB aligned, PTE mappings |
| * would be needed for the start and end portion of the address range |
| * that fall outside of the 2MB alignment. This results in, at most, |
| * two extra pages to hold PTE entries for each range that is mapped. |
| * Incrementing the count for each covers the case where the addresses |
| * cross entries. |
| */ |
| |
| /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */ |
| if (PTRS_PER_P4D > 1) |
| entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D; |
| entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD; |
| entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD; |
| entries += 2 * sizeof(pte_t) * PTRS_PER_PTE; |
| |
| /* |
| * Now calculate the added pagetable structures needed to populate |
| * the new pagetables. |
| */ |
| |
| if (PTRS_PER_P4D > 1) |
| tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D; |
| tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD; |
| tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD; |
| |
| return entries + tables; |
| } |
| |
| void __init sme_encrypt_kernel(struct boot_params *bp) |
| { |
| unsigned long workarea_start, workarea_end, workarea_len; |
| unsigned long execute_start, execute_end, execute_len; |
| unsigned long kernel_start, kernel_end, kernel_len; |
| unsigned long initrd_start, initrd_end, initrd_len; |
| struct sme_populate_pgd_data ppd; |
| unsigned long pgtable_area_len; |
| unsigned long decrypted_base; |
| |
| if (!sme_active()) |
| return; |
| |
| /* |
| * Prepare for encrypting the kernel and initrd by building new |
| * pagetables with the necessary attributes needed to encrypt the |
| * kernel in place. |
| * |
| * One range of virtual addresses will map the memory occupied |
| * by the kernel and initrd as encrypted. |
| * |
| * Another range of virtual addresses will map the memory occupied |
| * by the kernel and initrd as decrypted and write-protected. |
| * |
| * The use of write-protect attribute will prevent any of the |
| * memory from being cached. |
| */ |
| |
| /* Physical addresses gives us the identity mapped virtual addresses */ |
| kernel_start = __pa_symbol(_text); |
| kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE); |
| kernel_len = kernel_end - kernel_start; |
| |
| initrd_start = 0; |
| initrd_end = 0; |
| initrd_len = 0; |
| #ifdef CONFIG_BLK_DEV_INITRD |
| initrd_len = (unsigned long)bp->hdr.ramdisk_size | |
| ((unsigned long)bp->ext_ramdisk_size << 32); |
| if (initrd_len) { |
| initrd_start = (unsigned long)bp->hdr.ramdisk_image | |
| ((unsigned long)bp->ext_ramdisk_image << 32); |
| initrd_end = PAGE_ALIGN(initrd_start + initrd_len); |
| initrd_len = initrd_end - initrd_start; |
| } |
| #endif |
| |
| /* |
| * We're running identity mapped, so we must obtain the address to the |
| * SME encryption workarea using rip-relative addressing. |
| */ |
| asm ("lea sme_workarea(%%rip), %0" |
| : "=r" (workarea_start) |
| : "p" (sme_workarea)); |
| |
| /* |
| * Calculate required number of workarea bytes needed: |
| * executable encryption area size: |
| * stack page (PAGE_SIZE) |
| * encryption routine page (PAGE_SIZE) |
| * intermediate copy buffer (PMD_PAGE_SIZE) |
| * pagetable structures for the encryption of the kernel |
| * pagetable structures for workarea (in case not currently mapped) |
| */ |
| execute_start = workarea_start; |
| execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE; |
| execute_len = execute_end - execute_start; |
| |
| /* |
| * One PGD for both encrypted and decrypted mappings and a set of |
| * PUDs and PMDs for each of the encrypted and decrypted mappings. |
| */ |
| pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD; |
| pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2; |
| if (initrd_len) |
| pgtable_area_len += sme_pgtable_calc(initrd_len) * 2; |
| |
| /* PUDs and PMDs needed in the current pagetables for the workarea */ |
| pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len); |
| |
| /* |
| * The total workarea includes the executable encryption area and |
| * the pagetable area. The start of the workarea is already 2MB |
| * aligned, align the end of the workarea on a 2MB boundary so that |
| * we don't try to create/allocate PTE entries from the workarea |
| * before it is mapped. |
| */ |
| workarea_len = execute_len + pgtable_area_len; |
| workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE); |
| |
| /* |
| * Set the address to the start of where newly created pagetable |
| * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable |
| * structures are created when the workarea is added to the current |
| * pagetables and when the new encrypted and decrypted kernel |
| * mappings are populated. |
| */ |
| ppd.pgtable_area = (void *)execute_end; |
| |
| /* |
| * Make sure the current pagetable structure has entries for |
| * addressing the workarea. |
| */ |
| ppd.pgd = (pgd_t *)native_read_cr3_pa(); |
| ppd.paddr = workarea_start; |
| ppd.vaddr = workarea_start; |
| ppd.vaddr_end = workarea_end; |
| sme_map_range_decrypted(&ppd); |
| |
| /* Flush the TLB - no globals so cr3 is enough */ |
| native_write_cr3(__native_read_cr3()); |
| |
| /* |
| * A new pagetable structure is being built to allow for the kernel |
| * and initrd to be encrypted. It starts with an empty PGD that will |
| * then be populated with new PUDs and PMDs as the encrypted and |
| * decrypted kernel mappings are created. |
| */ |
| ppd.pgd = ppd.pgtable_area; |
| memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD); |
| ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD; |
| |
| /* |
| * A different PGD index/entry must be used to get different |
| * pagetable entries for the decrypted mapping. Choose the next |
| * PGD index and convert it to a virtual address to be used as |
| * the base of the mapping. |
| */ |
| decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1); |
| if (initrd_len) { |
| unsigned long check_base; |
| |
| check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1); |
| decrypted_base = max(decrypted_base, check_base); |
| } |
| decrypted_base <<= PGDIR_SHIFT; |
| |
| /* Add encrypted kernel (identity) mappings */ |
| ppd.paddr = kernel_start; |
| ppd.vaddr = kernel_start; |
| ppd.vaddr_end = kernel_end; |
| sme_map_range_encrypted(&ppd); |
| |
| /* Add decrypted, write-protected kernel (non-identity) mappings */ |
| ppd.paddr = kernel_start; |
| ppd.vaddr = kernel_start + decrypted_base; |
| ppd.vaddr_end = kernel_end + decrypted_base; |
| sme_map_range_decrypted_wp(&ppd); |
| |
| if (initrd_len) { |
| /* Add encrypted initrd (identity) mappings */ |
| ppd.paddr = initrd_start; |
| ppd.vaddr = initrd_start; |
| ppd.vaddr_end = initrd_end; |
| sme_map_range_encrypted(&ppd); |
| /* |
| * Add decrypted, write-protected initrd (non-identity) mappings |
| */ |
| ppd.paddr = initrd_start; |
| ppd.vaddr = initrd_start + decrypted_base; |
| ppd.vaddr_end = initrd_end + decrypted_base; |
| sme_map_range_decrypted_wp(&ppd); |
| } |
| |
| /* Add decrypted workarea mappings to both kernel mappings */ |
| ppd.paddr = workarea_start; |
| ppd.vaddr = workarea_start; |
| ppd.vaddr_end = workarea_end; |
| sme_map_range_decrypted(&ppd); |
| |
| ppd.paddr = workarea_start; |
| ppd.vaddr = workarea_start + decrypted_base; |
| ppd.vaddr_end = workarea_end + decrypted_base; |
| sme_map_range_decrypted(&ppd); |
| |
| /* Perform the encryption */ |
| sme_encrypt_execute(kernel_start, kernel_start + decrypted_base, |
| kernel_len, workarea_start, (unsigned long)ppd.pgd); |
| |
| if (initrd_len) |
| sme_encrypt_execute(initrd_start, initrd_start + decrypted_base, |
| initrd_len, workarea_start, |
| (unsigned long)ppd.pgd); |
| |
| /* |
| * At this point we are running encrypted. Remove the mappings for |
| * the decrypted areas - all that is needed for this is to remove |
| * the PGD entry/entries. |
| */ |
| ppd.vaddr = kernel_start + decrypted_base; |
| ppd.vaddr_end = kernel_end + decrypted_base; |
| sme_clear_pgd(&ppd); |
| |
| if (initrd_len) { |
| ppd.vaddr = initrd_start + decrypted_base; |
| ppd.vaddr_end = initrd_end + decrypted_base; |
| sme_clear_pgd(&ppd); |
| } |
| |
| ppd.vaddr = workarea_start + decrypted_base; |
| ppd.vaddr_end = workarea_end + decrypted_base; |
| sme_clear_pgd(&ppd); |
| |
| /* Flush the TLB - no globals so cr3 is enough */ |
| native_write_cr3(__native_read_cr3()); |
| } |
| |
| void __init sme_enable(struct boot_params *bp) |
| { |
| const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off; |
| unsigned int eax, ebx, ecx, edx; |
| unsigned long feature_mask; |
| bool active_by_default; |
| unsigned long me_mask; |
| char buffer[16]; |
| u64 msr; |
| |
| /* Check for the SME/SEV support leaf */ |
| eax = 0x80000000; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| if (eax < 0x8000001f) |
| return; |
| |
| #define AMD_SME_BIT BIT(0) |
| #define AMD_SEV_BIT BIT(1) |
| |
| /* |
| * Check for the SME/SEV feature: |
| * CPUID Fn8000_001F[EAX] |
| * - Bit 0 - Secure Memory Encryption support |
| * - Bit 1 - Secure Encrypted Virtualization support |
| * CPUID Fn8000_001F[EBX] |
| * - Bits 5:0 - Pagetable bit position used to indicate encryption |
| */ |
| eax = 0x8000001f; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| /* Check whether SEV or SME is supported */ |
| if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT))) |
| return; |
| |
| me_mask = 1UL << (ebx & 0x3f); |
| |
| /* Check the SEV MSR whether SEV or SME is enabled */ |
| sev_status = __rdmsr(MSR_AMD64_SEV); |
| feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT; |
| |
| /* Check if memory encryption is enabled */ |
| if (feature_mask == AMD_SME_BIT) { |
| /* |
| * No SME if Hypervisor bit is set. This check is here to |
| * prevent a guest from trying to enable SME. For running as a |
| * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there |
| * might be other hypervisors which emulate that MSR as non-zero |
| * or even pass it through to the guest. |
| * A malicious hypervisor can still trick a guest into this |
| * path, but there is no way to protect against that. |
| */ |
| eax = 1; |
| ecx = 0; |
| native_cpuid(&eax, &ebx, &ecx, &edx); |
| if (ecx & BIT(31)) |
| return; |
| |
| /* For SME, check the SYSCFG MSR */ |
| msr = __rdmsr(MSR_AMD64_SYSCFG); |
| if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT)) |
| return; |
| } else { |
| /* SEV state cannot be controlled by a command line option */ |
| sme_me_mask = me_mask; |
| physical_mask &= ~sme_me_mask; |
| return; |
| } |
| |
| /* |
| * Fixups have not been applied to phys_base yet and we're running |
| * identity mapped, so we must obtain the address to the SME command |
| * line argument data using rip-relative addressing. |
| */ |
| asm ("lea sme_cmdline_arg(%%rip), %0" |
| : "=r" (cmdline_arg) |
| : "p" (sme_cmdline_arg)); |
| asm ("lea sme_cmdline_on(%%rip), %0" |
| : "=r" (cmdline_on) |
| : "p" (sme_cmdline_on)); |
| asm ("lea sme_cmdline_off(%%rip), %0" |
| : "=r" (cmdline_off) |
| : "p" (sme_cmdline_off)); |
| |
| if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT)) |
| active_by_default = true; |
| else |
| active_by_default = false; |
| |
| cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr | |
| ((u64)bp->ext_cmd_line_ptr << 32)); |
| |
| cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)); |
| |
| if (!strncmp(buffer, cmdline_on, sizeof(buffer))) |
| sme_me_mask = me_mask; |
| else if (!strncmp(buffer, cmdline_off, sizeof(buffer))) |
| sme_me_mask = 0; |
| else |
| sme_me_mask = active_by_default ? me_mask : 0; |
| |
| physical_mask &= ~sme_me_mask; |
| } |