| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| */ |
| |
| /** |
| * DOC: Enclave lifetime management driver for Nitro Enclaves (NE). |
| * Nitro is a hypervisor that has been developed by Amazon. |
| */ |
| |
| #include <linux/anon_inodes.h> |
| #include <linux/capability.h> |
| #include <linux/cpu.h> |
| #include <linux/device.h> |
| #include <linux/file.h> |
| #include <linux/hugetlb.h> |
| #include <linux/limits.h> |
| #include <linux/list.h> |
| #include <linux/miscdevice.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/nitro_enclaves.h> |
| #include <linux/pci.h> |
| #include <linux/poll.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| #include <uapi/linux/vm_sockets.h> |
| |
| #include "ne_misc_dev.h" |
| #include "ne_pci_dev.h" |
| |
| /** |
| * NE_CPUS_SIZE - Size for max 128 CPUs, for now, in a cpu-list string, comma |
| * separated. The NE CPU pool includes CPUs from a single NUMA |
| * node. |
| */ |
| #define NE_CPUS_SIZE (512) |
| |
| /** |
| * NE_EIF_LOAD_OFFSET - The offset where to copy the Enclave Image Format (EIF) |
| * image in enclave memory. |
| */ |
| #define NE_EIF_LOAD_OFFSET (8 * 1024UL * 1024UL) |
| |
| /** |
| * NE_MIN_ENCLAVE_MEM_SIZE - The minimum memory size an enclave can be launched |
| * with. |
| */ |
| #define NE_MIN_ENCLAVE_MEM_SIZE (64 * 1024UL * 1024UL) |
| |
| /** |
| * NE_MIN_MEM_REGION_SIZE - The minimum size of an enclave memory region. |
| */ |
| #define NE_MIN_MEM_REGION_SIZE (2 * 1024UL * 1024UL) |
| |
| /** |
| * NE_PARENT_VM_CID - The CID for the vsock device of the primary / parent VM. |
| */ |
| #define NE_PARENT_VM_CID (3) |
| |
| static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg); |
| |
| static const struct file_operations ne_fops = { |
| .owner = THIS_MODULE, |
| .llseek = noop_llseek, |
| .unlocked_ioctl = ne_ioctl, |
| }; |
| |
| static struct miscdevice ne_misc_dev = { |
| .minor = MISC_DYNAMIC_MINOR, |
| .name = "nitro_enclaves", |
| .fops = &ne_fops, |
| .mode = 0660, |
| }; |
| |
| struct ne_devs ne_devs = { |
| .ne_misc_dev = &ne_misc_dev, |
| }; |
| |
| /* |
| * TODO: Update logic to create new sysfs entries instead of using |
| * a kernel parameter e.g. if multiple sysfs files needed. |
| */ |
| static int ne_set_kernel_param(const char *val, const struct kernel_param *kp); |
| |
| static const struct kernel_param_ops ne_cpu_pool_ops = { |
| .get = param_get_string, |
| .set = ne_set_kernel_param, |
| }; |
| |
| static char ne_cpus[NE_CPUS_SIZE]; |
| static struct kparam_string ne_cpus_arg = { |
| .maxlen = sizeof(ne_cpus), |
| .string = ne_cpus, |
| }; |
| |
| module_param_cb(ne_cpus, &ne_cpu_pool_ops, &ne_cpus_arg, 0644); |
| /* https://www.kernel.org/doc/html/latest/admin-guide/kernel-parameters.html#cpu-lists */ |
| MODULE_PARM_DESC(ne_cpus, "<cpu-list> - CPU pool used for Nitro Enclaves"); |
| |
| /** |
| * struct ne_cpu_pool - CPU pool used for Nitro Enclaves. |
| * @avail_threads_per_core: Available full CPU cores to be dedicated to |
| * enclave(s). The cpumasks from the array, indexed |
| * by core id, contain all the threads from the |
| * available cores, that are not set for created |
| * enclave(s). The full CPU cores are part of the |
| * NE CPU pool. |
| * @mutex: Mutex for the access to the NE CPU pool. |
| * @nr_parent_vm_cores : The size of the available threads per core array. |
| * The total number of CPU cores available on the |
| * primary / parent VM. |
| * @nr_threads_per_core: The number of threads that a full CPU core has. |
| * @numa_node: NUMA node of the CPUs in the pool. |
| */ |
| struct ne_cpu_pool { |
| cpumask_var_t *avail_threads_per_core; |
| struct mutex mutex; |
| unsigned int nr_parent_vm_cores; |
| unsigned int nr_threads_per_core; |
| int numa_node; |
| }; |
| |
| static struct ne_cpu_pool ne_cpu_pool; |
| |
| /** |
| * ne_check_enclaves_created() - Verify if at least one enclave has been created. |
| * @void: No parameters provided. |
| * |
| * Context: Process context. |
| * Return: |
| * * True if at least one enclave is created. |
| * * False otherwise. |
| */ |
| static bool ne_check_enclaves_created(void) |
| { |
| struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; |
| bool ret = false; |
| |
| if (!ne_pci_dev) |
| return ret; |
| |
| mutex_lock(&ne_pci_dev->enclaves_list_mutex); |
| |
| if (!list_empty(&ne_pci_dev->enclaves_list)) |
| ret = true; |
| |
| mutex_unlock(&ne_pci_dev->enclaves_list_mutex); |
| |
| return ret; |
| } |
| |
| /** |
| * ne_setup_cpu_pool() - Set the NE CPU pool after handling sanity checks such |
| * as not sharing CPU cores with the primary / parent VM |
| * or not using CPU 0, which should remain available for |
| * the primary / parent VM. Offline the CPUs from the |
| * pool after the checks passed. |
| * @ne_cpu_list: The CPU list used for setting NE CPU pool. |
| * |
| * Context: Process context. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_setup_cpu_pool(const char *ne_cpu_list) |
| { |
| int core_id = -1; |
| unsigned int cpu = 0; |
| cpumask_var_t cpu_pool; |
| unsigned int cpu_sibling = 0; |
| unsigned int i = 0; |
| int numa_node = -1; |
| int rc = -EINVAL; |
| |
| if (!zalloc_cpumask_var(&cpu_pool, GFP_KERNEL)) |
| return -ENOMEM; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| rc = cpulist_parse(ne_cpu_list, cpu_pool); |
| if (rc < 0) { |
| pr_err("%s: Error in cpulist parse [rc=%d]\n", ne_misc_dev.name, rc); |
| |
| goto free_pool_cpumask; |
| } |
| |
| cpu = cpumask_any(cpu_pool); |
| if (cpu >= nr_cpu_ids) { |
| pr_err("%s: No CPUs available in CPU pool\n", ne_misc_dev.name); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| |
| /* |
| * Check if the CPUs are online, to further get info about them |
| * e.g. numa node, core id, siblings. |
| */ |
| for_each_cpu(cpu, cpu_pool) |
| if (cpu_is_offline(cpu)) { |
| pr_err("%s: CPU %d is offline, has to be online to get its metadata\n", |
| ne_misc_dev.name, cpu); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| |
| /* |
| * Check if the CPUs from the NE CPU pool are from the same NUMA node. |
| */ |
| for_each_cpu(cpu, cpu_pool) |
| if (numa_node < 0) { |
| numa_node = cpu_to_node(cpu); |
| if (numa_node < 0) { |
| pr_err("%s: Invalid NUMA node %d\n", |
| ne_misc_dev.name, numa_node); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| } else { |
| if (numa_node != cpu_to_node(cpu)) { |
| pr_err("%s: CPUs with different NUMA nodes\n", |
| ne_misc_dev.name); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| } |
| |
| /* |
| * Check if CPU 0 and its siblings are included in the provided CPU pool |
| * They should remain available for the primary / parent VM. |
| */ |
| if (cpumask_test_cpu(0, cpu_pool)) { |
| pr_err("%s: CPU 0 has to remain available\n", ne_misc_dev.name); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| |
| for_each_cpu(cpu_sibling, topology_sibling_cpumask(0)) { |
| if (cpumask_test_cpu(cpu_sibling, cpu_pool)) { |
| pr_err("%s: CPU sibling %d for CPU 0 is in CPU pool\n", |
| ne_misc_dev.name, cpu_sibling); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| } |
| |
| /* |
| * Check if CPU siblings are included in the provided CPU pool. The |
| * expectation is that full CPU cores are made available in the CPU pool |
| * for enclaves. |
| */ |
| for_each_cpu(cpu, cpu_pool) { |
| for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) { |
| if (!cpumask_test_cpu(cpu_sibling, cpu_pool)) { |
| pr_err("%s: CPU %d is not in CPU pool\n", |
| ne_misc_dev.name, cpu_sibling); |
| |
| rc = -EINVAL; |
| |
| goto free_pool_cpumask; |
| } |
| } |
| } |
| |
| /* Calculate the number of threads from a full CPU core. */ |
| cpu = cpumask_any(cpu_pool); |
| for_each_cpu(cpu_sibling, topology_sibling_cpumask(cpu)) |
| ne_cpu_pool.nr_threads_per_core++; |
| |
| ne_cpu_pool.nr_parent_vm_cores = nr_cpu_ids / ne_cpu_pool.nr_threads_per_core; |
| |
| ne_cpu_pool.avail_threads_per_core = kcalloc(ne_cpu_pool.nr_parent_vm_cores, |
| sizeof(*ne_cpu_pool.avail_threads_per_core), |
| GFP_KERNEL); |
| if (!ne_cpu_pool.avail_threads_per_core) { |
| rc = -ENOMEM; |
| |
| goto free_pool_cpumask; |
| } |
| |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| if (!zalloc_cpumask_var(&ne_cpu_pool.avail_threads_per_core[i], GFP_KERNEL)) { |
| rc = -ENOMEM; |
| |
| goto free_cores_cpumask; |
| } |
| |
| /* |
| * Split the NE CPU pool in threads per core to keep the CPU topology |
| * after offlining the CPUs. |
| */ |
| for_each_cpu(cpu, cpu_pool) { |
| core_id = topology_core_id(cpu); |
| if (core_id < 0 || core_id >= ne_cpu_pool.nr_parent_vm_cores) { |
| pr_err("%s: Invalid core id %d for CPU %d\n", |
| ne_misc_dev.name, core_id, cpu); |
| |
| rc = -EINVAL; |
| |
| goto clear_cpumask; |
| } |
| |
| cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]); |
| } |
| |
| /* |
| * CPUs that are given to enclave(s) should not be considered online |
| * by Linux anymore, as the hypervisor will degrade them to floating. |
| * The physical CPUs (full cores) are carved out of the primary / parent |
| * VM and given to the enclave VM. The same number of vCPUs would run |
| * on less pCPUs for the primary / parent VM. |
| * |
| * We offline them here, to not degrade performance and expose correct |
| * topology to Linux and user space. |
| */ |
| for_each_cpu(cpu, cpu_pool) { |
| rc = remove_cpu(cpu); |
| if (rc != 0) { |
| pr_err("%s: CPU %d is not offlined [rc=%d]\n", |
| ne_misc_dev.name, cpu, rc); |
| |
| goto online_cpus; |
| } |
| } |
| |
| free_cpumask_var(cpu_pool); |
| |
| ne_cpu_pool.numa_node = numa_node; |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return 0; |
| |
| online_cpus: |
| for_each_cpu(cpu, cpu_pool) |
| add_cpu(cpu); |
| clear_cpumask: |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); |
| free_cores_cpumask: |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); |
| kfree(ne_cpu_pool.avail_threads_per_core); |
| free_pool_cpumask: |
| free_cpumask_var(cpu_pool); |
| ne_cpu_pool.nr_parent_vm_cores = 0; |
| ne_cpu_pool.nr_threads_per_core = 0; |
| ne_cpu_pool.numa_node = -1; |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_teardown_cpu_pool() - Online the CPUs from the NE CPU pool and cleanup the |
| * CPU pool. |
| * @void: No parameters provided. |
| * |
| * Context: Process context. |
| */ |
| static void ne_teardown_cpu_pool(void) |
| { |
| unsigned int cpu = 0; |
| unsigned int i = 0; |
| int rc = -EINVAL; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| if (!ne_cpu_pool.nr_parent_vm_cores) { |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return; |
| } |
| |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) { |
| for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]) { |
| rc = add_cpu(cpu); |
| if (rc != 0) |
| pr_err("%s: CPU %d is not onlined [rc=%d]\n", |
| ne_misc_dev.name, cpu, rc); |
| } |
| |
| cpumask_clear(ne_cpu_pool.avail_threads_per_core[i]); |
| |
| free_cpumask_var(ne_cpu_pool.avail_threads_per_core[i]); |
| } |
| |
| kfree(ne_cpu_pool.avail_threads_per_core); |
| ne_cpu_pool.nr_parent_vm_cores = 0; |
| ne_cpu_pool.nr_threads_per_core = 0; |
| ne_cpu_pool.numa_node = -1; |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| } |
| |
| /** |
| * ne_set_kernel_param() - Set the NE CPU pool value via the NE kernel parameter. |
| * @val: NE CPU pool string value. |
| * @kp : NE kernel parameter associated with the NE CPU pool. |
| * |
| * Context: Process context. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_set_kernel_param(const char *val, const struct kernel_param *kp) |
| { |
| char error_val[] = ""; |
| int rc = -EINVAL; |
| |
| if (!capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| if (ne_check_enclaves_created()) { |
| pr_err("%s: The CPU pool is used by enclave(s)\n", ne_misc_dev.name); |
| |
| return -EPERM; |
| } |
| |
| ne_teardown_cpu_pool(); |
| |
| rc = ne_setup_cpu_pool(val); |
| if (rc < 0) { |
| pr_err("%s: Error in setup CPU pool [rc=%d]\n", ne_misc_dev.name, rc); |
| |
| param_set_copystring(error_val, kp); |
| |
| return rc; |
| } |
| |
| rc = param_set_copystring(val, kp); |
| if (rc < 0) { |
| pr_err("%s: Error in param set copystring [rc=%d]\n", ne_misc_dev.name, rc); |
| |
| ne_teardown_cpu_pool(); |
| |
| param_set_copystring(error_val, kp); |
| |
| return rc; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ne_donated_cpu() - Check if the provided CPU is already used by the enclave. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @cpu: CPU to check if already used. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * True if the provided CPU is already used by the enclave. |
| * * False otherwise. |
| */ |
| static bool ne_donated_cpu(struct ne_enclave *ne_enclave, unsigned int cpu) |
| { |
| if (cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * ne_get_unused_core_from_cpu_pool() - Get the id of a full core from the |
| * NE CPU pool. |
| * @void: No parameters provided. |
| * |
| * Context: Process context. This function is called with the ne_enclave and |
| * ne_cpu_pool mutexes held. |
| * Return: |
| * * Core id. |
| * * -1 if no CPU core available in the pool. |
| */ |
| static int ne_get_unused_core_from_cpu_pool(void) |
| { |
| int core_id = -1; |
| unsigned int i = 0; |
| |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) { |
| core_id = i; |
| |
| break; |
| } |
| |
| return core_id; |
| } |
| |
| /** |
| * ne_set_enclave_threads_per_core() - Set the threads of the provided core in |
| * the enclave data structure. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @core_id: Core id to get its threads from the NE CPU pool. |
| * @vcpu_id: vCPU id part of the provided core. |
| * |
| * Context: Process context. This function is called with the ne_enclave and |
| * ne_cpu_pool mutexes held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_set_enclave_threads_per_core(struct ne_enclave *ne_enclave, |
| int core_id, u32 vcpu_id) |
| { |
| unsigned int cpu = 0; |
| |
| if (core_id < 0 && vcpu_id == 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "No CPUs available in NE CPU pool\n"); |
| |
| return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; |
| } |
| |
| if (core_id < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "CPU %d is not in NE CPU pool\n", vcpu_id); |
| |
| return -NE_ERR_VCPU_NOT_IN_CPU_POOL; |
| } |
| |
| if (core_id >= ne_enclave->nr_parent_vm_cores) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Invalid core id %d - ne_enclave\n", core_id); |
| |
| return -NE_ERR_VCPU_INVALID_CPU_CORE; |
| } |
| |
| for_each_cpu(cpu, ne_cpu_pool.avail_threads_per_core[core_id]) |
| cpumask_set_cpu(cpu, ne_enclave->threads_per_core[core_id]); |
| |
| cpumask_clear(ne_cpu_pool.avail_threads_per_core[core_id]); |
| |
| return 0; |
| } |
| |
| /** |
| * ne_get_cpu_from_cpu_pool() - Get a CPU from the NE CPU pool, either from the |
| * remaining sibling(s) of a CPU core or the first |
| * sibling of a new CPU core. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @vcpu_id: vCPU to get from the NE CPU pool. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_get_cpu_from_cpu_pool(struct ne_enclave *ne_enclave, u32 *vcpu_id) |
| { |
| int core_id = -1; |
| unsigned int cpu = 0; |
| unsigned int i = 0; |
| int rc = -EINVAL; |
| |
| /* |
| * If previously allocated a thread of a core to this enclave, first |
| * check remaining sibling(s) for new CPU allocations, so that full |
| * CPU cores are used for the enclave. |
| */ |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) |
| for_each_cpu(cpu, ne_enclave->threads_per_core[i]) |
| if (!ne_donated_cpu(ne_enclave, cpu)) { |
| *vcpu_id = cpu; |
| |
| return 0; |
| } |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| /* |
| * If no remaining siblings, get a core from the NE CPU pool and keep |
| * track of all the threads in the enclave threads per core data structure. |
| */ |
| core_id = ne_get_unused_core_from_cpu_pool(); |
| |
| rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, *vcpu_id); |
| if (rc < 0) |
| goto unlock_mutex; |
| |
| *vcpu_id = cpumask_any(ne_enclave->threads_per_core[core_id]); |
| |
| rc = 0; |
| |
| unlock_mutex: |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_get_vcpu_core_from_cpu_pool() - Get from the NE CPU pool the id of the |
| * core associated with the provided vCPU. |
| * @vcpu_id: Provided vCPU id to get its associated core id. |
| * |
| * Context: Process context. This function is called with the ne_enclave and |
| * ne_cpu_pool mutexes held. |
| * Return: |
| * * Core id. |
| * * -1 if the provided vCPU is not in the pool. |
| */ |
| static int ne_get_vcpu_core_from_cpu_pool(u32 vcpu_id) |
| { |
| int core_id = -1; |
| unsigned int i = 0; |
| |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| if (cpumask_test_cpu(vcpu_id, ne_cpu_pool.avail_threads_per_core[i])) { |
| core_id = i; |
| |
| break; |
| } |
| |
| return core_id; |
| } |
| |
| /** |
| * ne_check_cpu_in_cpu_pool() - Check if the given vCPU is in the available CPUs |
| * from the pool. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @vcpu_id: ID of the vCPU to check if available in the NE CPU pool. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_check_cpu_in_cpu_pool(struct ne_enclave *ne_enclave, u32 vcpu_id) |
| { |
| int core_id = -1; |
| unsigned int i = 0; |
| int rc = -EINVAL; |
| |
| if (ne_donated_cpu(ne_enclave, vcpu_id)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "CPU %d already used\n", vcpu_id); |
| |
| return -NE_ERR_VCPU_ALREADY_USED; |
| } |
| |
| /* |
| * If previously allocated a thread of a core to this enclave, but not |
| * the full core, first check remaining sibling(s). |
| */ |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) |
| if (cpumask_test_cpu(vcpu_id, ne_enclave->threads_per_core[i])) |
| return 0; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| /* |
| * If no remaining siblings, get from the NE CPU pool the core |
| * associated with the vCPU and keep track of all the threads in the |
| * enclave threads per core data structure. |
| */ |
| core_id = ne_get_vcpu_core_from_cpu_pool(vcpu_id); |
| |
| rc = ne_set_enclave_threads_per_core(ne_enclave, core_id, vcpu_id); |
| if (rc < 0) |
| goto unlock_mutex; |
| |
| rc = 0; |
| |
| unlock_mutex: |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_add_vcpu_ioctl() - Add a vCPU to the slot associated with the current |
| * enclave. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @vcpu_id: ID of the CPU to be associated with the given slot, |
| * apic id on x86. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_add_vcpu_ioctl(struct ne_enclave *ne_enclave, u32 vcpu_id) |
| { |
| struct ne_pci_dev_cmd_reply cmd_reply = {}; |
| struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; |
| int rc = -EINVAL; |
| struct slot_add_vcpu_req slot_add_vcpu_req = {}; |
| |
| if (ne_enclave->mm != current->mm) |
| return -EIO; |
| |
| slot_add_vcpu_req.slot_uid = ne_enclave->slot_uid; |
| slot_add_vcpu_req.vcpu_id = vcpu_id; |
| |
| rc = ne_do_request(pdev, SLOT_ADD_VCPU, |
| &slot_add_vcpu_req, sizeof(slot_add_vcpu_req), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in slot add vCPU [rc=%d]\n", rc); |
| |
| return rc; |
| } |
| |
| cpumask_set_cpu(vcpu_id, ne_enclave->vcpu_ids); |
| |
| ne_enclave->nr_vcpus++; |
| |
| return 0; |
| } |
| |
| /** |
| * ne_sanity_check_user_mem_region() - Sanity check the user space memory |
| * region received during the set user |
| * memory region ioctl call. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @mem_region : User space memory region to be sanity checked. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_sanity_check_user_mem_region(struct ne_enclave *ne_enclave, |
| struct ne_user_memory_region mem_region) |
| { |
| struct ne_mem_region *ne_mem_region = NULL; |
| |
| if (ne_enclave->mm != current->mm) |
| return -EIO; |
| |
| if (mem_region.memory_size & (NE_MIN_MEM_REGION_SIZE - 1)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "User space memory size is not multiple of 2 MiB\n"); |
| |
| return -NE_ERR_INVALID_MEM_REGION_SIZE; |
| } |
| |
| if (!IS_ALIGNED(mem_region.userspace_addr, NE_MIN_MEM_REGION_SIZE)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "User space address is not 2 MiB aligned\n"); |
| |
| return -NE_ERR_UNALIGNED_MEM_REGION_ADDR; |
| } |
| |
| if ((mem_region.userspace_addr & (NE_MIN_MEM_REGION_SIZE - 1)) || |
| !access_ok((void __user *)(unsigned long)mem_region.userspace_addr, |
| mem_region.memory_size)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Invalid user space address range\n"); |
| |
| return -NE_ERR_INVALID_MEM_REGION_ADDR; |
| } |
| |
| list_for_each_entry(ne_mem_region, &ne_enclave->mem_regions_list, |
| mem_region_list_entry) { |
| u64 memory_size = ne_mem_region->memory_size; |
| u64 userspace_addr = ne_mem_region->userspace_addr; |
| |
| if ((userspace_addr <= mem_region.userspace_addr && |
| mem_region.userspace_addr < (userspace_addr + memory_size)) || |
| (mem_region.userspace_addr <= userspace_addr && |
| (mem_region.userspace_addr + mem_region.memory_size) > userspace_addr)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "User space memory region already used\n"); |
| |
| return -NE_ERR_MEM_REGION_ALREADY_USED; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ne_sanity_check_user_mem_region_page() - Sanity check a page from the user space |
| * memory region received during the set |
| * user memory region ioctl call. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @mem_region_page: Page from the user space memory region to be sanity checked. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_sanity_check_user_mem_region_page(struct ne_enclave *ne_enclave, |
| struct page *mem_region_page) |
| { |
| if (!PageHuge(mem_region_page)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Not a hugetlbfs page\n"); |
| |
| return -NE_ERR_MEM_NOT_HUGE_PAGE; |
| } |
| |
| if (page_size(mem_region_page) & (NE_MIN_MEM_REGION_SIZE - 1)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Page size not multiple of 2 MiB\n"); |
| |
| return -NE_ERR_INVALID_PAGE_SIZE; |
| } |
| |
| if (ne_enclave->numa_node != page_to_nid(mem_region_page)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Page is not from NUMA node %d\n", |
| ne_enclave->numa_node); |
| |
| return -NE_ERR_MEM_DIFFERENT_NUMA_NODE; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ne_set_user_memory_region_ioctl() - Add user space memory region to the slot |
| * associated with the current enclave. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @mem_region : User space memory region to be associated with the given slot. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_set_user_memory_region_ioctl(struct ne_enclave *ne_enclave, |
| struct ne_user_memory_region mem_region) |
| { |
| long gup_rc = 0; |
| unsigned long i = 0; |
| unsigned long max_nr_pages = 0; |
| unsigned long memory_size = 0; |
| struct ne_mem_region *ne_mem_region = NULL; |
| unsigned long nr_phys_contig_mem_regions = 0; |
| struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; |
| struct page **phys_contig_mem_regions = NULL; |
| int rc = -EINVAL; |
| |
| rc = ne_sanity_check_user_mem_region(ne_enclave, mem_region); |
| if (rc < 0) |
| return rc; |
| |
| ne_mem_region = kzalloc(sizeof(*ne_mem_region), GFP_KERNEL); |
| if (!ne_mem_region) |
| return -ENOMEM; |
| |
| max_nr_pages = mem_region.memory_size / NE_MIN_MEM_REGION_SIZE; |
| |
| ne_mem_region->pages = kcalloc(max_nr_pages, sizeof(*ne_mem_region->pages), |
| GFP_KERNEL); |
| if (!ne_mem_region->pages) { |
| rc = -ENOMEM; |
| |
| goto free_mem_region; |
| } |
| |
| phys_contig_mem_regions = kcalloc(max_nr_pages, sizeof(*phys_contig_mem_regions), |
| GFP_KERNEL); |
| if (!phys_contig_mem_regions) { |
| rc = -ENOMEM; |
| |
| goto free_mem_region; |
| } |
| |
| do { |
| i = ne_mem_region->nr_pages; |
| |
| if (i == max_nr_pages) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Reached max nr of pages in the pages data struct\n"); |
| |
| rc = -ENOMEM; |
| |
| goto put_pages; |
| } |
| |
| gup_rc = get_user_pages(mem_region.userspace_addr + memory_size, 1, FOLL_GET, |
| ne_mem_region->pages + i, NULL); |
| if (gup_rc < 0) { |
| rc = gup_rc; |
| |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in get user pages [rc=%d]\n", rc); |
| |
| goto put_pages; |
| } |
| |
| rc = ne_sanity_check_user_mem_region_page(ne_enclave, ne_mem_region->pages[i]); |
| if (rc < 0) |
| goto put_pages; |
| |
| /* |
| * TODO: Update once handled non-contiguous memory regions |
| * received from user space or contiguous physical memory regions |
| * larger than 2 MiB e.g. 8 MiB. |
| */ |
| phys_contig_mem_regions[i] = ne_mem_region->pages[i]; |
| |
| memory_size += page_size(ne_mem_region->pages[i]); |
| |
| ne_mem_region->nr_pages++; |
| } while (memory_size < mem_region.memory_size); |
| |
| /* |
| * TODO: Update once handled non-contiguous memory regions received |
| * from user space or contiguous physical memory regions larger than |
| * 2 MiB e.g. 8 MiB. |
| */ |
| nr_phys_contig_mem_regions = ne_mem_region->nr_pages; |
| |
| if ((ne_enclave->nr_mem_regions + nr_phys_contig_mem_regions) > |
| ne_enclave->max_mem_regions) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Reached max memory regions %lld\n", |
| ne_enclave->max_mem_regions); |
| |
| rc = -NE_ERR_MEM_MAX_REGIONS; |
| |
| goto put_pages; |
| } |
| |
| for (i = 0; i < nr_phys_contig_mem_regions; i++) { |
| u64 phys_region_addr = page_to_phys(phys_contig_mem_regions[i]); |
| u64 phys_region_size = page_size(phys_contig_mem_regions[i]); |
| |
| if (phys_region_size & (NE_MIN_MEM_REGION_SIZE - 1)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Physical mem region size is not multiple of 2 MiB\n"); |
| |
| rc = -EINVAL; |
| |
| goto put_pages; |
| } |
| |
| if (!IS_ALIGNED(phys_region_addr, NE_MIN_MEM_REGION_SIZE)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Physical mem region address is not 2 MiB aligned\n"); |
| |
| rc = -EINVAL; |
| |
| goto put_pages; |
| } |
| } |
| |
| ne_mem_region->memory_size = mem_region.memory_size; |
| ne_mem_region->userspace_addr = mem_region.userspace_addr; |
| |
| list_add(&ne_mem_region->mem_region_list_entry, &ne_enclave->mem_regions_list); |
| |
| for (i = 0; i < nr_phys_contig_mem_regions; i++) { |
| struct ne_pci_dev_cmd_reply cmd_reply = {}; |
| struct slot_add_mem_req slot_add_mem_req = {}; |
| |
| slot_add_mem_req.slot_uid = ne_enclave->slot_uid; |
| slot_add_mem_req.paddr = page_to_phys(phys_contig_mem_regions[i]); |
| slot_add_mem_req.size = page_size(phys_contig_mem_regions[i]); |
| |
| rc = ne_do_request(pdev, SLOT_ADD_MEM, |
| &slot_add_mem_req, sizeof(slot_add_mem_req), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in slot add mem [rc=%d]\n", rc); |
| |
| kfree(phys_contig_mem_regions); |
| |
| /* |
| * Exit here without put pages as memory regions may |
| * already been added. |
| */ |
| return rc; |
| } |
| |
| ne_enclave->mem_size += slot_add_mem_req.size; |
| ne_enclave->nr_mem_regions++; |
| } |
| |
| kfree(phys_contig_mem_regions); |
| |
| return 0; |
| |
| put_pages: |
| for (i = 0; i < ne_mem_region->nr_pages; i++) |
| put_page(ne_mem_region->pages[i]); |
| free_mem_region: |
| kfree(phys_contig_mem_regions); |
| kfree(ne_mem_region->pages); |
| kfree(ne_mem_region); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_start_enclave_ioctl() - Trigger enclave start after the enclave resources, |
| * such as memory and CPU, have been set. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @enclave_start_info : Enclave info that includes enclave cid and flags. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_start_enclave_ioctl(struct ne_enclave *ne_enclave, |
| struct ne_enclave_start_info *enclave_start_info) |
| { |
| struct ne_pci_dev_cmd_reply cmd_reply = {}; |
| unsigned int cpu = 0; |
| struct enclave_start_req enclave_start_req = {}; |
| unsigned int i = 0; |
| struct pci_dev *pdev = ne_devs.ne_pci_dev->pdev; |
| int rc = -EINVAL; |
| |
| if (!ne_enclave->nr_mem_regions) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave has no mem regions\n"); |
| |
| return -NE_ERR_NO_MEM_REGIONS_ADDED; |
| } |
| |
| if (ne_enclave->mem_size < NE_MIN_ENCLAVE_MEM_SIZE) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave memory is less than %ld\n", |
| NE_MIN_ENCLAVE_MEM_SIZE); |
| |
| return -NE_ERR_ENCLAVE_MEM_MIN_SIZE; |
| } |
| |
| if (!ne_enclave->nr_vcpus) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave has no vCPUs\n"); |
| |
| return -NE_ERR_NO_VCPUS_ADDED; |
| } |
| |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) |
| for_each_cpu(cpu, ne_enclave->threads_per_core[i]) |
| if (!cpumask_test_cpu(cpu, ne_enclave->vcpu_ids)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Full CPU cores not used\n"); |
| |
| return -NE_ERR_FULL_CORES_NOT_USED; |
| } |
| |
| enclave_start_req.enclave_cid = enclave_start_info->enclave_cid; |
| enclave_start_req.flags = enclave_start_info->flags; |
| enclave_start_req.slot_uid = ne_enclave->slot_uid; |
| |
| rc = ne_do_request(pdev, ENCLAVE_START, |
| &enclave_start_req, sizeof(enclave_start_req), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in enclave start [rc=%d]\n", rc); |
| |
| return rc; |
| } |
| |
| ne_enclave->state = NE_STATE_RUNNING; |
| |
| enclave_start_info->enclave_cid = cmd_reply.enclave_cid; |
| |
| return 0; |
| } |
| |
| /** |
| * ne_enclave_ioctl() - Ioctl function provided by the enclave file. |
| * @file: File associated with this ioctl function. |
| * @cmd: The command that is set for the ioctl call. |
| * @arg: The argument that is provided for the ioctl call. |
| * |
| * Context: Process context. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static long ne_enclave_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| struct ne_enclave *ne_enclave = file->private_data; |
| |
| switch (cmd) { |
| case NE_ADD_VCPU: { |
| int rc = -EINVAL; |
| u32 vcpu_id = 0; |
| |
| if (copy_from_user(&vcpu_id, (void __user *)arg, sizeof(vcpu_id))) |
| return -EFAULT; |
| |
| mutex_lock(&ne_enclave->enclave_info_mutex); |
| |
| if (ne_enclave->state != NE_STATE_INIT) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave is not in init state\n"); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return -NE_ERR_NOT_IN_INIT_STATE; |
| } |
| |
| if (vcpu_id >= (ne_enclave->nr_parent_vm_cores * |
| ne_enclave->nr_threads_per_core)) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "vCPU id higher than max CPU id\n"); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return -NE_ERR_INVALID_VCPU; |
| } |
| |
| if (!vcpu_id) { |
| /* Use the CPU pool for choosing a CPU for the enclave. */ |
| rc = ne_get_cpu_from_cpu_pool(ne_enclave, &vcpu_id); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in get CPU from pool [rc=%d]\n", |
| rc); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return rc; |
| } |
| } else { |
| /* Check if the provided vCPU is available in the NE CPU pool. */ |
| rc = ne_check_cpu_in_cpu_pool(ne_enclave, vcpu_id); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in check CPU %d in pool [rc=%d]\n", |
| vcpu_id, rc); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return rc; |
| } |
| } |
| |
| rc = ne_add_vcpu_ioctl(ne_enclave, vcpu_id); |
| if (rc < 0) { |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return rc; |
| } |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| if (copy_to_user((void __user *)arg, &vcpu_id, sizeof(vcpu_id))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| case NE_GET_IMAGE_LOAD_INFO: { |
| struct ne_image_load_info image_load_info = {}; |
| |
| if (copy_from_user(&image_load_info, (void __user *)arg, sizeof(image_load_info))) |
| return -EFAULT; |
| |
| mutex_lock(&ne_enclave->enclave_info_mutex); |
| |
| if (ne_enclave->state != NE_STATE_INIT) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave is not in init state\n"); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return -NE_ERR_NOT_IN_INIT_STATE; |
| } |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| if (!image_load_info.flags || |
| image_load_info.flags >= NE_IMAGE_LOAD_MAX_FLAG_VAL) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Incorrect flag in enclave image load info\n"); |
| |
| return -NE_ERR_INVALID_FLAG_VALUE; |
| } |
| |
| if (image_load_info.flags == NE_EIF_IMAGE) |
| image_load_info.memory_offset = NE_EIF_LOAD_OFFSET; |
| |
| if (copy_to_user((void __user *)arg, &image_load_info, sizeof(image_load_info))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| case NE_SET_USER_MEMORY_REGION: { |
| struct ne_user_memory_region mem_region = {}; |
| int rc = -EINVAL; |
| |
| if (copy_from_user(&mem_region, (void __user *)arg, sizeof(mem_region))) |
| return -EFAULT; |
| |
| if (mem_region.flags >= NE_MEMORY_REGION_MAX_FLAG_VAL) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Incorrect flag for user memory region\n"); |
| |
| return -NE_ERR_INVALID_FLAG_VALUE; |
| } |
| |
| mutex_lock(&ne_enclave->enclave_info_mutex); |
| |
| if (ne_enclave->state != NE_STATE_INIT) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave is not in init state\n"); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return -NE_ERR_NOT_IN_INIT_STATE; |
| } |
| |
| rc = ne_set_user_memory_region_ioctl(ne_enclave, mem_region); |
| if (rc < 0) { |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return rc; |
| } |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return 0; |
| } |
| |
| case NE_START_ENCLAVE: { |
| struct ne_enclave_start_info enclave_start_info = {}; |
| int rc = -EINVAL; |
| |
| if (copy_from_user(&enclave_start_info, (void __user *)arg, |
| sizeof(enclave_start_info))) |
| return -EFAULT; |
| |
| if (enclave_start_info.flags >= NE_ENCLAVE_START_MAX_FLAG_VAL) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Incorrect flag in enclave start info\n"); |
| |
| return -NE_ERR_INVALID_FLAG_VALUE; |
| } |
| |
| /* |
| * Do not use well-known CIDs - 0, 1, 2 - for enclaves. |
| * VMADDR_CID_ANY = -1U |
| * VMADDR_CID_HYPERVISOR = 0 |
| * VMADDR_CID_LOCAL = 1 |
| * VMADDR_CID_HOST = 2 |
| * Note: 0 is used as a placeholder to auto-generate an enclave CID. |
| * http://man7.org/linux/man-pages/man7/vsock.7.html |
| */ |
| if (enclave_start_info.enclave_cid > 0 && |
| enclave_start_info.enclave_cid <= VMADDR_CID_HOST) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Well-known CID value, not to be used for enclaves\n"); |
| |
| return -NE_ERR_INVALID_ENCLAVE_CID; |
| } |
| |
| if (enclave_start_info.enclave_cid == U32_MAX) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Well-known CID value, not to be used for enclaves\n"); |
| |
| return -NE_ERR_INVALID_ENCLAVE_CID; |
| } |
| |
| /* |
| * Do not use the CID of the primary / parent VM for enclaves. |
| */ |
| if (enclave_start_info.enclave_cid == NE_PARENT_VM_CID) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "CID of the parent VM, not to be used for enclaves\n"); |
| |
| return -NE_ERR_INVALID_ENCLAVE_CID; |
| } |
| |
| /* 64-bit CIDs are not yet supported for the vsock device. */ |
| if (enclave_start_info.enclave_cid > U32_MAX) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "64-bit CIDs not yet supported for the vsock device\n"); |
| |
| return -NE_ERR_INVALID_ENCLAVE_CID; |
| } |
| |
| mutex_lock(&ne_enclave->enclave_info_mutex); |
| |
| if (ne_enclave->state != NE_STATE_INIT) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Enclave is not in init state\n"); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return -NE_ERR_NOT_IN_INIT_STATE; |
| } |
| |
| rc = ne_start_enclave_ioctl(ne_enclave, &enclave_start_info); |
| if (rc < 0) { |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| return rc; |
| } |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| |
| if (copy_to_user((void __user *)arg, &enclave_start_info, |
| sizeof(enclave_start_info))) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ne_enclave_remove_all_mem_region_entries() - Remove all memory region entries |
| * from the enclave data structure. |
| * @ne_enclave : Private data associated with the current enclave. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| */ |
| static void ne_enclave_remove_all_mem_region_entries(struct ne_enclave *ne_enclave) |
| { |
| unsigned long i = 0; |
| struct ne_mem_region *ne_mem_region = NULL; |
| struct ne_mem_region *ne_mem_region_tmp = NULL; |
| |
| list_for_each_entry_safe(ne_mem_region, ne_mem_region_tmp, |
| &ne_enclave->mem_regions_list, |
| mem_region_list_entry) { |
| list_del(&ne_mem_region->mem_region_list_entry); |
| |
| for (i = 0; i < ne_mem_region->nr_pages; i++) |
| put_page(ne_mem_region->pages[i]); |
| |
| kfree(ne_mem_region->pages); |
| |
| kfree(ne_mem_region); |
| } |
| } |
| |
| /** |
| * ne_enclave_remove_all_vcpu_id_entries() - Remove all vCPU id entries from |
| * the enclave data structure. |
| * @ne_enclave : Private data associated with the current enclave. |
| * |
| * Context: Process context. This function is called with the ne_enclave mutex held. |
| */ |
| static void ne_enclave_remove_all_vcpu_id_entries(struct ne_enclave *ne_enclave) |
| { |
| unsigned int cpu = 0; |
| unsigned int i = 0; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) { |
| for_each_cpu(cpu, ne_enclave->threads_per_core[i]) |
| /* Update the available NE CPU pool. */ |
| cpumask_set_cpu(cpu, ne_cpu_pool.avail_threads_per_core[i]); |
| |
| free_cpumask_var(ne_enclave->threads_per_core[i]); |
| } |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| kfree(ne_enclave->threads_per_core); |
| |
| free_cpumask_var(ne_enclave->vcpu_ids); |
| } |
| |
| /** |
| * ne_pci_dev_remove_enclave_entry() - Remove the enclave entry from the data |
| * structure that is part of the NE PCI |
| * device private data. |
| * @ne_enclave : Private data associated with the current enclave. |
| * @ne_pci_dev : Private data associated with the PCI device. |
| * |
| * Context: Process context. This function is called with the ne_pci_dev enclave |
| * mutex held. |
| */ |
| static void ne_pci_dev_remove_enclave_entry(struct ne_enclave *ne_enclave, |
| struct ne_pci_dev *ne_pci_dev) |
| { |
| struct ne_enclave *ne_enclave_entry = NULL; |
| struct ne_enclave *ne_enclave_entry_tmp = NULL; |
| |
| list_for_each_entry_safe(ne_enclave_entry, ne_enclave_entry_tmp, |
| &ne_pci_dev->enclaves_list, enclave_list_entry) { |
| if (ne_enclave_entry->slot_uid == ne_enclave->slot_uid) { |
| list_del(&ne_enclave_entry->enclave_list_entry); |
| |
| break; |
| } |
| } |
| } |
| |
| /** |
| * ne_enclave_release() - Release function provided by the enclave file. |
| * @inode: Inode associated with this file release function. |
| * @file: File associated with this release function. |
| * |
| * Context: Process context. |
| * Return: |
| * * 0 on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_enclave_release(struct inode *inode, struct file *file) |
| { |
| struct ne_pci_dev_cmd_reply cmd_reply = {}; |
| struct enclave_stop_req enclave_stop_request = {}; |
| struct ne_enclave *ne_enclave = file->private_data; |
| struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; |
| struct pci_dev *pdev = ne_pci_dev->pdev; |
| int rc = -EINVAL; |
| struct slot_free_req slot_free_req = {}; |
| |
| if (!ne_enclave) |
| return 0; |
| |
| /* |
| * Early exit in case there is an error in the enclave creation logic |
| * and fput() is called on the cleanup path. |
| */ |
| if (!ne_enclave->slot_uid) |
| return 0; |
| |
| /* |
| * Acquire the enclave list mutex before the enclave mutex |
| * in order to avoid deadlocks with @ref ne_event_work_handler. |
| */ |
| mutex_lock(&ne_pci_dev->enclaves_list_mutex); |
| mutex_lock(&ne_enclave->enclave_info_mutex); |
| |
| if (ne_enclave->state != NE_STATE_INIT && ne_enclave->state != NE_STATE_STOPPED) { |
| enclave_stop_request.slot_uid = ne_enclave->slot_uid; |
| |
| rc = ne_do_request(pdev, ENCLAVE_STOP, |
| &enclave_stop_request, sizeof(enclave_stop_request), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in enclave stop [rc=%d]\n", rc); |
| |
| goto unlock_mutex; |
| } |
| |
| memset(&cmd_reply, 0, sizeof(cmd_reply)); |
| } |
| |
| slot_free_req.slot_uid = ne_enclave->slot_uid; |
| |
| rc = ne_do_request(pdev, SLOT_FREE, |
| &slot_free_req, sizeof(slot_free_req), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in slot free [rc=%d]\n", rc); |
| |
| goto unlock_mutex; |
| } |
| |
| ne_pci_dev_remove_enclave_entry(ne_enclave, ne_pci_dev); |
| ne_enclave_remove_all_mem_region_entries(ne_enclave); |
| ne_enclave_remove_all_vcpu_id_entries(ne_enclave); |
| |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| mutex_unlock(&ne_pci_dev->enclaves_list_mutex); |
| |
| kfree(ne_enclave); |
| |
| return 0; |
| |
| unlock_mutex: |
| mutex_unlock(&ne_enclave->enclave_info_mutex); |
| mutex_unlock(&ne_pci_dev->enclaves_list_mutex); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_enclave_poll() - Poll functionality used for enclave out-of-band events. |
| * @file: File associated with this poll function. |
| * @wait: Poll table data structure. |
| * |
| * Context: Process context. |
| * Return: |
| * * Poll mask. |
| */ |
| static __poll_t ne_enclave_poll(struct file *file, poll_table *wait) |
| { |
| __poll_t mask = 0; |
| struct ne_enclave *ne_enclave = file->private_data; |
| |
| poll_wait(file, &ne_enclave->eventq, wait); |
| |
| if (ne_enclave->has_event) |
| mask |= EPOLLHUP; |
| |
| return mask; |
| } |
| |
| static const struct file_operations ne_enclave_fops = { |
| .owner = THIS_MODULE, |
| .llseek = noop_llseek, |
| .poll = ne_enclave_poll, |
| .unlocked_ioctl = ne_enclave_ioctl, |
| .release = ne_enclave_release, |
| }; |
| |
| /** |
| * ne_create_vm_ioctl() - Alloc slot to be associated with an enclave. Create |
| * enclave file descriptor to be further used for enclave |
| * resources handling e.g. memory regions and CPUs. |
| * @ne_pci_dev : Private data associated with the PCI device. |
| * @slot_uid: User pointer to store the generated unique slot id |
| * associated with an enclave to. |
| * |
| * Context: Process context. This function is called with the ne_pci_dev enclave |
| * mutex held. |
| * Return: |
| * * Enclave fd on success. |
| * * Negative return value on failure. |
| */ |
| static int ne_create_vm_ioctl(struct ne_pci_dev *ne_pci_dev, u64 __user *slot_uid) |
| { |
| struct ne_pci_dev_cmd_reply cmd_reply = {}; |
| int enclave_fd = -1; |
| struct file *enclave_file = NULL; |
| unsigned int i = 0; |
| struct ne_enclave *ne_enclave = NULL; |
| struct pci_dev *pdev = ne_pci_dev->pdev; |
| int rc = -EINVAL; |
| struct slot_alloc_req slot_alloc_req = {}; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| for (i = 0; i < ne_cpu_pool.nr_parent_vm_cores; i++) |
| if (!cpumask_empty(ne_cpu_pool.avail_threads_per_core[i])) |
| break; |
| |
| if (i == ne_cpu_pool.nr_parent_vm_cores) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "No CPUs available in CPU pool\n"); |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| return -NE_ERR_NO_CPUS_AVAIL_IN_POOL; |
| } |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| ne_enclave = kzalloc(sizeof(*ne_enclave), GFP_KERNEL); |
| if (!ne_enclave) |
| return -ENOMEM; |
| |
| mutex_lock(&ne_cpu_pool.mutex); |
| |
| ne_enclave->nr_parent_vm_cores = ne_cpu_pool.nr_parent_vm_cores; |
| ne_enclave->nr_threads_per_core = ne_cpu_pool.nr_threads_per_core; |
| ne_enclave->numa_node = ne_cpu_pool.numa_node; |
| |
| mutex_unlock(&ne_cpu_pool.mutex); |
| |
| ne_enclave->threads_per_core = kcalloc(ne_enclave->nr_parent_vm_cores, |
| sizeof(*ne_enclave->threads_per_core), GFP_KERNEL); |
| if (!ne_enclave->threads_per_core) { |
| rc = -ENOMEM; |
| |
| goto free_ne_enclave; |
| } |
| |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) |
| if (!zalloc_cpumask_var(&ne_enclave->threads_per_core[i], GFP_KERNEL)) { |
| rc = -ENOMEM; |
| |
| goto free_cpumask; |
| } |
| |
| if (!zalloc_cpumask_var(&ne_enclave->vcpu_ids, GFP_KERNEL)) { |
| rc = -ENOMEM; |
| |
| goto free_cpumask; |
| } |
| |
| enclave_fd = get_unused_fd_flags(O_CLOEXEC); |
| if (enclave_fd < 0) { |
| rc = enclave_fd; |
| |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in getting unused fd [rc=%d]\n", rc); |
| |
| goto free_cpumask; |
| } |
| |
| enclave_file = anon_inode_getfile("ne-vm", &ne_enclave_fops, ne_enclave, O_RDWR); |
| if (IS_ERR(enclave_file)) { |
| rc = PTR_ERR(enclave_file); |
| |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in anon inode get file [rc=%d]\n", rc); |
| |
| goto put_fd; |
| } |
| |
| rc = ne_do_request(pdev, SLOT_ALLOC, |
| &slot_alloc_req, sizeof(slot_alloc_req), |
| &cmd_reply, sizeof(cmd_reply)); |
| if (rc < 0) { |
| dev_err_ratelimited(ne_misc_dev.this_device, |
| "Error in slot alloc [rc=%d]\n", rc); |
| |
| goto put_file; |
| } |
| |
| init_waitqueue_head(&ne_enclave->eventq); |
| ne_enclave->has_event = false; |
| mutex_init(&ne_enclave->enclave_info_mutex); |
| ne_enclave->max_mem_regions = cmd_reply.mem_regions; |
| INIT_LIST_HEAD(&ne_enclave->mem_regions_list); |
| ne_enclave->mm = current->mm; |
| ne_enclave->slot_uid = cmd_reply.slot_uid; |
| ne_enclave->state = NE_STATE_INIT; |
| |
| list_add(&ne_enclave->enclave_list_entry, &ne_pci_dev->enclaves_list); |
| |
| if (copy_to_user(slot_uid, &ne_enclave->slot_uid, sizeof(ne_enclave->slot_uid))) { |
| /* |
| * As we're holding the only reference to 'enclave_file', fput() |
| * will call ne_enclave_release() which will do a proper cleanup |
| * of all so far allocated resources, leaving only the unused fd |
| * for us to free. |
| */ |
| fput(enclave_file); |
| put_unused_fd(enclave_fd); |
| |
| return -EFAULT; |
| } |
| |
| fd_install(enclave_fd, enclave_file); |
| |
| return enclave_fd; |
| |
| put_file: |
| fput(enclave_file); |
| put_fd: |
| put_unused_fd(enclave_fd); |
| free_cpumask: |
| free_cpumask_var(ne_enclave->vcpu_ids); |
| for (i = 0; i < ne_enclave->nr_parent_vm_cores; i++) |
| free_cpumask_var(ne_enclave->threads_per_core[i]); |
| kfree(ne_enclave->threads_per_core); |
| free_ne_enclave: |
| kfree(ne_enclave); |
| |
| return rc; |
| } |
| |
| /** |
| * ne_ioctl() - Ioctl function provided by the NE misc device. |
| * @file: File associated with this ioctl function. |
| * @cmd: The command that is set for the ioctl call. |
| * @arg: The argument that is provided for the ioctl call. |
| * |
| * Context: Process context. |
| * Return: |
| * * Ioctl result (e.g. enclave file descriptor) on success. |
| * * Negative return value on failure. |
| */ |
| static long ne_ioctl(struct file *file, unsigned int cmd, unsigned long arg) |
| { |
| switch (cmd) { |
| case NE_CREATE_VM: { |
| int enclave_fd = -1; |
| struct ne_pci_dev *ne_pci_dev = ne_devs.ne_pci_dev; |
| u64 __user *slot_uid = (void __user *)arg; |
| |
| mutex_lock(&ne_pci_dev->enclaves_list_mutex); |
| enclave_fd = ne_create_vm_ioctl(ne_pci_dev, slot_uid); |
| mutex_unlock(&ne_pci_dev->enclaves_list_mutex); |
| |
| return enclave_fd; |
| } |
| |
| default: |
| return -ENOTTY; |
| } |
| |
| return 0; |
| } |
| |
| static int __init ne_init(void) |
| { |
| mutex_init(&ne_cpu_pool.mutex); |
| |
| return pci_register_driver(&ne_pci_driver); |
| } |
| |
| static void __exit ne_exit(void) |
| { |
| pci_unregister_driver(&ne_pci_driver); |
| |
| ne_teardown_cpu_pool(); |
| } |
| |
| module_init(ne_init); |
| module_exit(ne_exit); |
| |
| MODULE_AUTHOR("Amazon.com, Inc. or its affiliates"); |
| MODULE_DESCRIPTION("Nitro Enclaves Driver"); |
| MODULE_LICENSE("GPL v2"); |