| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* handling of writes to regular files and writing back to the server |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| */ |
| |
| #include <linux/backing-dev.h> |
| #include <linux/slab.h> |
| #include <linux/fs.h> |
| #include <linux/pagemap.h> |
| #include <linux/writeback.h> |
| #include <linux/pagevec.h> |
| #include <linux/netfs.h> |
| #include <linux/fscache.h> |
| #include "internal.h" |
| |
| /* |
| * mark a page as having been made dirty and thus needing writeback |
| */ |
| int afs_set_page_dirty(struct page *page) |
| { |
| _enter(""); |
| return __set_page_dirty_nobuffers(page); |
| } |
| |
| /* |
| * prepare to perform part of a write to a page |
| */ |
| int afs_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **_page, void **fsdata) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); |
| struct page *page; |
| unsigned long priv; |
| unsigned f, from; |
| unsigned t, to; |
| pgoff_t index; |
| int ret; |
| |
| _enter("{%llx:%llu},%llx,%x", |
| vnode->fid.vid, vnode->fid.vnode, pos, len); |
| |
| /* Prefetch area to be written into the cache if we're caching this |
| * file. We need to do this before we get a lock on the page in case |
| * there's more than one writer competing for the same cache block. |
| */ |
| ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata, |
| &afs_req_ops, NULL); |
| if (ret < 0) |
| return ret; |
| |
| index = page->index; |
| from = pos - index * PAGE_SIZE; |
| to = from + len; |
| |
| try_again: |
| /* See if this page is already partially written in a way that we can |
| * merge the new write with. |
| */ |
| if (PagePrivate(page)) { |
| priv = page_private(page); |
| f = afs_page_dirty_from(page, priv); |
| t = afs_page_dirty_to(page, priv); |
| ASSERTCMP(f, <=, t); |
| |
| if (PageWriteback(page)) { |
| trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page); |
| goto flush_conflicting_write; |
| } |
| /* If the file is being filled locally, allow inter-write |
| * spaces to be merged into writes. If it's not, only write |
| * back what the user gives us. |
| */ |
| if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && |
| (to < f || from > t)) |
| goto flush_conflicting_write; |
| } |
| |
| *_page = page; |
| _leave(" = 0"); |
| return 0; |
| |
| /* The previous write and this write aren't adjacent or overlapping, so |
| * flush the page out. |
| */ |
| flush_conflicting_write: |
| _debug("flush conflict"); |
| ret = write_one_page(page); |
| if (ret < 0) |
| goto error; |
| |
| ret = lock_page_killable(page); |
| if (ret < 0) |
| goto error; |
| goto try_again; |
| |
| error: |
| put_page(page); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * finalise part of a write to a page |
| */ |
| int afs_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); |
| unsigned long priv; |
| unsigned int f, from = pos & (thp_size(page) - 1); |
| unsigned int t, to = from + copied; |
| loff_t i_size, maybe_i_size; |
| |
| _enter("{%llx:%llu},{%lx}", |
| vnode->fid.vid, vnode->fid.vnode, page->index); |
| |
| if (!PageUptodate(page)) { |
| if (copied < len) { |
| copied = 0; |
| goto out; |
| } |
| |
| SetPageUptodate(page); |
| } |
| |
| if (copied == 0) |
| goto out; |
| |
| maybe_i_size = pos + copied; |
| |
| i_size = i_size_read(&vnode->vfs_inode); |
| if (maybe_i_size > i_size) { |
| write_seqlock(&vnode->cb_lock); |
| i_size = i_size_read(&vnode->vfs_inode); |
| if (maybe_i_size > i_size) |
| i_size_write(&vnode->vfs_inode, maybe_i_size); |
| write_sequnlock(&vnode->cb_lock); |
| } |
| |
| if (PagePrivate(page)) { |
| priv = page_private(page); |
| f = afs_page_dirty_from(page, priv); |
| t = afs_page_dirty_to(page, priv); |
| if (from < f) |
| f = from; |
| if (to > t) |
| t = to; |
| priv = afs_page_dirty(page, f, t); |
| set_page_private(page, priv); |
| trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page); |
| } else { |
| priv = afs_page_dirty(page, from, to); |
| attach_page_private(page, (void *)priv); |
| trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page); |
| } |
| |
| if (set_page_dirty(page)) |
| _debug("dirtied %lx", page->index); |
| |
| out: |
| unlock_page(page); |
| put_page(page); |
| return copied; |
| } |
| |
| /* |
| * kill all the pages in the given range |
| */ |
| static void afs_kill_pages(struct address_space *mapping, |
| loff_t start, loff_t len) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(mapping->host); |
| struct pagevec pv; |
| unsigned int loop, psize; |
| |
| _enter("{%llx:%llu},%llx @%llx", |
| vnode->fid.vid, vnode->fid.vnode, len, start); |
| |
| pagevec_init(&pv); |
| |
| do { |
| _debug("kill %llx @%llx", len, start); |
| |
| pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, |
| PAGEVEC_SIZE, pv.pages); |
| if (pv.nr == 0) |
| break; |
| |
| for (loop = 0; loop < pv.nr; loop++) { |
| struct page *page = pv.pages[loop]; |
| |
| if (page->index * PAGE_SIZE >= start + len) |
| break; |
| |
| psize = thp_size(page); |
| start += psize; |
| len -= psize; |
| ClearPageUptodate(page); |
| end_page_writeback(page); |
| lock_page(page); |
| generic_error_remove_page(mapping, page); |
| unlock_page(page); |
| } |
| |
| __pagevec_release(&pv); |
| } while (len > 0); |
| |
| _leave(""); |
| } |
| |
| /* |
| * Redirty all the pages in a given range. |
| */ |
| static void afs_redirty_pages(struct writeback_control *wbc, |
| struct address_space *mapping, |
| loff_t start, loff_t len) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(mapping->host); |
| struct pagevec pv; |
| unsigned int loop, psize; |
| |
| _enter("{%llx:%llu},%llx @%llx", |
| vnode->fid.vid, vnode->fid.vnode, len, start); |
| |
| pagevec_init(&pv); |
| |
| do { |
| _debug("redirty %llx @%llx", len, start); |
| |
| pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, |
| PAGEVEC_SIZE, pv.pages); |
| if (pv.nr == 0) |
| break; |
| |
| for (loop = 0; loop < pv.nr; loop++) { |
| struct page *page = pv.pages[loop]; |
| |
| if (page->index * PAGE_SIZE >= start + len) |
| break; |
| |
| psize = thp_size(page); |
| start += psize; |
| len -= psize; |
| redirty_page_for_writepage(wbc, page); |
| end_page_writeback(page); |
| } |
| |
| __pagevec_release(&pv); |
| } while (len > 0); |
| |
| _leave(""); |
| } |
| |
| /* |
| * completion of write to server |
| */ |
| static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) |
| { |
| struct address_space *mapping = vnode->vfs_inode.i_mapping; |
| struct page *page; |
| pgoff_t end; |
| |
| XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); |
| |
| _enter("{%llx:%llu},{%x @%llx}", |
| vnode->fid.vid, vnode->fid.vnode, len, start); |
| |
| rcu_read_lock(); |
| |
| end = (start + len - 1) / PAGE_SIZE; |
| xas_for_each(&xas, page, end) { |
| if (!PageWriteback(page)) { |
| kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end); |
| ASSERT(PageWriteback(page)); |
| } |
| |
| trace_afs_page_dirty(vnode, tracepoint_string("clear"), page); |
| detach_page_private(page); |
| page_endio(page, true, 0); |
| } |
| |
| rcu_read_unlock(); |
| |
| afs_prune_wb_keys(vnode); |
| _leave(""); |
| } |
| |
| /* |
| * Find a key to use for the writeback. We cached the keys used to author the |
| * writes on the vnode. *_wbk will contain the last writeback key used or NULL |
| * and we need to start from there if it's set. |
| */ |
| static int afs_get_writeback_key(struct afs_vnode *vnode, |
| struct afs_wb_key **_wbk) |
| { |
| struct afs_wb_key *wbk = NULL; |
| struct list_head *p; |
| int ret = -ENOKEY, ret2; |
| |
| spin_lock(&vnode->wb_lock); |
| if (*_wbk) |
| p = (*_wbk)->vnode_link.next; |
| else |
| p = vnode->wb_keys.next; |
| |
| while (p != &vnode->wb_keys) { |
| wbk = list_entry(p, struct afs_wb_key, vnode_link); |
| _debug("wbk %u", key_serial(wbk->key)); |
| ret2 = key_validate(wbk->key); |
| if (ret2 == 0) { |
| refcount_inc(&wbk->usage); |
| _debug("USE WB KEY %u", key_serial(wbk->key)); |
| break; |
| } |
| |
| wbk = NULL; |
| if (ret == -ENOKEY) |
| ret = ret2; |
| p = p->next; |
| } |
| |
| spin_unlock(&vnode->wb_lock); |
| if (*_wbk) |
| afs_put_wb_key(*_wbk); |
| *_wbk = wbk; |
| return 0; |
| } |
| |
| static void afs_store_data_success(struct afs_operation *op) |
| { |
| struct afs_vnode *vnode = op->file[0].vnode; |
| |
| op->ctime = op->file[0].scb.status.mtime_client; |
| afs_vnode_commit_status(op, &op->file[0]); |
| if (op->error == 0) { |
| if (!op->store.laundering) |
| afs_pages_written_back(vnode, op->store.pos, op->store.size); |
| afs_stat_v(vnode, n_stores); |
| atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); |
| } |
| } |
| |
| static const struct afs_operation_ops afs_store_data_operation = { |
| .issue_afs_rpc = afs_fs_store_data, |
| .issue_yfs_rpc = yfs_fs_store_data, |
| .success = afs_store_data_success, |
| }; |
| |
| /* |
| * write to a file |
| */ |
| static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, |
| bool laundering) |
| { |
| struct afs_operation *op; |
| struct afs_wb_key *wbk = NULL; |
| loff_t size = iov_iter_count(iter), i_size; |
| int ret = -ENOKEY; |
| |
| _enter("%s{%llx:%llu.%u},%llx,%llx", |
| vnode->volume->name, |
| vnode->fid.vid, |
| vnode->fid.vnode, |
| vnode->fid.unique, |
| size, pos); |
| |
| ret = afs_get_writeback_key(vnode, &wbk); |
| if (ret) { |
| _leave(" = %d [no keys]", ret); |
| return ret; |
| } |
| |
| op = afs_alloc_operation(wbk->key, vnode->volume); |
| if (IS_ERR(op)) { |
| afs_put_wb_key(wbk); |
| return -ENOMEM; |
| } |
| |
| i_size = i_size_read(&vnode->vfs_inode); |
| |
| afs_op_set_vnode(op, 0, vnode); |
| op->file[0].dv_delta = 1; |
| op->file[0].modification = true; |
| op->store.write_iter = iter; |
| op->store.pos = pos; |
| op->store.size = size; |
| op->store.i_size = max(pos + size, i_size); |
| op->store.laundering = laundering; |
| op->mtime = vnode->vfs_inode.i_mtime; |
| op->flags |= AFS_OPERATION_UNINTR; |
| op->ops = &afs_store_data_operation; |
| |
| try_next_key: |
| afs_begin_vnode_operation(op); |
| afs_wait_for_operation(op); |
| |
| switch (op->error) { |
| case -EACCES: |
| case -EPERM: |
| case -ENOKEY: |
| case -EKEYEXPIRED: |
| case -EKEYREJECTED: |
| case -EKEYREVOKED: |
| _debug("next"); |
| |
| ret = afs_get_writeback_key(vnode, &wbk); |
| if (ret == 0) { |
| key_put(op->key); |
| op->key = key_get(wbk->key); |
| goto try_next_key; |
| } |
| break; |
| } |
| |
| afs_put_wb_key(wbk); |
| _leave(" = %d", op->error); |
| return afs_put_operation(op); |
| } |
| |
| /* |
| * Extend the region to be written back to include subsequent contiguously |
| * dirty pages if possible, but don't sleep while doing so. |
| * |
| * If this page holds new content, then we can include filler zeros in the |
| * writeback. |
| */ |
| static void afs_extend_writeback(struct address_space *mapping, |
| struct afs_vnode *vnode, |
| long *_count, |
| loff_t start, |
| loff_t max_len, |
| bool new_content, |
| unsigned int *_len) |
| { |
| struct pagevec pvec; |
| struct page *page; |
| unsigned long priv; |
| unsigned int psize, filler = 0; |
| unsigned int f, t; |
| loff_t len = *_len; |
| pgoff_t index = (start + len) / PAGE_SIZE; |
| bool stop = true; |
| unsigned int i; |
| |
| XA_STATE(xas, &mapping->i_pages, index); |
| pagevec_init(&pvec); |
| |
| do { |
| /* Firstly, we gather up a batch of contiguous dirty pages |
| * under the RCU read lock - but we can't clear the dirty flags |
| * there if any of those pages are mapped. |
| */ |
| rcu_read_lock(); |
| |
| xas_for_each(&xas, page, ULONG_MAX) { |
| stop = true; |
| if (xas_retry(&xas, page)) |
| continue; |
| if (xa_is_value(page)) |
| break; |
| if (page->index != index) |
| break; |
| |
| if (!page_cache_get_speculative(page)) { |
| xas_reset(&xas); |
| continue; |
| } |
| |
| /* Has the page moved or been split? */ |
| if (unlikely(page != xas_reload(&xas))) |
| break; |
| |
| if (!trylock_page(page)) |
| break; |
| if (!PageDirty(page) || PageWriteback(page)) { |
| unlock_page(page); |
| break; |
| } |
| |
| psize = thp_size(page); |
| priv = page_private(page); |
| f = afs_page_dirty_from(page, priv); |
| t = afs_page_dirty_to(page, priv); |
| if (f != 0 && !new_content) { |
| unlock_page(page); |
| break; |
| } |
| |
| len += filler + t; |
| filler = psize - t; |
| if (len >= max_len || *_count <= 0) |
| stop = true; |
| else if (t == psize || new_content) |
| stop = false; |
| |
| index += thp_nr_pages(page); |
| if (!pagevec_add(&pvec, page)) |
| break; |
| if (stop) |
| break; |
| } |
| |
| if (!stop) |
| xas_pause(&xas); |
| rcu_read_unlock(); |
| |
| /* Now, if we obtained any pages, we can shift them to being |
| * writable and mark them for caching. |
| */ |
| if (!pagevec_count(&pvec)) |
| break; |
| |
| for (i = 0; i < pagevec_count(&pvec); i++) { |
| page = pvec.pages[i]; |
| trace_afs_page_dirty(vnode, tracepoint_string("store+"), page); |
| |
| if (!clear_page_dirty_for_io(page)) |
| BUG(); |
| if (test_set_page_writeback(page)) |
| BUG(); |
| |
| *_count -= thp_nr_pages(page); |
| unlock_page(page); |
| } |
| |
| pagevec_release(&pvec); |
| cond_resched(); |
| } while (!stop); |
| |
| *_len = len; |
| } |
| |
| /* |
| * Synchronously write back the locked page and any subsequent non-locked dirty |
| * pages. |
| */ |
| static ssize_t afs_write_back_from_locked_page(struct address_space *mapping, |
| struct writeback_control *wbc, |
| struct page *page, |
| loff_t start, loff_t end) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(mapping->host); |
| struct iov_iter iter; |
| unsigned long priv; |
| unsigned int offset, to, len, max_len; |
| loff_t i_size = i_size_read(&vnode->vfs_inode); |
| bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); |
| long count = wbc->nr_to_write; |
| int ret; |
| |
| _enter(",%lx,%llx-%llx", page->index, start, end); |
| |
| if (test_set_page_writeback(page)) |
| BUG(); |
| |
| count -= thp_nr_pages(page); |
| |
| /* Find all consecutive lockable dirty pages that have contiguous |
| * written regions, stopping when we find a page that is not |
| * immediately lockable, is not dirty or is missing, or we reach the |
| * end of the range. |
| */ |
| priv = page_private(page); |
| offset = afs_page_dirty_from(page, priv); |
| to = afs_page_dirty_to(page, priv); |
| trace_afs_page_dirty(vnode, tracepoint_string("store"), page); |
| |
| len = to - offset; |
| start += offset; |
| if (start < i_size) { |
| /* Trim the write to the EOF; the extra data is ignored. Also |
| * put an upper limit on the size of a single storedata op. |
| */ |
| max_len = 65536 * 4096; |
| max_len = min_t(unsigned long long, max_len, end - start + 1); |
| max_len = min_t(unsigned long long, max_len, i_size - start); |
| |
| if (len < max_len && |
| (to == thp_size(page) || new_content)) |
| afs_extend_writeback(mapping, vnode, &count, |
| start, max_len, new_content, &len); |
| len = min_t(loff_t, len, max_len); |
| } |
| |
| /* We now have a contiguous set of dirty pages, each with writeback |
| * set; the first page is still locked at this point, but all the rest |
| * have been unlocked. |
| */ |
| unlock_page(page); |
| |
| if (start < i_size) { |
| _debug("write back %x @%llx [%llx]", len, start, i_size); |
| |
| iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len); |
| ret = afs_store_data(vnode, &iter, start, false); |
| } else { |
| _debug("write discard %x @%llx [%llx]", len, start, i_size); |
| |
| /* The dirty region was entirely beyond the EOF. */ |
| afs_pages_written_back(vnode, start, len); |
| ret = 0; |
| } |
| |
| switch (ret) { |
| case 0: |
| wbc->nr_to_write = count; |
| ret = len; |
| break; |
| |
| default: |
| pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); |
| fallthrough; |
| case -EACCES: |
| case -EPERM: |
| case -ENOKEY: |
| case -EKEYEXPIRED: |
| case -EKEYREJECTED: |
| case -EKEYREVOKED: |
| afs_redirty_pages(wbc, mapping, start, len); |
| mapping_set_error(mapping, ret); |
| break; |
| |
| case -EDQUOT: |
| case -ENOSPC: |
| afs_redirty_pages(wbc, mapping, start, len); |
| mapping_set_error(mapping, -ENOSPC); |
| break; |
| |
| case -EROFS: |
| case -EIO: |
| case -EREMOTEIO: |
| case -EFBIG: |
| case -ENOENT: |
| case -ENOMEDIUM: |
| case -ENXIO: |
| trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); |
| afs_kill_pages(mapping, start, len); |
| mapping_set_error(mapping, ret); |
| break; |
| } |
| |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * write a page back to the server |
| * - the caller locked the page for us |
| */ |
| int afs_writepage(struct page *page, struct writeback_control *wbc) |
| { |
| ssize_t ret; |
| loff_t start; |
| |
| _enter("{%lx},", page->index); |
| |
| start = page->index * PAGE_SIZE; |
| ret = afs_write_back_from_locked_page(page->mapping, wbc, page, |
| start, LLONG_MAX - start); |
| if (ret < 0) { |
| _leave(" = %zd", ret); |
| return ret; |
| } |
| |
| _leave(" = 0"); |
| return 0; |
| } |
| |
| /* |
| * write a region of pages back to the server |
| */ |
| static int afs_writepages_region(struct address_space *mapping, |
| struct writeback_control *wbc, |
| loff_t start, loff_t end, loff_t *_next) |
| { |
| struct page *page; |
| ssize_t ret; |
| int n; |
| |
| _enter("%llx,%llx,", start, end); |
| |
| do { |
| pgoff_t index = start / PAGE_SIZE; |
| |
| n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE, |
| PAGECACHE_TAG_DIRTY, 1, &page); |
| if (!n) |
| break; |
| |
| start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */ |
| |
| _debug("wback %lx", page->index); |
| |
| /* At this point we hold neither the i_pages lock nor the |
| * page lock: the page may be truncated or invalidated |
| * (changing page->mapping to NULL), or even swizzled |
| * back from swapper_space to tmpfs file mapping |
| */ |
| if (wbc->sync_mode != WB_SYNC_NONE) { |
| ret = lock_page_killable(page); |
| if (ret < 0) { |
| put_page(page); |
| return ret; |
| } |
| } else { |
| if (!trylock_page(page)) { |
| put_page(page); |
| return 0; |
| } |
| } |
| |
| if (page->mapping != mapping || !PageDirty(page)) { |
| start += thp_size(page); |
| unlock_page(page); |
| put_page(page); |
| continue; |
| } |
| |
| if (PageWriteback(page)) { |
| unlock_page(page); |
| if (wbc->sync_mode != WB_SYNC_NONE) |
| wait_on_page_writeback(page); |
| put_page(page); |
| continue; |
| } |
| |
| if (!clear_page_dirty_for_io(page)) |
| BUG(); |
| ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end); |
| put_page(page); |
| if (ret < 0) { |
| _leave(" = %zd", ret); |
| return ret; |
| } |
| |
| start += ret; |
| |
| cond_resched(); |
| } while (wbc->nr_to_write > 0); |
| |
| *_next = start; |
| _leave(" = 0 [%llx]", *_next); |
| return 0; |
| } |
| |
| /* |
| * write some of the pending data back to the server |
| */ |
| int afs_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(mapping->host); |
| loff_t start, next; |
| int ret; |
| |
| _enter(""); |
| |
| /* We have to be careful as we can end up racing with setattr() |
| * truncating the pagecache since the caller doesn't take a lock here |
| * to prevent it. |
| */ |
| if (wbc->sync_mode == WB_SYNC_ALL) |
| down_read(&vnode->validate_lock); |
| else if (!down_read_trylock(&vnode->validate_lock)) |
| return 0; |
| |
| if (wbc->range_cyclic) { |
| start = mapping->writeback_index * PAGE_SIZE; |
| ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); |
| if (start > 0 && wbc->nr_to_write > 0 && ret == 0) |
| ret = afs_writepages_region(mapping, wbc, 0, start, |
| &next); |
| mapping->writeback_index = next / PAGE_SIZE; |
| } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { |
| ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); |
| if (wbc->nr_to_write > 0) |
| mapping->writeback_index = next; |
| } else { |
| ret = afs_writepages_region(mapping, wbc, |
| wbc->range_start, wbc->range_end, &next); |
| } |
| |
| up_read(&vnode->validate_lock); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * write to an AFS file |
| */ |
| ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) |
| { |
| struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); |
| ssize_t result; |
| size_t count = iov_iter_count(from); |
| |
| _enter("{%llx:%llu},{%zu},", |
| vnode->fid.vid, vnode->fid.vnode, count); |
| |
| if (IS_SWAPFILE(&vnode->vfs_inode)) { |
| printk(KERN_INFO |
| "AFS: Attempt to write to active swap file!\n"); |
| return -EBUSY; |
| } |
| |
| if (!count) |
| return 0; |
| |
| result = generic_file_write_iter(iocb, from); |
| |
| _leave(" = %zd", result); |
| return result; |
| } |
| |
| /* |
| * flush any dirty pages for this process, and check for write errors. |
| * - the return status from this call provides a reliable indication of |
| * whether any write errors occurred for this process. |
| */ |
| int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) |
| { |
| struct inode *inode = file_inode(file); |
| struct afs_vnode *vnode = AFS_FS_I(inode); |
| |
| _enter("{%llx:%llu},{n=%pD},%d", |
| vnode->fid.vid, vnode->fid.vnode, file, |
| datasync); |
| |
| return file_write_and_wait_range(file, start, end); |
| } |
| |
| /* |
| * notification that a previously read-only page is about to become writable |
| * - if it returns an error, the caller will deliver a bus error signal |
| */ |
| vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) |
| { |
| struct page *page = thp_head(vmf->page); |
| struct file *file = vmf->vma->vm_file; |
| struct inode *inode = file_inode(file); |
| struct afs_vnode *vnode = AFS_FS_I(inode); |
| unsigned long priv; |
| vm_fault_t ret = VM_FAULT_RETRY; |
| |
| _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index); |
| |
| sb_start_pagefault(inode->i_sb); |
| |
| /* Wait for the page to be written to the cache before we allow it to |
| * be modified. We then assume the entire page will need writing back. |
| */ |
| #ifdef CONFIG_AFS_FSCACHE |
| if (PageFsCache(page) && |
| wait_on_page_fscache_killable(page) < 0) |
| goto out; |
| #endif |
| |
| if (wait_on_page_writeback_killable(page)) |
| goto out; |
| |
| if (lock_page_killable(page) < 0) |
| goto out; |
| |
| /* We mustn't change page->private until writeback is complete as that |
| * details the portion of the page we need to write back and we might |
| * need to redirty the page if there's a problem. |
| */ |
| if (wait_on_page_writeback_killable(page) < 0) { |
| unlock_page(page); |
| goto out; |
| } |
| |
| priv = afs_page_dirty(page, 0, thp_size(page)); |
| priv = afs_page_dirty_mmapped(priv); |
| if (PagePrivate(page)) { |
| set_page_private(page, priv); |
| trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page); |
| } else { |
| attach_page_private(page, (void *)priv); |
| trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page); |
| } |
| file_update_time(file); |
| |
| ret = VM_FAULT_LOCKED; |
| out: |
| sb_end_pagefault(inode->i_sb); |
| return ret; |
| } |
| |
| /* |
| * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. |
| */ |
| void afs_prune_wb_keys(struct afs_vnode *vnode) |
| { |
| LIST_HEAD(graveyard); |
| struct afs_wb_key *wbk, *tmp; |
| |
| /* Discard unused keys */ |
| spin_lock(&vnode->wb_lock); |
| |
| if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && |
| !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { |
| list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { |
| if (refcount_read(&wbk->usage) == 1) |
| list_move(&wbk->vnode_link, &graveyard); |
| } |
| } |
| |
| spin_unlock(&vnode->wb_lock); |
| |
| while (!list_empty(&graveyard)) { |
| wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); |
| list_del(&wbk->vnode_link); |
| afs_put_wb_key(wbk); |
| } |
| } |
| |
| /* |
| * Clean up a page during invalidation. |
| */ |
| int afs_launder_page(struct page *page) |
| { |
| struct address_space *mapping = page->mapping; |
| struct afs_vnode *vnode = AFS_FS_I(mapping->host); |
| struct iov_iter iter; |
| struct bio_vec bv[1]; |
| unsigned long priv; |
| unsigned int f, t; |
| int ret = 0; |
| |
| _enter("{%lx}", page->index); |
| |
| priv = page_private(page); |
| if (clear_page_dirty_for_io(page)) { |
| f = 0; |
| t = thp_size(page); |
| if (PagePrivate(page)) { |
| f = afs_page_dirty_from(page, priv); |
| t = afs_page_dirty_to(page, priv); |
| } |
| |
| bv[0].bv_page = page; |
| bv[0].bv_offset = f; |
| bv[0].bv_len = t - f; |
| iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len); |
| |
| trace_afs_page_dirty(vnode, tracepoint_string("launder"), page); |
| ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE, |
| true); |
| } |
| |
| trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page); |
| detach_page_private(page); |
| wait_on_page_fscache(page); |
| return ret; |
| } |