| /* |
| * numa.c |
| * |
| * numa: Simulate NUMA-sensitive workload and measure their NUMA performance |
| */ |
| |
| #include "../perf.h" |
| #include "../builtin.h" |
| #include "../util/util.h" |
| #include "../util/parse-options.h" |
| |
| #include "bench.h" |
| |
| #include <errno.h> |
| #include <sched.h> |
| #include <stdio.h> |
| #include <assert.h> |
| #include <malloc.h> |
| #include <signal.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <pthread.h> |
| #include <sys/mman.h> |
| #include <sys/time.h> |
| #include <sys/resource.h> |
| #include <sys/wait.h> |
| #include <sys/prctl.h> |
| #include <sys/types.h> |
| |
| #include <numa.h> |
| #include <numaif.h> |
| |
| /* |
| * Regular printout to the terminal, supressed if -q is specified: |
| */ |
| #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) |
| |
| /* |
| * Debug printf: |
| */ |
| #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) |
| |
| struct thread_data { |
| int curr_cpu; |
| cpu_set_t bind_cpumask; |
| int bind_node; |
| u8 *process_data; |
| int process_nr; |
| int thread_nr; |
| int task_nr; |
| unsigned int loops_done; |
| u64 val; |
| u64 runtime_ns; |
| u64 system_time_ns; |
| u64 user_time_ns; |
| double speed_gbs; |
| pthread_mutex_t *process_lock; |
| }; |
| |
| /* Parameters set by options: */ |
| |
| struct params { |
| /* Startup synchronization: */ |
| bool serialize_startup; |
| |
| /* Task hierarchy: */ |
| int nr_proc; |
| int nr_threads; |
| |
| /* Working set sizes: */ |
| const char *mb_global_str; |
| const char *mb_proc_str; |
| const char *mb_proc_locked_str; |
| const char *mb_thread_str; |
| |
| double mb_global; |
| double mb_proc; |
| double mb_proc_locked; |
| double mb_thread; |
| |
| /* Access patterns to the working set: */ |
| bool data_reads; |
| bool data_writes; |
| bool data_backwards; |
| bool data_zero_memset; |
| bool data_rand_walk; |
| u32 nr_loops; |
| u32 nr_secs; |
| u32 sleep_usecs; |
| |
| /* Working set initialization: */ |
| bool init_zero; |
| bool init_random; |
| bool init_cpu0; |
| |
| /* Misc options: */ |
| int show_details; |
| int run_all; |
| int thp; |
| |
| long bytes_global; |
| long bytes_process; |
| long bytes_process_locked; |
| long bytes_thread; |
| |
| int nr_tasks; |
| bool show_quiet; |
| |
| bool show_convergence; |
| bool measure_convergence; |
| |
| int perturb_secs; |
| int nr_cpus; |
| int nr_nodes; |
| |
| /* Affinity options -C and -N: */ |
| char *cpu_list_str; |
| char *node_list_str; |
| }; |
| |
| |
| /* Global, read-writable area, accessible to all processes and threads: */ |
| |
| struct global_info { |
| u8 *data; |
| |
| pthread_mutex_t startup_mutex; |
| int nr_tasks_started; |
| |
| pthread_mutex_t startup_done_mutex; |
| |
| pthread_mutex_t start_work_mutex; |
| int nr_tasks_working; |
| |
| pthread_mutex_t stop_work_mutex; |
| u64 bytes_done; |
| |
| struct thread_data *threads; |
| |
| /* Convergence latency measurement: */ |
| bool all_converged; |
| bool stop_work; |
| |
| int print_once; |
| |
| struct params p; |
| }; |
| |
| static struct global_info *g = NULL; |
| |
| static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); |
| static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); |
| |
| struct params p0; |
| |
| static const struct option options[] = { |
| OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), |
| OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), |
| |
| OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), |
| OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), |
| OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), |
| OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), |
| |
| OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), |
| OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), |
| OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), |
| |
| OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), |
| OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), |
| OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), |
| OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), |
| OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), |
| |
| |
| OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), |
| OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), |
| OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), |
| OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), |
| |
| OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), |
| OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), |
| OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), |
| OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), |
| OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), |
| OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"), |
| OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), |
| |
| /* Special option string parsing callbacks: */ |
| OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", |
| "bind the first N tasks to these specific cpus (the rest is unbound)", |
| parse_cpus_opt), |
| OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", |
| "bind the first N tasks to these specific memory nodes (the rest is unbound)", |
| parse_nodes_opt), |
| OPT_END() |
| }; |
| |
| static const char * const bench_numa_usage[] = { |
| "perf bench numa <options>", |
| NULL |
| }; |
| |
| static const char * const numa_usage[] = { |
| "perf bench numa mem [<options>]", |
| NULL |
| }; |
| |
| static cpu_set_t bind_to_cpu(int target_cpu) |
| { |
| cpu_set_t orig_mask, mask; |
| int ret; |
| |
| ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); |
| BUG_ON(ret); |
| |
| CPU_ZERO(&mask); |
| |
| if (target_cpu == -1) { |
| int cpu; |
| |
| for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| CPU_SET(cpu, &mask); |
| } else { |
| BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); |
| CPU_SET(target_cpu, &mask); |
| } |
| |
| ret = sched_setaffinity(0, sizeof(mask), &mask); |
| BUG_ON(ret); |
| |
| return orig_mask; |
| } |
| |
| static cpu_set_t bind_to_node(int target_node) |
| { |
| int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; |
| cpu_set_t orig_mask, mask; |
| int cpu; |
| int ret; |
| |
| BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); |
| BUG_ON(!cpus_per_node); |
| |
| ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); |
| BUG_ON(ret); |
| |
| CPU_ZERO(&mask); |
| |
| if (target_node == -1) { |
| for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| CPU_SET(cpu, &mask); |
| } else { |
| int cpu_start = (target_node + 0) * cpus_per_node; |
| int cpu_stop = (target_node + 1) * cpus_per_node; |
| |
| BUG_ON(cpu_stop > g->p.nr_cpus); |
| |
| for (cpu = cpu_start; cpu < cpu_stop; cpu++) |
| CPU_SET(cpu, &mask); |
| } |
| |
| ret = sched_setaffinity(0, sizeof(mask), &mask); |
| BUG_ON(ret); |
| |
| return orig_mask; |
| } |
| |
| static void bind_to_cpumask(cpu_set_t mask) |
| { |
| int ret; |
| |
| ret = sched_setaffinity(0, sizeof(mask), &mask); |
| BUG_ON(ret); |
| } |
| |
| static void mempol_restore(void) |
| { |
| int ret; |
| |
| ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); |
| |
| BUG_ON(ret); |
| } |
| |
| static void bind_to_memnode(int node) |
| { |
| unsigned long nodemask; |
| int ret; |
| |
| if (node == -1) |
| return; |
| |
| BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); |
| nodemask = 1L << node; |
| |
| ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); |
| dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); |
| |
| BUG_ON(ret); |
| } |
| |
| #define HPSIZE (2*1024*1024) |
| |
| #define set_taskname(fmt...) \ |
| do { \ |
| char name[20]; \ |
| \ |
| snprintf(name, 20, fmt); \ |
| prctl(PR_SET_NAME, name); \ |
| } while (0) |
| |
| static u8 *alloc_data(ssize_t bytes0, int map_flags, |
| int init_zero, int init_cpu0, int thp, int init_random) |
| { |
| cpu_set_t orig_mask; |
| ssize_t bytes; |
| u8 *buf; |
| int ret; |
| |
| if (!bytes0) |
| return NULL; |
| |
| /* Allocate and initialize all memory on CPU#0: */ |
| if (init_cpu0) { |
| orig_mask = bind_to_node(0); |
| bind_to_memnode(0); |
| } |
| |
| bytes = bytes0 + HPSIZE; |
| |
| buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); |
| BUG_ON(buf == (void *)-1); |
| |
| if (map_flags == MAP_PRIVATE) { |
| if (thp > 0) { |
| ret = madvise(buf, bytes, MADV_HUGEPAGE); |
| if (ret && !g->print_once) { |
| g->print_once = 1; |
| printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); |
| } |
| } |
| if (thp < 0) { |
| ret = madvise(buf, bytes, MADV_NOHUGEPAGE); |
| if (ret && !g->print_once) { |
| g->print_once = 1; |
| printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); |
| } |
| } |
| } |
| |
| if (init_zero) { |
| bzero(buf, bytes); |
| } else { |
| /* Initialize random contents, different in each word: */ |
| if (init_random) { |
| u64 *wbuf = (void *)buf; |
| long off = rand(); |
| long i; |
| |
| for (i = 0; i < bytes/8; i++) |
| wbuf[i] = i + off; |
| } |
| } |
| |
| /* Align to 2MB boundary: */ |
| buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); |
| |
| /* Restore affinity: */ |
| if (init_cpu0) { |
| bind_to_cpumask(orig_mask); |
| mempol_restore(); |
| } |
| |
| return buf; |
| } |
| |
| static void free_data(void *data, ssize_t bytes) |
| { |
| int ret; |
| |
| if (!data) |
| return; |
| |
| ret = munmap(data, bytes); |
| BUG_ON(ret); |
| } |
| |
| /* |
| * Create a shared memory buffer that can be shared between processes, zeroed: |
| */ |
| static void * zalloc_shared_data(ssize_t bytes) |
| { |
| return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| } |
| |
| /* |
| * Create a shared memory buffer that can be shared between processes: |
| */ |
| static void * setup_shared_data(ssize_t bytes) |
| { |
| return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| } |
| |
| /* |
| * Allocate process-local memory - this will either be shared between |
| * threads of this process, or only be accessed by this thread: |
| */ |
| static void * setup_private_data(ssize_t bytes) |
| { |
| return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); |
| } |
| |
| /* |
| * Return a process-shared (global) mutex: |
| */ |
| static void init_global_mutex(pthread_mutex_t *mutex) |
| { |
| pthread_mutexattr_t attr; |
| |
| pthread_mutexattr_init(&attr); |
| pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); |
| pthread_mutex_init(mutex, &attr); |
| } |
| |
| static int parse_cpu_list(const char *arg) |
| { |
| p0.cpu_list_str = strdup(arg); |
| |
| dprintf("got CPU list: {%s}\n", p0.cpu_list_str); |
| |
| return 0; |
| } |
| |
| static int parse_setup_cpu_list(void) |
| { |
| struct thread_data *td; |
| char *str0, *str; |
| int t; |
| |
| if (!g->p.cpu_list_str) |
| return 0; |
| |
| dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); |
| |
| str0 = str = strdup(g->p.cpu_list_str); |
| t = 0; |
| |
| BUG_ON(!str); |
| |
| tprintf("# binding tasks to CPUs:\n"); |
| tprintf("# "); |
| |
| while (true) { |
| int bind_cpu, bind_cpu_0, bind_cpu_1; |
| char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; |
| int bind_len; |
| int step; |
| int mul; |
| |
| tok = strsep(&str, ","); |
| if (!tok) |
| break; |
| |
| tok_end = strstr(tok, "-"); |
| |
| dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); |
| if (!tok_end) { |
| /* Single CPU specified: */ |
| bind_cpu_0 = bind_cpu_1 = atol(tok); |
| } else { |
| /* CPU range specified (for example: "5-11"): */ |
| bind_cpu_0 = atol(tok); |
| bind_cpu_1 = atol(tok_end + 1); |
| } |
| |
| step = 1; |
| tok_step = strstr(tok, "#"); |
| if (tok_step) { |
| step = atol(tok_step + 1); |
| BUG_ON(step <= 0 || step >= g->p.nr_cpus); |
| } |
| |
| /* |
| * Mask length. |
| * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', |
| * where the _4 means the next 4 CPUs are allowed. |
| */ |
| bind_len = 1; |
| tok_len = strstr(tok, "_"); |
| if (tok_len) { |
| bind_len = atol(tok_len + 1); |
| BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); |
| } |
| |
| /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ |
| mul = 1; |
| tok_mul = strstr(tok, "x"); |
| if (tok_mul) { |
| mul = atol(tok_mul + 1); |
| BUG_ON(mul <= 0); |
| } |
| |
| dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); |
| |
| if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { |
| printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); |
| return -1; |
| } |
| |
| BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); |
| BUG_ON(bind_cpu_0 > bind_cpu_1); |
| |
| for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { |
| int i; |
| |
| for (i = 0; i < mul; i++) { |
| int cpu; |
| |
| if (t >= g->p.nr_tasks) { |
| printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); |
| goto out; |
| } |
| td = g->threads + t; |
| |
| if (t) |
| tprintf(","); |
| if (bind_len > 1) { |
| tprintf("%2d/%d", bind_cpu, bind_len); |
| } else { |
| tprintf("%2d", bind_cpu); |
| } |
| |
| CPU_ZERO(&td->bind_cpumask); |
| for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { |
| BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); |
| CPU_SET(cpu, &td->bind_cpumask); |
| } |
| t++; |
| } |
| } |
| } |
| out: |
| |
| tprintf("\n"); |
| |
| if (t < g->p.nr_tasks) |
| printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); |
| |
| free(str0); |
| return 0; |
| } |
| |
| static int parse_cpus_opt(const struct option *opt __maybe_unused, |
| const char *arg, int unset __maybe_unused) |
| { |
| if (!arg) |
| return -1; |
| |
| return parse_cpu_list(arg); |
| } |
| |
| static int parse_node_list(const char *arg) |
| { |
| p0.node_list_str = strdup(arg); |
| |
| dprintf("got NODE list: {%s}\n", p0.node_list_str); |
| |
| return 0; |
| } |
| |
| static int parse_setup_node_list(void) |
| { |
| struct thread_data *td; |
| char *str0, *str; |
| int t; |
| |
| if (!g->p.node_list_str) |
| return 0; |
| |
| dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); |
| |
| str0 = str = strdup(g->p.node_list_str); |
| t = 0; |
| |
| BUG_ON(!str); |
| |
| tprintf("# binding tasks to NODEs:\n"); |
| tprintf("# "); |
| |
| while (true) { |
| int bind_node, bind_node_0, bind_node_1; |
| char *tok, *tok_end, *tok_step, *tok_mul; |
| int step; |
| int mul; |
| |
| tok = strsep(&str, ","); |
| if (!tok) |
| break; |
| |
| tok_end = strstr(tok, "-"); |
| |
| dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); |
| if (!tok_end) { |
| /* Single NODE specified: */ |
| bind_node_0 = bind_node_1 = atol(tok); |
| } else { |
| /* NODE range specified (for example: "5-11"): */ |
| bind_node_0 = atol(tok); |
| bind_node_1 = atol(tok_end + 1); |
| } |
| |
| step = 1; |
| tok_step = strstr(tok, "#"); |
| if (tok_step) { |
| step = atol(tok_step + 1); |
| BUG_ON(step <= 0 || step >= g->p.nr_nodes); |
| } |
| |
| /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ |
| mul = 1; |
| tok_mul = strstr(tok, "x"); |
| if (tok_mul) { |
| mul = atol(tok_mul + 1); |
| BUG_ON(mul <= 0); |
| } |
| |
| dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); |
| |
| if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { |
| printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); |
| return -1; |
| } |
| |
| BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); |
| BUG_ON(bind_node_0 > bind_node_1); |
| |
| for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { |
| int i; |
| |
| for (i = 0; i < mul; i++) { |
| if (t >= g->p.nr_tasks) { |
| printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); |
| goto out; |
| } |
| td = g->threads + t; |
| |
| if (!t) |
| tprintf(" %2d", bind_node); |
| else |
| tprintf(",%2d", bind_node); |
| |
| td->bind_node = bind_node; |
| t++; |
| } |
| } |
| } |
| out: |
| |
| tprintf("\n"); |
| |
| if (t < g->p.nr_tasks) |
| printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); |
| |
| free(str0); |
| return 0; |
| } |
| |
| static int parse_nodes_opt(const struct option *opt __maybe_unused, |
| const char *arg, int unset __maybe_unused) |
| { |
| if (!arg) |
| return -1; |
| |
| return parse_node_list(arg); |
| |
| return 0; |
| } |
| |
| #define BIT(x) (1ul << x) |
| |
| static inline uint32_t lfsr_32(uint32_t lfsr) |
| { |
| const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); |
| return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); |
| } |
| |
| /* |
| * Make sure there's real data dependency to RAM (when read |
| * accesses are enabled), so the compiler, the CPU and the |
| * kernel (KSM, zero page, etc.) cannot optimize away RAM |
| * accesses: |
| */ |
| static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) |
| { |
| if (g->p.data_reads) |
| val += *data; |
| if (g->p.data_writes) |
| *data = val + 1; |
| return val; |
| } |
| |
| /* |
| * The worker process does two types of work, a forwards going |
| * loop and a backwards going loop. |
| * |
| * We do this so that on multiprocessor systems we do not create |
| * a 'train' of processing, with highly synchronized processes, |
| * skewing the whole benchmark. |
| */ |
| static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) |
| { |
| long words = bytes/sizeof(u64); |
| u64 *data = (void *)__data; |
| long chunk_0, chunk_1; |
| u64 *d0, *d, *d1; |
| long off; |
| long i; |
| |
| BUG_ON(!data && words); |
| BUG_ON(data && !words); |
| |
| if (!data) |
| return val; |
| |
| /* Very simple memset() work variant: */ |
| if (g->p.data_zero_memset && !g->p.data_rand_walk) { |
| bzero(data, bytes); |
| return val; |
| } |
| |
| /* Spread out by PID/TID nr and by loop nr: */ |
| chunk_0 = words/nr_max; |
| chunk_1 = words/g->p.nr_loops; |
| off = nr*chunk_0 + loop*chunk_1; |
| |
| while (off >= words) |
| off -= words; |
| |
| if (g->p.data_rand_walk) { |
| u32 lfsr = nr + loop + val; |
| int j; |
| |
| for (i = 0; i < words/1024; i++) { |
| long start, end; |
| |
| lfsr = lfsr_32(lfsr); |
| |
| start = lfsr % words; |
| end = min(start + 1024, words-1); |
| |
| if (g->p.data_zero_memset) { |
| bzero(data + start, (end-start) * sizeof(u64)); |
| } else { |
| for (j = start; j < end; j++) |
| val = access_data(data + j, val); |
| } |
| } |
| } else if (!g->p.data_backwards || (nr + loop) & 1) { |
| |
| d0 = data + off; |
| d = data + off + 1; |
| d1 = data + words; |
| |
| /* Process data forwards: */ |
| for (;;) { |
| if (unlikely(d >= d1)) |
| d = data; |
| if (unlikely(d == d0)) |
| break; |
| |
| val = access_data(d, val); |
| |
| d++; |
| } |
| } else { |
| /* Process data backwards: */ |
| |
| d0 = data + off; |
| d = data + off - 1; |
| d1 = data + words; |
| |
| /* Process data forwards: */ |
| for (;;) { |
| if (unlikely(d < data)) |
| d = data + words-1; |
| if (unlikely(d == d0)) |
| break; |
| |
| val = access_data(d, val); |
| |
| d--; |
| } |
| } |
| |
| return val; |
| } |
| |
| static void update_curr_cpu(int task_nr, unsigned long bytes_worked) |
| { |
| unsigned int cpu; |
| |
| cpu = sched_getcpu(); |
| |
| g->threads[task_nr].curr_cpu = cpu; |
| prctl(0, bytes_worked); |
| } |
| |
| #define MAX_NR_NODES 64 |
| |
| /* |
| * Count the number of nodes a process's threads |
| * are spread out on. |
| * |
| * A count of 1 means that the process is compressed |
| * to a single node. A count of g->p.nr_nodes means it's |
| * spread out on the whole system. |
| */ |
| static int count_process_nodes(int process_nr) |
| { |
| char node_present[MAX_NR_NODES] = { 0, }; |
| int nodes; |
| int n, t; |
| |
| for (t = 0; t < g->p.nr_threads; t++) { |
| struct thread_data *td; |
| int task_nr; |
| int node; |
| |
| task_nr = process_nr*g->p.nr_threads + t; |
| td = g->threads + task_nr; |
| |
| node = numa_node_of_cpu(td->curr_cpu); |
| node_present[node] = 1; |
| } |
| |
| nodes = 0; |
| |
| for (n = 0; n < MAX_NR_NODES; n++) |
| nodes += node_present[n]; |
| |
| return nodes; |
| } |
| |
| /* |
| * Count the number of distinct process-threads a node contains. |
| * |
| * A count of 1 means that the node contains only a single |
| * process. If all nodes on the system contain at most one |
| * process then we are well-converged. |
| */ |
| static int count_node_processes(int node) |
| { |
| int processes = 0; |
| int t, p; |
| |
| for (p = 0; p < g->p.nr_proc; p++) { |
| for (t = 0; t < g->p.nr_threads; t++) { |
| struct thread_data *td; |
| int task_nr; |
| int n; |
| |
| task_nr = p*g->p.nr_threads + t; |
| td = g->threads + task_nr; |
| |
| n = numa_node_of_cpu(td->curr_cpu); |
| if (n == node) { |
| processes++; |
| break; |
| } |
| } |
| } |
| |
| return processes; |
| } |
| |
| static void calc_convergence_compression(int *strong) |
| { |
| unsigned int nodes_min, nodes_max; |
| int p; |
| |
| nodes_min = -1; |
| nodes_max = 0; |
| |
| for (p = 0; p < g->p.nr_proc; p++) { |
| unsigned int nodes = count_process_nodes(p); |
| |
| nodes_min = min(nodes, nodes_min); |
| nodes_max = max(nodes, nodes_max); |
| } |
| |
| /* Strong convergence: all threads compress on a single node: */ |
| if (nodes_min == 1 && nodes_max == 1) { |
| *strong = 1; |
| } else { |
| *strong = 0; |
| tprintf(" {%d-%d}", nodes_min, nodes_max); |
| } |
| } |
| |
| static void calc_convergence(double runtime_ns_max, double *convergence) |
| { |
| unsigned int loops_done_min, loops_done_max; |
| int process_groups; |
| int nodes[MAX_NR_NODES]; |
| int distance; |
| int nr_min; |
| int nr_max; |
| int strong; |
| int sum; |
| int nr; |
| int node; |
| int cpu; |
| int t; |
| |
| if (!g->p.show_convergence && !g->p.measure_convergence) |
| return; |
| |
| for (node = 0; node < g->p.nr_nodes; node++) |
| nodes[node] = 0; |
| |
| loops_done_min = -1; |
| loops_done_max = 0; |
| |
| for (t = 0; t < g->p.nr_tasks; t++) { |
| struct thread_data *td = g->threads + t; |
| unsigned int loops_done; |
| |
| cpu = td->curr_cpu; |
| |
| /* Not all threads have written it yet: */ |
| if (cpu < 0) |
| continue; |
| |
| node = numa_node_of_cpu(cpu); |
| |
| nodes[node]++; |
| |
| loops_done = td->loops_done; |
| loops_done_min = min(loops_done, loops_done_min); |
| loops_done_max = max(loops_done, loops_done_max); |
| } |
| |
| nr_max = 0; |
| nr_min = g->p.nr_tasks; |
| sum = 0; |
| |
| for (node = 0; node < g->p.nr_nodes; node++) { |
| nr = nodes[node]; |
| nr_min = min(nr, nr_min); |
| nr_max = max(nr, nr_max); |
| sum += nr; |
| } |
| BUG_ON(nr_min > nr_max); |
| |
| BUG_ON(sum > g->p.nr_tasks); |
| |
| if (0 && (sum < g->p.nr_tasks)) |
| return; |
| |
| /* |
| * Count the number of distinct process groups present |
| * on nodes - when we are converged this will decrease |
| * to g->p.nr_proc: |
| */ |
| process_groups = 0; |
| |
| for (node = 0; node < g->p.nr_nodes; node++) { |
| int processes = count_node_processes(node); |
| |
| nr = nodes[node]; |
| tprintf(" %2d/%-2d", nr, processes); |
| |
| process_groups += processes; |
| } |
| |
| distance = nr_max - nr_min; |
| |
| tprintf(" [%2d/%-2d]", distance, process_groups); |
| |
| tprintf(" l:%3d-%-3d (%3d)", |
| loops_done_min, loops_done_max, loops_done_max-loops_done_min); |
| |
| if (loops_done_min && loops_done_max) { |
| double skew = 1.0 - (double)loops_done_min/loops_done_max; |
| |
| tprintf(" [%4.1f%%]", skew * 100.0); |
| } |
| |
| calc_convergence_compression(&strong); |
| |
| if (strong && process_groups == g->p.nr_proc) { |
| if (!*convergence) { |
| *convergence = runtime_ns_max; |
| tprintf(" (%6.1fs converged)\n", *convergence/1e9); |
| if (g->p.measure_convergence) { |
| g->all_converged = true; |
| g->stop_work = true; |
| } |
| } |
| } else { |
| if (*convergence) { |
| tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); |
| *convergence = 0; |
| } |
| tprintf("\n"); |
| } |
| } |
| |
| static void show_summary(double runtime_ns_max, int l, double *convergence) |
| { |
| tprintf("\r # %5.1f%% [%.1f mins]", |
| (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); |
| |
| calc_convergence(runtime_ns_max, convergence); |
| |
| if (g->p.show_details >= 0) |
| fflush(stdout); |
| } |
| |
| static void *worker_thread(void *__tdata) |
| { |
| struct thread_data *td = __tdata; |
| struct timeval start0, start, stop, diff; |
| int process_nr = td->process_nr; |
| int thread_nr = td->thread_nr; |
| unsigned long last_perturbance; |
| int task_nr = td->task_nr; |
| int details = g->p.show_details; |
| int first_task, last_task; |
| double convergence = 0; |
| u64 val = td->val; |
| double runtime_ns_max; |
| u8 *global_data; |
| u8 *process_data; |
| u8 *thread_data; |
| u64 bytes_done; |
| long work_done; |
| u32 l; |
| struct rusage rusage; |
| |
| bind_to_cpumask(td->bind_cpumask); |
| bind_to_memnode(td->bind_node); |
| |
| set_taskname("thread %d/%d", process_nr, thread_nr); |
| |
| global_data = g->data; |
| process_data = td->process_data; |
| thread_data = setup_private_data(g->p.bytes_thread); |
| |
| bytes_done = 0; |
| |
| last_task = 0; |
| if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) |
| last_task = 1; |
| |
| first_task = 0; |
| if (process_nr == 0 && thread_nr == 0) |
| first_task = 1; |
| |
| if (details >= 2) { |
| printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", |
| process_nr, thread_nr, global_data, process_data, thread_data); |
| } |
| |
| if (g->p.serialize_startup) { |
| pthread_mutex_lock(&g->startup_mutex); |
| g->nr_tasks_started++; |
| pthread_mutex_unlock(&g->startup_mutex); |
| |
| /* Here we will wait for the main process to start us all at once: */ |
| pthread_mutex_lock(&g->start_work_mutex); |
| g->nr_tasks_working++; |
| |
| /* Last one wake the main process: */ |
| if (g->nr_tasks_working == g->p.nr_tasks) |
| pthread_mutex_unlock(&g->startup_done_mutex); |
| |
| pthread_mutex_unlock(&g->start_work_mutex); |
| } |
| |
| gettimeofday(&start0, NULL); |
| |
| start = stop = start0; |
| last_perturbance = start.tv_sec; |
| |
| for (l = 0; l < g->p.nr_loops; l++) { |
| start = stop; |
| |
| if (g->stop_work) |
| break; |
| |
| val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); |
| val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); |
| val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); |
| |
| if (g->p.sleep_usecs) { |
| pthread_mutex_lock(td->process_lock); |
| usleep(g->p.sleep_usecs); |
| pthread_mutex_unlock(td->process_lock); |
| } |
| /* |
| * Amount of work to be done under a process-global lock: |
| */ |
| if (g->p.bytes_process_locked) { |
| pthread_mutex_lock(td->process_lock); |
| val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); |
| pthread_mutex_unlock(td->process_lock); |
| } |
| |
| work_done = g->p.bytes_global + g->p.bytes_process + |
| g->p.bytes_process_locked + g->p.bytes_thread; |
| |
| update_curr_cpu(task_nr, work_done); |
| bytes_done += work_done; |
| |
| if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) |
| continue; |
| |
| td->loops_done = l; |
| |
| gettimeofday(&stop, NULL); |
| |
| /* Check whether our max runtime timed out: */ |
| if (g->p.nr_secs) { |
| timersub(&stop, &start0, &diff); |
| if ((u32)diff.tv_sec >= g->p.nr_secs) { |
| g->stop_work = true; |
| break; |
| } |
| } |
| |
| /* Update the summary at most once per second: */ |
| if (start.tv_sec == stop.tv_sec) |
| continue; |
| |
| /* |
| * Perturb the first task's equilibrium every g->p.perturb_secs seconds, |
| * by migrating to CPU#0: |
| */ |
| if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { |
| cpu_set_t orig_mask; |
| int target_cpu; |
| int this_cpu; |
| |
| last_perturbance = stop.tv_sec; |
| |
| /* |
| * Depending on where we are running, move into |
| * the other half of the system, to create some |
| * real disturbance: |
| */ |
| this_cpu = g->threads[task_nr].curr_cpu; |
| if (this_cpu < g->p.nr_cpus/2) |
| target_cpu = g->p.nr_cpus-1; |
| else |
| target_cpu = 0; |
| |
| orig_mask = bind_to_cpu(target_cpu); |
| |
| /* Here we are running on the target CPU already */ |
| if (details >= 1) |
| printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); |
| |
| bind_to_cpumask(orig_mask); |
| } |
| |
| if (details >= 3) { |
| timersub(&stop, &start, &diff); |
| runtime_ns_max = diff.tv_sec * 1000000000; |
| runtime_ns_max += diff.tv_usec * 1000; |
| |
| if (details >= 0) { |
| printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", |
| process_nr, thread_nr, runtime_ns_max / bytes_done, val); |
| } |
| fflush(stdout); |
| } |
| if (!last_task) |
| continue; |
| |
| timersub(&stop, &start0, &diff); |
| runtime_ns_max = diff.tv_sec * 1000000000ULL; |
| runtime_ns_max += diff.tv_usec * 1000ULL; |
| |
| show_summary(runtime_ns_max, l, &convergence); |
| } |
| |
| gettimeofday(&stop, NULL); |
| timersub(&stop, &start0, &diff); |
| td->runtime_ns = diff.tv_sec * 1000000000ULL; |
| td->runtime_ns += diff.tv_usec * 1000ULL; |
| td->speed_gbs = bytes_done / (td->runtime_ns / 1e9) / 1e9; |
| |
| getrusage(RUSAGE_THREAD, &rusage); |
| td->system_time_ns = rusage.ru_stime.tv_sec * 1000000000ULL; |
| td->system_time_ns += rusage.ru_stime.tv_usec * 1000ULL; |
| td->user_time_ns = rusage.ru_utime.tv_sec * 1000000000ULL; |
| td->user_time_ns += rusage.ru_utime.tv_usec * 1000ULL; |
| |
| free_data(thread_data, g->p.bytes_thread); |
| |
| pthread_mutex_lock(&g->stop_work_mutex); |
| g->bytes_done += bytes_done; |
| pthread_mutex_unlock(&g->stop_work_mutex); |
| |
| return NULL; |
| } |
| |
| /* |
| * A worker process starts a couple of threads: |
| */ |
| static void worker_process(int process_nr) |
| { |
| pthread_mutex_t process_lock; |
| struct thread_data *td; |
| pthread_t *pthreads; |
| u8 *process_data; |
| int task_nr; |
| int ret; |
| int t; |
| |
| pthread_mutex_init(&process_lock, NULL); |
| set_taskname("process %d", process_nr); |
| |
| /* |
| * Pick up the memory policy and the CPU binding of our first thread, |
| * so that we initialize memory accordingly: |
| */ |
| task_nr = process_nr*g->p.nr_threads; |
| td = g->threads + task_nr; |
| |
| bind_to_memnode(td->bind_node); |
| bind_to_cpumask(td->bind_cpumask); |
| |
| pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); |
| process_data = setup_private_data(g->p.bytes_process); |
| |
| if (g->p.show_details >= 3) { |
| printf(" # process %2d global mem: %p, process mem: %p\n", |
| process_nr, g->data, process_data); |
| } |
| |
| for (t = 0; t < g->p.nr_threads; t++) { |
| task_nr = process_nr*g->p.nr_threads + t; |
| td = g->threads + task_nr; |
| |
| td->process_data = process_data; |
| td->process_nr = process_nr; |
| td->thread_nr = t; |
| td->task_nr = task_nr; |
| td->val = rand(); |
| td->curr_cpu = -1; |
| td->process_lock = &process_lock; |
| |
| ret = pthread_create(pthreads + t, NULL, worker_thread, td); |
| BUG_ON(ret); |
| } |
| |
| for (t = 0; t < g->p.nr_threads; t++) { |
| ret = pthread_join(pthreads[t], NULL); |
| BUG_ON(ret); |
| } |
| |
| free_data(process_data, g->p.bytes_process); |
| free(pthreads); |
| } |
| |
| static void print_summary(void) |
| { |
| if (g->p.show_details < 0) |
| return; |
| |
| printf("\n ###\n"); |
| printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", |
| g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); |
| printf(" # %5dx %5ldMB global shared mem operations\n", |
| g->p.nr_loops, g->p.bytes_global/1024/1024); |
| printf(" # %5dx %5ldMB process shared mem operations\n", |
| g->p.nr_loops, g->p.bytes_process/1024/1024); |
| printf(" # %5dx %5ldMB thread local mem operations\n", |
| g->p.nr_loops, g->p.bytes_thread/1024/1024); |
| |
| printf(" ###\n"); |
| |
| printf("\n ###\n"); fflush(stdout); |
| } |
| |
| static void init_thread_data(void) |
| { |
| ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; |
| int t; |
| |
| g->threads = zalloc_shared_data(size); |
| |
| for (t = 0; t < g->p.nr_tasks; t++) { |
| struct thread_data *td = g->threads + t; |
| int cpu; |
| |
| /* Allow all nodes by default: */ |
| td->bind_node = -1; |
| |
| /* Allow all CPUs by default: */ |
| CPU_ZERO(&td->bind_cpumask); |
| for (cpu = 0; cpu < g->p.nr_cpus; cpu++) |
| CPU_SET(cpu, &td->bind_cpumask); |
| } |
| } |
| |
| static void deinit_thread_data(void) |
| { |
| ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; |
| |
| free_data(g->threads, size); |
| } |
| |
| static int init(void) |
| { |
| g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); |
| |
| /* Copy over options: */ |
| g->p = p0; |
| |
| g->p.nr_cpus = numa_num_configured_cpus(); |
| |
| g->p.nr_nodes = numa_max_node() + 1; |
| |
| /* char array in count_process_nodes(): */ |
| BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); |
| |
| if (g->p.show_quiet && !g->p.show_details) |
| g->p.show_details = -1; |
| |
| /* Some memory should be specified: */ |
| if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) |
| return -1; |
| |
| if (g->p.mb_global_str) { |
| g->p.mb_global = atof(g->p.mb_global_str); |
| BUG_ON(g->p.mb_global < 0); |
| } |
| |
| if (g->p.mb_proc_str) { |
| g->p.mb_proc = atof(g->p.mb_proc_str); |
| BUG_ON(g->p.mb_proc < 0); |
| } |
| |
| if (g->p.mb_proc_locked_str) { |
| g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); |
| BUG_ON(g->p.mb_proc_locked < 0); |
| BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); |
| } |
| |
| if (g->p.mb_thread_str) { |
| g->p.mb_thread = atof(g->p.mb_thread_str); |
| BUG_ON(g->p.mb_thread < 0); |
| } |
| |
| BUG_ON(g->p.nr_threads <= 0); |
| BUG_ON(g->p.nr_proc <= 0); |
| |
| g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; |
| |
| g->p.bytes_global = g->p.mb_global *1024L*1024L; |
| g->p.bytes_process = g->p.mb_proc *1024L*1024L; |
| g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; |
| g->p.bytes_thread = g->p.mb_thread *1024L*1024L; |
| |
| g->data = setup_shared_data(g->p.bytes_global); |
| |
| /* Startup serialization: */ |
| init_global_mutex(&g->start_work_mutex); |
| init_global_mutex(&g->startup_mutex); |
| init_global_mutex(&g->startup_done_mutex); |
| init_global_mutex(&g->stop_work_mutex); |
| |
| init_thread_data(); |
| |
| tprintf("#\n"); |
| if (parse_setup_cpu_list() || parse_setup_node_list()) |
| return -1; |
| tprintf("#\n"); |
| |
| print_summary(); |
| |
| return 0; |
| } |
| |
| static void deinit(void) |
| { |
| free_data(g->data, g->p.bytes_global); |
| g->data = NULL; |
| |
| deinit_thread_data(); |
| |
| free_data(g, sizeof(*g)); |
| g = NULL; |
| } |
| |
| /* |
| * Print a short or long result, depending on the verbosity setting: |
| */ |
| static void print_res(const char *name, double val, |
| const char *txt_unit, const char *txt_short, const char *txt_long) |
| { |
| if (!name) |
| name = "main,"; |
| |
| if (g->p.show_quiet) |
| printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); |
| else |
| printf(" %14.3f %s\n", val, txt_long); |
| } |
| |
| static int __bench_numa(const char *name) |
| { |
| struct timeval start, stop, diff; |
| u64 runtime_ns_min, runtime_ns_sum; |
| pid_t *pids, pid, wpid; |
| double delta_runtime; |
| double runtime_avg; |
| double runtime_sec_max; |
| double runtime_sec_min; |
| int wait_stat; |
| double bytes; |
| int i, t, p; |
| |
| if (init()) |
| return -1; |
| |
| pids = zalloc(g->p.nr_proc * sizeof(*pids)); |
| pid = -1; |
| |
| /* All threads try to acquire it, this way we can wait for them to start up: */ |
| pthread_mutex_lock(&g->start_work_mutex); |
| |
| if (g->p.serialize_startup) { |
| tprintf(" #\n"); |
| tprintf(" # Startup synchronization: ..."); fflush(stdout); |
| } |
| |
| gettimeofday(&start, NULL); |
| |
| for (i = 0; i < g->p.nr_proc; i++) { |
| pid = fork(); |
| dprintf(" # process %2d: PID %d\n", i, pid); |
| |
| BUG_ON(pid < 0); |
| if (!pid) { |
| /* Child process: */ |
| worker_process(i); |
| |
| exit(0); |
| } |
| pids[i] = pid; |
| |
| } |
| /* Wait for all the threads to start up: */ |
| while (g->nr_tasks_started != g->p.nr_tasks) |
| usleep(1000); |
| |
| BUG_ON(g->nr_tasks_started != g->p.nr_tasks); |
| |
| if (g->p.serialize_startup) { |
| double startup_sec; |
| |
| pthread_mutex_lock(&g->startup_done_mutex); |
| |
| /* This will start all threads: */ |
| pthread_mutex_unlock(&g->start_work_mutex); |
| |
| /* This mutex is locked - the last started thread will wake us: */ |
| pthread_mutex_lock(&g->startup_done_mutex); |
| |
| gettimeofday(&stop, NULL); |
| |
| timersub(&stop, &start, &diff); |
| |
| startup_sec = diff.tv_sec * 1000000000.0; |
| startup_sec += diff.tv_usec * 1000.0; |
| startup_sec /= 1e9; |
| |
| tprintf(" threads initialized in %.6f seconds.\n", startup_sec); |
| tprintf(" #\n"); |
| |
| start = stop; |
| pthread_mutex_unlock(&g->startup_done_mutex); |
| } else { |
| gettimeofday(&start, NULL); |
| } |
| |
| /* Parent process: */ |
| |
| |
| for (i = 0; i < g->p.nr_proc; i++) { |
| wpid = waitpid(pids[i], &wait_stat, 0); |
| BUG_ON(wpid < 0); |
| BUG_ON(!WIFEXITED(wait_stat)); |
| |
| } |
| |
| runtime_ns_sum = 0; |
| runtime_ns_min = -1LL; |
| |
| for (t = 0; t < g->p.nr_tasks; t++) { |
| u64 thread_runtime_ns = g->threads[t].runtime_ns; |
| |
| runtime_ns_sum += thread_runtime_ns; |
| runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); |
| } |
| |
| gettimeofday(&stop, NULL); |
| timersub(&stop, &start, &diff); |
| |
| BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); |
| |
| tprintf("\n ###\n"); |
| tprintf("\n"); |
| |
| runtime_sec_max = diff.tv_sec * 1000000000.0; |
| runtime_sec_max += diff.tv_usec * 1000.0; |
| runtime_sec_max /= 1e9; |
| |
| runtime_sec_min = runtime_ns_min/1e9; |
| |
| bytes = g->bytes_done; |
| runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; |
| |
| if (g->p.measure_convergence) { |
| print_res(name, runtime_sec_max, |
| "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); |
| } |
| |
| print_res(name, runtime_sec_max, |
| "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); |
| |
| print_res(name, runtime_sec_min, |
| "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); |
| |
| print_res(name, runtime_avg, |
| "secs,", "runtime-avg/thread", "secs average thread-runtime"); |
| |
| delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; |
| print_res(name, delta_runtime / runtime_sec_max * 100.0, |
| "%,", "spread-runtime/thread", "% difference between max/avg runtime"); |
| |
| print_res(name, bytes / g->p.nr_tasks / 1e9, |
| "GB,", "data/thread", "GB data processed, per thread"); |
| |
| print_res(name, bytes / 1e9, |
| "GB,", "data-total", "GB data processed, total"); |
| |
| print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), |
| "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); |
| |
| print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, |
| "GB/sec,", "thread-speed", "GB/sec/thread speed"); |
| |
| print_res(name, bytes / runtime_sec_max / 1e9, |
| "GB/sec,", "total-speed", "GB/sec total speed"); |
| |
| if (g->p.show_details >= 2) { |
| char tname[32]; |
| struct thread_data *td; |
| for (p = 0; p < g->p.nr_proc; p++) { |
| for (t = 0; t < g->p.nr_threads; t++) { |
| memset(tname, 0, 32); |
| td = g->threads + p*g->p.nr_threads + t; |
| snprintf(tname, 32, "process%d:thread%d", p, t); |
| print_res(tname, td->speed_gbs, |
| "GB/sec", "thread-speed", "GB/sec/thread speed"); |
| print_res(tname, td->system_time_ns / 1e9, |
| "secs", "thread-system-time", "system CPU time/thread"); |
| print_res(tname, td->user_time_ns / 1e9, |
| "secs", "thread-user-time", "user CPU time/thread"); |
| } |
| } |
| } |
| |
| free(pids); |
| |
| deinit(); |
| |
| return 0; |
| } |
| |
| #define MAX_ARGS 50 |
| |
| static int command_size(const char **argv) |
| { |
| int size = 0; |
| |
| while (*argv) { |
| size++; |
| argv++; |
| } |
| |
| BUG_ON(size >= MAX_ARGS); |
| |
| return size; |
| } |
| |
| static void init_params(struct params *p, const char *name, int argc, const char **argv) |
| { |
| int i; |
| |
| printf("\n # Running %s \"perf bench numa", name); |
| |
| for (i = 0; i < argc; i++) |
| printf(" %s", argv[i]); |
| |
| printf("\"\n"); |
| |
| memset(p, 0, sizeof(*p)); |
| |
| /* Initialize nonzero defaults: */ |
| |
| p->serialize_startup = 1; |
| p->data_reads = true; |
| p->data_writes = true; |
| p->data_backwards = true; |
| p->data_rand_walk = true; |
| p->nr_loops = -1; |
| p->init_random = true; |
| p->mb_global_str = "1"; |
| p->nr_proc = 1; |
| p->nr_threads = 1; |
| p->nr_secs = 5; |
| p->run_all = argc == 1; |
| } |
| |
| static int run_bench_numa(const char *name, const char **argv) |
| { |
| int argc = command_size(argv); |
| |
| init_params(&p0, name, argc, argv); |
| argc = parse_options(argc, argv, options, bench_numa_usage, 0); |
| if (argc) |
| goto err; |
| |
| if (__bench_numa(name)) |
| goto err; |
| |
| return 0; |
| |
| err: |
| return -1; |
| } |
| |
| #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" |
| #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" |
| |
| #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" |
| #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" |
| |
| #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" |
| #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" |
| |
| /* |
| * The built-in test-suite executed by "perf bench numa -a". |
| * |
| * (A minimum of 4 nodes and 16 GB of RAM is recommended.) |
| */ |
| static const char *tests[][MAX_ARGS] = { |
| /* Basic single-stream NUMA bandwidth measurements: */ |
| { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", |
| "-C" , "0", "-M", "0", OPT_BW_RAM }, |
| { "RAM-bw-local-NOTHP,", |
| "mem", "-p", "1", "-t", "1", "-P", "1024", |
| "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, |
| { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", |
| "-C" , "0", "-M", "1", OPT_BW_RAM }, |
| |
| /* 2-stream NUMA bandwidth measurements: */ |
| { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, |
| { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, |
| |
| /* Cross-stream NUMA bandwidth measurement: */ |
| { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", |
| "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, |
| |
| /* Convergence latency measurements: */ |
| { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, |
| { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, |
| { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, |
| { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, |
| { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, |
| { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, |
| { " 4x4-convergence-NOTHP,", |
| "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, |
| { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, |
| { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, |
| { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, |
| { " 8x4-convergence-NOTHP,", |
| "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, |
| { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, |
| { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, |
| { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, |
| { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, |
| { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, |
| |
| /* Various NUMA process/thread layout bandwidth measurements: */ |
| { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, |
| { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, |
| { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, |
| { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, |
| { " 8x1-bw-process-NOTHP,", |
| "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, |
| { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, |
| |
| { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, |
| { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, |
| { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, |
| { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, |
| |
| { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, |
| { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, |
| { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, |
| { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, |
| { " 4x8-bw-thread-NOTHP,", |
| "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, |
| { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, |
| { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, |
| |
| { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, |
| { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, |
| |
| { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, |
| { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, |
| { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, |
| { "numa01-bw-thread-NOTHP,", |
| "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, |
| }; |
| |
| static int bench_all(void) |
| { |
| int nr = ARRAY_SIZE(tests); |
| int ret; |
| int i; |
| |
| ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); |
| BUG_ON(ret < 0); |
| |
| for (i = 0; i < nr; i++) { |
| run_bench_numa(tests[i][0], tests[i] + 1); |
| } |
| |
| printf("\n"); |
| |
| return 0; |
| } |
| |
| int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) |
| { |
| init_params(&p0, "main,", argc, argv); |
| argc = parse_options(argc, argv, options, bench_numa_usage, 0); |
| if (argc) |
| goto err; |
| |
| if (p0.run_all) |
| return bench_all(); |
| |
| if (__bench_numa(NULL)) |
| goto err; |
| |
| return 0; |
| |
| err: |
| usage_with_options(numa_usage, options); |
| return -1; |
| } |