blob: 4dc844f3c1fc0a95ac0f734939eb022488a0f847 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the PCM512x CODECs
*
* Author: Mark Brown <broonie@kernel.org>
* Copyright 2014 Linaro Ltd
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/gcd.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include "pcm512x.h"
#define PCM512x_NUM_SUPPLIES 3
static const char * const pcm512x_supply_names[PCM512x_NUM_SUPPLIES] = {
"AVDD",
"DVDD",
"CPVDD",
};
struct pcm512x_priv {
struct regmap *regmap;
struct clk *sclk;
struct regulator_bulk_data supplies[PCM512x_NUM_SUPPLIES];
struct notifier_block supply_nb[PCM512x_NUM_SUPPLIES];
int fmt;
int pll_in;
int pll_out;
int pll_r;
int pll_j;
int pll_d;
int pll_p;
unsigned long real_pll;
unsigned long overclock_pll;
unsigned long overclock_dac;
unsigned long overclock_dsp;
int mute;
struct mutex mutex;
unsigned int bclk_ratio;
};
/*
* We can't use the same notifier block for more than one supply and
* there's no way I can see to get from a callback to the caller
* except container_of().
*/
#define PCM512x_REGULATOR_EVENT(n) \
static int pcm512x_regulator_event_##n(struct notifier_block *nb, \
unsigned long event, void *data) \
{ \
struct pcm512x_priv *pcm512x = container_of(nb, struct pcm512x_priv, \
supply_nb[n]); \
if (event & REGULATOR_EVENT_DISABLE) { \
regcache_mark_dirty(pcm512x->regmap); \
regcache_cache_only(pcm512x->regmap, true); \
} \
return 0; \
}
PCM512x_REGULATOR_EVENT(0)
PCM512x_REGULATOR_EVENT(1)
PCM512x_REGULATOR_EVENT(2)
static const struct reg_default pcm512x_reg_defaults[] = {
{ PCM512x_RESET, 0x00 },
{ PCM512x_POWER, 0x00 },
{ PCM512x_MUTE, 0x00 },
{ PCM512x_DSP, 0x00 },
{ PCM512x_PLL_REF, 0x00 },
{ PCM512x_DAC_REF, 0x00 },
{ PCM512x_DAC_ROUTING, 0x11 },
{ PCM512x_DSP_PROGRAM, 0x01 },
{ PCM512x_CLKDET, 0x00 },
{ PCM512x_AUTO_MUTE, 0x00 },
{ PCM512x_ERROR_DETECT, 0x00 },
{ PCM512x_DIGITAL_VOLUME_1, 0x00 },
{ PCM512x_DIGITAL_VOLUME_2, 0x30 },
{ PCM512x_DIGITAL_VOLUME_3, 0x30 },
{ PCM512x_DIGITAL_MUTE_1, 0x22 },
{ PCM512x_DIGITAL_MUTE_2, 0x00 },
{ PCM512x_DIGITAL_MUTE_3, 0x07 },
{ PCM512x_OUTPUT_AMPLITUDE, 0x00 },
{ PCM512x_ANALOG_GAIN_CTRL, 0x00 },
{ PCM512x_UNDERVOLTAGE_PROT, 0x00 },
{ PCM512x_ANALOG_MUTE_CTRL, 0x00 },
{ PCM512x_ANALOG_GAIN_BOOST, 0x00 },
{ PCM512x_VCOM_CTRL_1, 0x00 },
{ PCM512x_VCOM_CTRL_2, 0x01 },
{ PCM512x_BCLK_LRCLK_CFG, 0x00 },
{ PCM512x_MASTER_MODE, 0x7c },
{ PCM512x_GPIO_DACIN, 0x00 },
{ PCM512x_GPIO_PLLIN, 0x00 },
{ PCM512x_SYNCHRONIZE, 0x10 },
{ PCM512x_PLL_COEFF_0, 0x00 },
{ PCM512x_PLL_COEFF_1, 0x00 },
{ PCM512x_PLL_COEFF_2, 0x00 },
{ PCM512x_PLL_COEFF_3, 0x00 },
{ PCM512x_PLL_COEFF_4, 0x00 },
{ PCM512x_DSP_CLKDIV, 0x00 },
{ PCM512x_DAC_CLKDIV, 0x00 },
{ PCM512x_NCP_CLKDIV, 0x00 },
{ PCM512x_OSR_CLKDIV, 0x00 },
{ PCM512x_MASTER_CLKDIV_1, 0x00 },
{ PCM512x_MASTER_CLKDIV_2, 0x00 },
{ PCM512x_FS_SPEED_MODE, 0x00 },
{ PCM512x_IDAC_1, 0x01 },
{ PCM512x_IDAC_2, 0x00 },
};
static bool pcm512x_readable(struct device *dev, unsigned int reg)
{
switch (reg) {
case PCM512x_RESET:
case PCM512x_POWER:
case PCM512x_MUTE:
case PCM512x_PLL_EN:
case PCM512x_SPI_MISO_FUNCTION:
case PCM512x_DSP:
case PCM512x_GPIO_EN:
case PCM512x_BCLK_LRCLK_CFG:
case PCM512x_DSP_GPIO_INPUT:
case PCM512x_MASTER_MODE:
case PCM512x_PLL_REF:
case PCM512x_DAC_REF:
case PCM512x_GPIO_DACIN:
case PCM512x_GPIO_PLLIN:
case PCM512x_SYNCHRONIZE:
case PCM512x_PLL_COEFF_0:
case PCM512x_PLL_COEFF_1:
case PCM512x_PLL_COEFF_2:
case PCM512x_PLL_COEFF_3:
case PCM512x_PLL_COEFF_4:
case PCM512x_DSP_CLKDIV:
case PCM512x_DAC_CLKDIV:
case PCM512x_NCP_CLKDIV:
case PCM512x_OSR_CLKDIV:
case PCM512x_MASTER_CLKDIV_1:
case PCM512x_MASTER_CLKDIV_2:
case PCM512x_FS_SPEED_MODE:
case PCM512x_IDAC_1:
case PCM512x_IDAC_2:
case PCM512x_ERROR_DETECT:
case PCM512x_I2S_1:
case PCM512x_I2S_2:
case PCM512x_DAC_ROUTING:
case PCM512x_DSP_PROGRAM:
case PCM512x_CLKDET:
case PCM512x_AUTO_MUTE:
case PCM512x_DIGITAL_VOLUME_1:
case PCM512x_DIGITAL_VOLUME_2:
case PCM512x_DIGITAL_VOLUME_3:
case PCM512x_DIGITAL_MUTE_1:
case PCM512x_DIGITAL_MUTE_2:
case PCM512x_DIGITAL_MUTE_3:
case PCM512x_GPIO_OUTPUT_1:
case PCM512x_GPIO_OUTPUT_2:
case PCM512x_GPIO_OUTPUT_3:
case PCM512x_GPIO_OUTPUT_4:
case PCM512x_GPIO_OUTPUT_5:
case PCM512x_GPIO_OUTPUT_6:
case PCM512x_GPIO_CONTROL_1:
case PCM512x_GPIO_CONTROL_2:
case PCM512x_OVERFLOW:
case PCM512x_RATE_DET_1:
case PCM512x_RATE_DET_2:
case PCM512x_RATE_DET_3:
case PCM512x_RATE_DET_4:
case PCM512x_CLOCK_STATUS:
case PCM512x_ANALOG_MUTE_DET:
case PCM512x_GPIN:
case PCM512x_DIGITAL_MUTE_DET:
case PCM512x_OUTPUT_AMPLITUDE:
case PCM512x_ANALOG_GAIN_CTRL:
case PCM512x_UNDERVOLTAGE_PROT:
case PCM512x_ANALOG_MUTE_CTRL:
case PCM512x_ANALOG_GAIN_BOOST:
case PCM512x_VCOM_CTRL_1:
case PCM512x_VCOM_CTRL_2:
case PCM512x_CRAM_CTRL:
case PCM512x_FLEX_A:
case PCM512x_FLEX_B:
return true;
default:
/* There are 256 raw register addresses */
return reg < 0xff;
}
}
static bool pcm512x_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case PCM512x_PLL_EN:
case PCM512x_OVERFLOW:
case PCM512x_RATE_DET_1:
case PCM512x_RATE_DET_2:
case PCM512x_RATE_DET_3:
case PCM512x_RATE_DET_4:
case PCM512x_CLOCK_STATUS:
case PCM512x_ANALOG_MUTE_DET:
case PCM512x_GPIN:
case PCM512x_DIGITAL_MUTE_DET:
case PCM512x_CRAM_CTRL:
return true;
default:
/* There are 256 raw register addresses */
return reg < 0xff;
}
}
static int pcm512x_overclock_pll_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = pcm512x->overclock_pll;
return 0;
}
static int pcm512x_overclock_pll_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
switch (snd_soc_component_get_bias_level(component)) {
case SND_SOC_BIAS_OFF:
case SND_SOC_BIAS_STANDBY:
break;
default:
return -EBUSY;
}
pcm512x->overclock_pll = ucontrol->value.integer.value[0];
return 0;
}
static int pcm512x_overclock_dsp_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = pcm512x->overclock_dsp;
return 0;
}
static int pcm512x_overclock_dsp_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
switch (snd_soc_component_get_bias_level(component)) {
case SND_SOC_BIAS_OFF:
case SND_SOC_BIAS_STANDBY:
break;
default:
return -EBUSY;
}
pcm512x->overclock_dsp = ucontrol->value.integer.value[0];
return 0;
}
static int pcm512x_overclock_dac_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
ucontrol->value.integer.value[0] = pcm512x->overclock_dac;
return 0;
}
static int pcm512x_overclock_dac_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
switch (snd_soc_component_get_bias_level(component)) {
case SND_SOC_BIAS_OFF:
case SND_SOC_BIAS_STANDBY:
break;
default:
return -EBUSY;
}
pcm512x->overclock_dac = ucontrol->value.integer.value[0];
return 0;
}
static const DECLARE_TLV_DB_SCALE(digital_tlv, -10350, 50, 1);
static const DECLARE_TLV_DB_SCALE(analog_tlv, -600, 600, 0);
static const DECLARE_TLV_DB_SCALE(boost_tlv, 0, 80, 0);
static const char * const pcm512x_dsp_program_texts[] = {
"FIR interpolation with de-emphasis",
"Low latency IIR with de-emphasis",
"High attenuation with de-emphasis",
"Fixed process flow",
"Ringing-less low latency FIR",
};
static const unsigned int pcm512x_dsp_program_values[] = {
1,
2,
3,
5,
7,
};
static SOC_VALUE_ENUM_SINGLE_DECL(pcm512x_dsp_program,
PCM512x_DSP_PROGRAM, 0, 0x1f,
pcm512x_dsp_program_texts,
pcm512x_dsp_program_values);
static const char * const pcm512x_clk_missing_text[] = {
"1s", "2s", "3s", "4s", "5s", "6s", "7s", "8s"
};
static const struct soc_enum pcm512x_clk_missing =
SOC_ENUM_SINGLE(PCM512x_CLKDET, 0, 8, pcm512x_clk_missing_text);
static const char * const pcm512x_autom_text[] = {
"21ms", "106ms", "213ms", "533ms", "1.07s", "2.13s", "5.33s", "10.66s"
};
static const struct soc_enum pcm512x_autom_l =
SOC_ENUM_SINGLE(PCM512x_AUTO_MUTE, PCM512x_ATML_SHIFT, 8,
pcm512x_autom_text);
static const struct soc_enum pcm512x_autom_r =
SOC_ENUM_SINGLE(PCM512x_AUTO_MUTE, PCM512x_ATMR_SHIFT, 8,
pcm512x_autom_text);
static const char * const pcm512x_ramp_rate_text[] = {
"1 sample/update", "2 samples/update", "4 samples/update",
"Immediate"
};
static const struct soc_enum pcm512x_vndf =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNDF_SHIFT, 4,
pcm512x_ramp_rate_text);
static const struct soc_enum pcm512x_vnuf =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNUF_SHIFT, 4,
pcm512x_ramp_rate_text);
static const struct soc_enum pcm512x_vedf =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_2, PCM512x_VEDF_SHIFT, 4,
pcm512x_ramp_rate_text);
static const char * const pcm512x_ramp_step_text[] = {
"4dB/step", "2dB/step", "1dB/step", "0.5dB/step"
};
static const struct soc_enum pcm512x_vnds =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNDS_SHIFT, 4,
pcm512x_ramp_step_text);
static const struct soc_enum pcm512x_vnus =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_1, PCM512x_VNUS_SHIFT, 4,
pcm512x_ramp_step_text);
static const struct soc_enum pcm512x_veds =
SOC_ENUM_SINGLE(PCM512x_DIGITAL_MUTE_2, PCM512x_VEDS_SHIFT, 4,
pcm512x_ramp_step_text);
static int pcm512x_update_mute(struct pcm512x_priv *pcm512x)
{
return regmap_update_bits(
pcm512x->regmap, PCM512x_MUTE, PCM512x_RQML | PCM512x_RQMR,
(!!(pcm512x->mute & 0x5) << PCM512x_RQML_SHIFT)
| (!!(pcm512x->mute & 0x3) << PCM512x_RQMR_SHIFT));
}
static int pcm512x_digital_playback_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
mutex_lock(&pcm512x->mutex);
ucontrol->value.integer.value[0] = !(pcm512x->mute & 0x4);
ucontrol->value.integer.value[1] = !(pcm512x->mute & 0x2);
mutex_unlock(&pcm512x->mutex);
return 0;
}
static int pcm512x_digital_playback_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
int ret, changed = 0;
mutex_lock(&pcm512x->mutex);
if ((pcm512x->mute & 0x4) == (ucontrol->value.integer.value[0] << 2)) {
pcm512x->mute ^= 0x4;
changed = 1;
}
if ((pcm512x->mute & 0x2) == (ucontrol->value.integer.value[1] << 1)) {
pcm512x->mute ^= 0x2;
changed = 1;
}
if (changed) {
ret = pcm512x_update_mute(pcm512x);
if (ret != 0) {
dev_err(component->dev,
"Failed to update digital mute: %d\n", ret);
mutex_unlock(&pcm512x->mutex);
return ret;
}
}
mutex_unlock(&pcm512x->mutex);
return changed;
}
static const struct snd_kcontrol_new pcm512x_controls[] = {
SOC_DOUBLE_R_TLV("Digital Playback Volume", PCM512x_DIGITAL_VOLUME_2,
PCM512x_DIGITAL_VOLUME_3, 0, 255, 1, digital_tlv),
SOC_DOUBLE_TLV("Analogue Playback Volume", PCM512x_ANALOG_GAIN_CTRL,
PCM512x_LAGN_SHIFT, PCM512x_RAGN_SHIFT, 1, 1, analog_tlv),
SOC_DOUBLE_TLV("Analogue Playback Boost Volume", PCM512x_ANALOG_GAIN_BOOST,
PCM512x_AGBL_SHIFT, PCM512x_AGBR_SHIFT, 1, 0, boost_tlv),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Playback Switch",
.index = 0,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = snd_ctl_boolean_stereo_info,
.get = pcm512x_digital_playback_switch_get,
.put = pcm512x_digital_playback_switch_put
},
SOC_SINGLE("Deemphasis Switch", PCM512x_DSP, PCM512x_DEMP_SHIFT, 1, 1),
SOC_ENUM("DSP Program", pcm512x_dsp_program),
SOC_ENUM("Clock Missing Period", pcm512x_clk_missing),
SOC_ENUM("Auto Mute Time Left", pcm512x_autom_l),
SOC_ENUM("Auto Mute Time Right", pcm512x_autom_r),
SOC_SINGLE("Auto Mute Mono Switch", PCM512x_DIGITAL_MUTE_3,
PCM512x_ACTL_SHIFT, 1, 0),
SOC_DOUBLE("Auto Mute Switch", PCM512x_DIGITAL_MUTE_3, PCM512x_AMLE_SHIFT,
PCM512x_AMRE_SHIFT, 1, 0),
SOC_ENUM("Volume Ramp Down Rate", pcm512x_vndf),
SOC_ENUM("Volume Ramp Down Step", pcm512x_vnds),
SOC_ENUM("Volume Ramp Up Rate", pcm512x_vnuf),
SOC_ENUM("Volume Ramp Up Step", pcm512x_vnus),
SOC_ENUM("Volume Ramp Down Emergency Rate", pcm512x_vedf),
SOC_ENUM("Volume Ramp Down Emergency Step", pcm512x_veds),
SOC_SINGLE_EXT("Max Overclock PLL", SND_SOC_NOPM, 0, 20, 0,
pcm512x_overclock_pll_get, pcm512x_overclock_pll_put),
SOC_SINGLE_EXT("Max Overclock DSP", SND_SOC_NOPM, 0, 40, 0,
pcm512x_overclock_dsp_get, pcm512x_overclock_dsp_put),
SOC_SINGLE_EXT("Max Overclock DAC", SND_SOC_NOPM, 0, 40, 0,
pcm512x_overclock_dac_get, pcm512x_overclock_dac_put),
};
static const struct snd_soc_dapm_widget pcm512x_dapm_widgets[] = {
SND_SOC_DAPM_DAC("DACL", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACR", NULL, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_OUTPUT("OUTL"),
SND_SOC_DAPM_OUTPUT("OUTR"),
};
static const struct snd_soc_dapm_route pcm512x_dapm_routes[] = {
{ "DACL", NULL, "Playback" },
{ "DACR", NULL, "Playback" },
{ "OUTL", NULL, "DACL" },
{ "OUTR", NULL, "DACR" },
};
static unsigned long pcm512x_pll_max(struct pcm512x_priv *pcm512x)
{
return 25000000 + 25000000 * pcm512x->overclock_pll / 100;
}
static unsigned long pcm512x_dsp_max(struct pcm512x_priv *pcm512x)
{
return 50000000 + 50000000 * pcm512x->overclock_dsp / 100;
}
static unsigned long pcm512x_dac_max(struct pcm512x_priv *pcm512x,
unsigned long rate)
{
return rate + rate * pcm512x->overclock_dac / 100;
}
static unsigned long pcm512x_sck_max(struct pcm512x_priv *pcm512x)
{
if (!pcm512x->pll_out)
return 25000000;
return pcm512x_pll_max(pcm512x);
}
static unsigned long pcm512x_ncp_target(struct pcm512x_priv *pcm512x,
unsigned long dac_rate)
{
/*
* If the DAC is not actually overclocked, use the good old
* NCP target rate...
*/
if (dac_rate <= 6144000)
return 1536000;
/*
* ...but if the DAC is in fact overclocked, bump the NCP target
* rate to get the recommended dividers even when overclocking.
*/
return pcm512x_dac_max(pcm512x, 1536000);
}
static const u32 pcm512x_dai_rates[] = {
8000, 11025, 16000, 22050, 32000, 44100, 48000, 64000,
88200, 96000, 176400, 192000, 384000,
};
static const struct snd_pcm_hw_constraint_list constraints_slave = {
.count = ARRAY_SIZE(pcm512x_dai_rates),
.list = pcm512x_dai_rates,
};
static int pcm512x_hw_rule_rate(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule)
{
struct pcm512x_priv *pcm512x = rule->private;
struct snd_interval ranges[2];
int frame_size;
frame_size = snd_soc_params_to_frame_size(params);
if (frame_size < 0)
return frame_size;
switch (frame_size) {
case 32:
/* No hole when the frame size is 32. */
return 0;
case 48:
case 64:
/* There is only one hole in the range of supported
* rates, but it moves with the frame size.
*/
memset(ranges, 0, sizeof(ranges));
ranges[0].min = 8000;
ranges[0].max = pcm512x_sck_max(pcm512x) / frame_size / 2;
ranges[1].min = DIV_ROUND_UP(16000000, frame_size);
ranges[1].max = 384000;
break;
default:
return -EINVAL;
}
return snd_interval_ranges(hw_param_interval(params, rule->var),
ARRAY_SIZE(ranges), ranges, 0);
}
static int pcm512x_dai_startup_master(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
struct device *dev = dai->dev;
struct snd_pcm_hw_constraint_ratnums *constraints_no_pll;
struct snd_ratnum *rats_no_pll;
if (IS_ERR(pcm512x->sclk)) {
dev_err(dev, "Need SCLK for master mode: %ld\n",
PTR_ERR(pcm512x->sclk));
return PTR_ERR(pcm512x->sclk);
}
if (pcm512x->pll_out)
return snd_pcm_hw_rule_add(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
pcm512x_hw_rule_rate,
pcm512x,
SNDRV_PCM_HW_PARAM_FRAME_BITS,
SNDRV_PCM_HW_PARAM_CHANNELS, -1);
constraints_no_pll = devm_kzalloc(dev, sizeof(*constraints_no_pll),
GFP_KERNEL);
if (!constraints_no_pll)
return -ENOMEM;
constraints_no_pll->nrats = 1;
rats_no_pll = devm_kzalloc(dev, sizeof(*rats_no_pll), GFP_KERNEL);
if (!rats_no_pll)
return -ENOMEM;
constraints_no_pll->rats = rats_no_pll;
rats_no_pll->num = clk_get_rate(pcm512x->sclk) / 64;
rats_no_pll->den_min = 1;
rats_no_pll->den_max = 128;
rats_no_pll->den_step = 1;
return snd_pcm_hw_constraint_ratnums(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
constraints_no_pll);
}
static int pcm512x_dai_startup_slave(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
struct device *dev = dai->dev;
struct regmap *regmap = pcm512x->regmap;
if (IS_ERR(pcm512x->sclk)) {
dev_info(dev, "No SCLK, using BCLK: %ld\n",
PTR_ERR(pcm512x->sclk));
/* Disable reporting of missing SCLK as an error */
regmap_update_bits(regmap, PCM512x_ERROR_DETECT,
PCM512x_IDCH, PCM512x_IDCH);
/* Switch PLL input to BCLK */
regmap_update_bits(regmap, PCM512x_PLL_REF,
PCM512x_SREF, PCM512x_SREF_BCK);
}
return snd_pcm_hw_constraint_list(substream->runtime, 0,
SNDRV_PCM_HW_PARAM_RATE,
&constraints_slave);
}
static int pcm512x_dai_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
switch (pcm512x->fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
case SND_SOC_DAIFMT_CBM_CFS:
return pcm512x_dai_startup_master(substream, dai);
case SND_SOC_DAIFMT_CBS_CFS:
return pcm512x_dai_startup_slave(substream, dai);
default:
return -EINVAL;
}
}
static int pcm512x_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct pcm512x_priv *pcm512x = dev_get_drvdata(component->dev);
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER,
PCM512x_RQST, 0);
if (ret != 0) {
dev_err(component->dev, "Failed to remove standby: %d\n",
ret);
return ret;
}
break;
case SND_SOC_BIAS_OFF:
ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER,
PCM512x_RQST, PCM512x_RQST);
if (ret != 0) {
dev_err(component->dev, "Failed to request standby: %d\n",
ret);
return ret;
}
break;
}
return 0;
}
static unsigned long pcm512x_find_sck(struct snd_soc_dai *dai,
unsigned long bclk_rate)
{
struct device *dev = dai->dev;
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
unsigned long sck_rate;
int pow2;
/* 64 MHz <= pll_rate <= 100 MHz, VREF mode */
/* 16 MHz <= sck_rate <= 25 MHz, VREF mode */
/* select sck_rate as a multiple of bclk_rate but still with
* as many factors of 2 as possible, as that makes it easier
* to find a fast DAC rate
*/
pow2 = 1 << fls((pcm512x_pll_max(pcm512x) - 16000000) / bclk_rate);
for (; pow2; pow2 >>= 1) {
sck_rate = rounddown(pcm512x_pll_max(pcm512x),
bclk_rate * pow2);
if (sck_rate >= 16000000)
break;
}
if (!pow2) {
dev_err(dev, "Impossible to generate a suitable SCK\n");
return 0;
}
dev_dbg(dev, "sck_rate %lu\n", sck_rate);
return sck_rate;
}
/* pll_rate = pllin_rate * R * J.D / P
* 1 <= R <= 16
* 1 <= J <= 63
* 0 <= D <= 9999
* 1 <= P <= 15
* 64 MHz <= pll_rate <= 100 MHz
* if D == 0
* 1 MHz <= pllin_rate / P <= 20 MHz
* else if D > 0
* 6.667 MHz <= pllin_rate / P <= 20 MHz
* 4 <= J <= 11
* R = 1
*/
static int pcm512x_find_pll_coeff(struct snd_soc_dai *dai,
unsigned long pllin_rate,
unsigned long pll_rate)
{
struct device *dev = dai->dev;
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
unsigned long common;
int R, J, D, P;
unsigned long K; /* 10000 * J.D */
unsigned long num;
unsigned long den;
common = gcd(pll_rate, pllin_rate);
dev_dbg(dev, "pll %lu pllin %lu common %lu\n",
pll_rate, pllin_rate, common);
num = pll_rate / common;
den = pllin_rate / common;
/* pllin_rate / P (or here, den) cannot be greater than 20 MHz */
if (pllin_rate / den > 20000000 && num < 8) {
num *= DIV_ROUND_UP(pllin_rate / den, 20000000);
den *= DIV_ROUND_UP(pllin_rate / den, 20000000);
}
dev_dbg(dev, "num / den = %lu / %lu\n", num, den);
P = den;
if (den <= 15 && num <= 16 * 63
&& 1000000 <= pllin_rate / P && pllin_rate / P <= 20000000) {
/* Try the case with D = 0 */
D = 0;
/* factor 'num' into J and R, such that R <= 16 and J <= 63 */
for (R = 16; R; R--) {
if (num % R)
continue;
J = num / R;
if (J == 0 || J > 63)
continue;
dev_dbg(dev, "R * J / P = %d * %d / %d\n", R, J, P);
pcm512x->real_pll = pll_rate;
goto done;
}
/* no luck */
}
R = 1;
if (num > 0xffffffffUL / 10000)
goto fallback;
/* Try to find an exact pll_rate using the D > 0 case */
common = gcd(10000 * num, den);
num = 10000 * num / common;
den /= common;
dev_dbg(dev, "num %lu den %lu common %lu\n", num, den, common);
for (P = den; P <= 15; P++) {
if (pllin_rate / P < 6667000 || 200000000 < pllin_rate / P)
continue;
if (num * P % den)
continue;
K = num * P / den;
/* J == 12 is ok if D == 0 */
if (K < 40000 || K > 120000)
continue;
J = K / 10000;
D = K % 10000;
dev_dbg(dev, "J.D / P = %d.%04d / %d\n", J, D, P);
pcm512x->real_pll = pll_rate;
goto done;
}
/* Fall back to an approximate pll_rate */
fallback:
/* find smallest possible P */
P = DIV_ROUND_UP(pllin_rate, 20000000);
if (!P)
P = 1;
else if (P > 15) {
dev_err(dev, "Need a slower clock as pll-input\n");
return -EINVAL;
}
if (pllin_rate / P < 6667000) {
dev_err(dev, "Need a faster clock as pll-input\n");
return -EINVAL;
}
K = DIV_ROUND_CLOSEST_ULL(10000ULL * pll_rate * P, pllin_rate);
if (K < 40000)
K = 40000;
/* J == 12 is ok if D == 0 */
if (K > 120000)
K = 120000;
J = K / 10000;
D = K % 10000;
dev_dbg(dev, "J.D / P ~ %d.%04d / %d\n", J, D, P);
pcm512x->real_pll = DIV_ROUND_DOWN_ULL((u64)K * pllin_rate, 10000 * P);
done:
pcm512x->pll_r = R;
pcm512x->pll_j = J;
pcm512x->pll_d = D;
pcm512x->pll_p = P;
return 0;
}
static unsigned long pcm512x_pllin_dac_rate(struct snd_soc_dai *dai,
unsigned long osr_rate,
unsigned long pllin_rate)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
unsigned long dac_rate;
if (!pcm512x->pll_out)
return 0; /* no PLL to bypass, force SCK as DAC input */
if (pllin_rate % osr_rate)
return 0; /* futile, quit early */
/* run DAC no faster than 6144000 Hz */
for (dac_rate = rounddown(pcm512x_dac_max(pcm512x, 6144000), osr_rate);
dac_rate;
dac_rate -= osr_rate) {
if (pllin_rate / dac_rate > 128)
return 0; /* DAC divider would be too big */
if (!(pllin_rate % dac_rate))
return dac_rate;
dac_rate -= osr_rate;
}
return 0;
}
static int pcm512x_set_dividers(struct snd_soc_dai *dai,
struct snd_pcm_hw_params *params)
{
struct device *dev = dai->dev;
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
unsigned long pllin_rate = 0;
unsigned long pll_rate;
unsigned long sck_rate;
unsigned long mck_rate;
unsigned long bclk_rate;
unsigned long sample_rate;
unsigned long osr_rate;
unsigned long dacsrc_rate;
int bclk_div;
int lrclk_div;
int dsp_div;
int dac_div;
unsigned long dac_rate;
int ncp_div;
int osr_div;
int ret;
int idac;
int fssp;
int gpio;
if (pcm512x->bclk_ratio > 0) {
lrclk_div = pcm512x->bclk_ratio;
} else {
lrclk_div = snd_soc_params_to_frame_size(params);
if (lrclk_div == 0) {
dev_err(dev, "No LRCLK?\n");
return -EINVAL;
}
}
if (!pcm512x->pll_out) {
sck_rate = clk_get_rate(pcm512x->sclk);
bclk_rate = params_rate(params) * lrclk_div;
bclk_div = DIV_ROUND_CLOSEST(sck_rate, bclk_rate);
mck_rate = sck_rate;
} else {
ret = snd_soc_params_to_bclk(params);
if (ret < 0) {
dev_err(dev, "Failed to find suitable BCLK: %d\n", ret);
return ret;
}
if (ret == 0) {
dev_err(dev, "No BCLK?\n");
return -EINVAL;
}
bclk_rate = ret;
pllin_rate = clk_get_rate(pcm512x->sclk);
sck_rate = pcm512x_find_sck(dai, bclk_rate);
if (!sck_rate)
return -EINVAL;
pll_rate = 4 * sck_rate;
ret = pcm512x_find_pll_coeff(dai, pllin_rate, pll_rate);
if (ret != 0)
return ret;
ret = regmap_write(pcm512x->regmap,
PCM512x_PLL_COEFF_0, pcm512x->pll_p - 1);
if (ret != 0) {
dev_err(dev, "Failed to write PLL P: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_PLL_COEFF_1, pcm512x->pll_j);
if (ret != 0) {
dev_err(dev, "Failed to write PLL J: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_PLL_COEFF_2, pcm512x->pll_d >> 8);
if (ret != 0) {
dev_err(dev, "Failed to write PLL D msb: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_PLL_COEFF_3, pcm512x->pll_d & 0xff);
if (ret != 0) {
dev_err(dev, "Failed to write PLL D lsb: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_PLL_COEFF_4, pcm512x->pll_r - 1);
if (ret != 0) {
dev_err(dev, "Failed to write PLL R: %d\n", ret);
return ret;
}
mck_rate = pcm512x->real_pll;
bclk_div = DIV_ROUND_CLOSEST(sck_rate, bclk_rate);
}
if (bclk_div > 128) {
dev_err(dev, "Failed to find BCLK divider\n");
return -EINVAL;
}
/* the actual rate */
sample_rate = sck_rate / bclk_div / lrclk_div;
osr_rate = 16 * sample_rate;
/* run DSP no faster than 50 MHz */
dsp_div = mck_rate > pcm512x_dsp_max(pcm512x) ? 2 : 1;
dac_rate = pcm512x_pllin_dac_rate(dai, osr_rate, pllin_rate);
if (dac_rate) {
/* the desired clock rate is "compatible" with the pll input
* clock, so use that clock as dac input instead of the pll
* output clock since the pll will introduce jitter and thus
* noise.
*/
dev_dbg(dev, "using pll input as dac input\n");
ret = regmap_update_bits(pcm512x->regmap, PCM512x_DAC_REF,
PCM512x_SDAC, PCM512x_SDAC_GPIO);
if (ret != 0) {
dev_err(component->dev,
"Failed to set gpio as dacref: %d\n", ret);
return ret;
}
gpio = PCM512x_GREF_GPIO1 + pcm512x->pll_in - 1;
ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_DACIN,
PCM512x_GREF, gpio);
if (ret != 0) {
dev_err(component->dev,
"Failed to set gpio %d as dacin: %d\n",
pcm512x->pll_in, ret);
return ret;
}
dacsrc_rate = pllin_rate;
} else {
/* run DAC no faster than 6144000 Hz */
unsigned long dac_mul = pcm512x_dac_max(pcm512x, 6144000)
/ osr_rate;
unsigned long sck_mul = sck_rate / osr_rate;
for (; dac_mul; dac_mul--) {
if (!(sck_mul % dac_mul))
break;
}
if (!dac_mul) {
dev_err(dev, "Failed to find DAC rate\n");
return -EINVAL;
}
dac_rate = dac_mul * osr_rate;
dev_dbg(dev, "dac_rate %lu sample_rate %lu\n",
dac_rate, sample_rate);
ret = regmap_update_bits(pcm512x->regmap, PCM512x_DAC_REF,
PCM512x_SDAC, PCM512x_SDAC_SCK);
if (ret != 0) {
dev_err(component->dev,
"Failed to set sck as dacref: %d\n", ret);
return ret;
}
dacsrc_rate = sck_rate;
}
osr_div = DIV_ROUND_CLOSEST(dac_rate, osr_rate);
if (osr_div > 128) {
dev_err(dev, "Failed to find OSR divider\n");
return -EINVAL;
}
dac_div = DIV_ROUND_CLOSEST(dacsrc_rate, dac_rate);
if (dac_div > 128) {
dev_err(dev, "Failed to find DAC divider\n");
return -EINVAL;
}
dac_rate = dacsrc_rate / dac_div;
ncp_div = DIV_ROUND_CLOSEST(dac_rate,
pcm512x_ncp_target(pcm512x, dac_rate));
if (ncp_div > 128 || dac_rate / ncp_div > 2048000) {
/* run NCP no faster than 2048000 Hz, but why? */
ncp_div = DIV_ROUND_UP(dac_rate, 2048000);
if (ncp_div > 128) {
dev_err(dev, "Failed to find NCP divider\n");
return -EINVAL;
}
}
idac = mck_rate / (dsp_div * sample_rate);
ret = regmap_write(pcm512x->regmap, PCM512x_DSP_CLKDIV, dsp_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write DSP divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_DAC_CLKDIV, dac_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write DAC divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_NCP_CLKDIV, ncp_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write NCP divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_OSR_CLKDIV, osr_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write OSR divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_MASTER_CLKDIV_1, bclk_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write BCLK divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap,
PCM512x_MASTER_CLKDIV_2, lrclk_div - 1);
if (ret != 0) {
dev_err(dev, "Failed to write LRCLK divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_IDAC_1, idac >> 8);
if (ret != 0) {
dev_err(dev, "Failed to write IDAC msb divider: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_IDAC_2, idac & 0xff);
if (ret != 0) {
dev_err(dev, "Failed to write IDAC lsb divider: %d\n", ret);
return ret;
}
if (sample_rate <= pcm512x_dac_max(pcm512x, 48000))
fssp = PCM512x_FSSP_48KHZ;
else if (sample_rate <= pcm512x_dac_max(pcm512x, 96000))
fssp = PCM512x_FSSP_96KHZ;
else if (sample_rate <= pcm512x_dac_max(pcm512x, 192000))
fssp = PCM512x_FSSP_192KHZ;
else
fssp = PCM512x_FSSP_384KHZ;
ret = regmap_update_bits(pcm512x->regmap, PCM512x_FS_SPEED_MODE,
PCM512x_FSSP, fssp);
if (ret != 0) {
dev_err(component->dev, "Failed to set fs speed: %d\n", ret);
return ret;
}
dev_dbg(component->dev, "DSP divider %d\n", dsp_div);
dev_dbg(component->dev, "DAC divider %d\n", dac_div);
dev_dbg(component->dev, "NCP divider %d\n", ncp_div);
dev_dbg(component->dev, "OSR divider %d\n", osr_div);
dev_dbg(component->dev, "BCK divider %d\n", bclk_div);
dev_dbg(component->dev, "LRCK divider %d\n", lrclk_div);
dev_dbg(component->dev, "IDAC %d\n", idac);
dev_dbg(component->dev, "1<<FSSP %d\n", 1 << fssp);
return 0;
}
static int pcm512x_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
int alen;
int gpio;
int ret;
dev_dbg(component->dev, "hw_params %u Hz, %u channels\n",
params_rate(params),
params_channels(params));
switch (params_width(params)) {
case 16:
alen = PCM512x_ALEN_16;
break;
case 20:
alen = PCM512x_ALEN_20;
break;
case 24:
alen = PCM512x_ALEN_24;
break;
case 32:
alen = PCM512x_ALEN_32;
break;
default:
dev_err(component->dev, "Bad frame size: %d\n",
params_width(params));
return -EINVAL;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_I2S_1,
PCM512x_ALEN, alen);
if (ret != 0) {
dev_err(component->dev, "Failed to set frame size: %d\n", ret);
return ret;
}
if ((pcm512x->fmt & SND_SOC_DAIFMT_MASTER_MASK) ==
SND_SOC_DAIFMT_CBS_CFS) {
ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT,
PCM512x_DCAS, 0);
if (ret != 0) {
dev_err(component->dev,
"Failed to enable clock divider autoset: %d\n",
ret);
return ret;
}
goto skip_pll;
}
if (pcm512x->pll_out) {
ret = regmap_write(pcm512x->regmap, PCM512x_FLEX_A, 0x11);
if (ret != 0) {
dev_err(component->dev, "Failed to set FLEX_A: %d\n", ret);
return ret;
}
ret = regmap_write(pcm512x->regmap, PCM512x_FLEX_B, 0xff);
if (ret != 0) {
dev_err(component->dev, "Failed to set FLEX_B: %d\n", ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT,
PCM512x_IDFS | PCM512x_IDBK
| PCM512x_IDSK | PCM512x_IDCH
| PCM512x_IDCM | PCM512x_DCAS
| PCM512x_IPLK,
PCM512x_IDFS | PCM512x_IDBK
| PCM512x_IDSK | PCM512x_IDCH
| PCM512x_DCAS);
if (ret != 0) {
dev_err(component->dev,
"Failed to ignore auto-clock failures: %d\n",
ret);
return ret;
}
} else {
ret = regmap_update_bits(pcm512x->regmap, PCM512x_ERROR_DETECT,
PCM512x_IDFS | PCM512x_IDBK
| PCM512x_IDSK | PCM512x_IDCH
| PCM512x_IDCM | PCM512x_DCAS
| PCM512x_IPLK,
PCM512x_IDFS | PCM512x_IDBK
| PCM512x_IDSK | PCM512x_IDCH
| PCM512x_DCAS | PCM512x_IPLK);
if (ret != 0) {
dev_err(component->dev,
"Failed to ignore auto-clock failures: %d\n",
ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_EN,
PCM512x_PLLE, 0);
if (ret != 0) {
dev_err(component->dev, "Failed to disable pll: %d\n", ret);
return ret;
}
}
ret = pcm512x_set_dividers(dai, params);
if (ret != 0)
return ret;
if (pcm512x->pll_out) {
ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_REF,
PCM512x_SREF, PCM512x_SREF_GPIO);
if (ret != 0) {
dev_err(component->dev,
"Failed to set gpio as pllref: %d\n", ret);
return ret;
}
gpio = PCM512x_GREF_GPIO1 + pcm512x->pll_in - 1;
ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_PLLIN,
PCM512x_GREF, gpio);
if (ret != 0) {
dev_err(component->dev,
"Failed to set gpio %d as pllin: %d\n",
pcm512x->pll_in, ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_PLL_EN,
PCM512x_PLLE, PCM512x_PLLE);
if (ret != 0) {
dev_err(component->dev, "Failed to enable pll: %d\n", ret);
return ret;
}
gpio = PCM512x_G1OE << (pcm512x->pll_out - 1);
ret = regmap_update_bits(pcm512x->regmap, PCM512x_GPIO_EN,
gpio, gpio);
if (ret != 0) {
dev_err(component->dev, "Failed to enable gpio %d: %d\n",
pcm512x->pll_out, ret);
return ret;
}
gpio = PCM512x_GPIO_OUTPUT_1 + pcm512x->pll_out - 1;
ret = regmap_update_bits(pcm512x->regmap, gpio,
PCM512x_GxSL, PCM512x_GxSL_PLLCK);
if (ret != 0) {
dev_err(component->dev, "Failed to output pll on %d: %d\n",
ret, pcm512x->pll_out);
return ret;
}
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_SYNCHRONIZE,
PCM512x_RQSY, PCM512x_RQSY_HALT);
if (ret != 0) {
dev_err(component->dev, "Failed to halt clocks: %d\n", ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_SYNCHRONIZE,
PCM512x_RQSY, PCM512x_RQSY_RESUME);
if (ret != 0) {
dev_err(component->dev, "Failed to resume clocks: %d\n", ret);
return ret;
}
skip_pll:
return 0;
}
static int pcm512x_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
int afmt;
int offset = 0;
int clock_output;
int master_mode;
int ret;
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBS_CFS:
clock_output = 0;
master_mode = 0;
break;
case SND_SOC_DAIFMT_CBM_CFM:
clock_output = PCM512x_BCKO | PCM512x_LRKO;
master_mode = PCM512x_RLRK | PCM512x_RBCK;
break;
case SND_SOC_DAIFMT_CBM_CFS:
clock_output = PCM512x_BCKO;
master_mode = PCM512x_RBCK;
break;
default:
return -EINVAL;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_BCLK_LRCLK_CFG,
PCM512x_BCKP | PCM512x_BCKO | PCM512x_LRKO,
clock_output);
if (ret != 0) {
dev_err(component->dev, "Failed to enable clock output: %d\n", ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_MASTER_MODE,
PCM512x_RLRK | PCM512x_RBCK,
master_mode);
if (ret != 0) {
dev_err(component->dev, "Failed to enable master mode: %d\n", ret);
return ret;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
afmt = PCM512x_AFMT_I2S;
break;
case SND_SOC_DAIFMT_RIGHT_J:
afmt = PCM512x_AFMT_RTJ;
break;
case SND_SOC_DAIFMT_LEFT_J:
afmt = PCM512x_AFMT_LTJ;
break;
case SND_SOC_DAIFMT_DSP_A:
offset = 1;
fallthrough;
case SND_SOC_DAIFMT_DSP_B:
afmt = PCM512x_AFMT_DSP;
break;
default:
dev_err(component->dev, "unsupported DAI format: 0x%x\n",
pcm512x->fmt);
return -EINVAL;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_I2S_1,
PCM512x_AFMT, afmt);
if (ret != 0) {
dev_err(component->dev, "Failed to set data format: %d\n", ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_I2S_2,
0xFF, offset);
if (ret != 0) {
dev_err(component->dev, "Failed to set data offset: %d\n", ret);
return ret;
}
pcm512x->fmt = fmt;
return 0;
}
static int pcm512x_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
if (ratio > 256)
return -EINVAL;
pcm512x->bclk_ratio = ratio;
return 0;
}
static int pcm512x_mute(struct snd_soc_dai *dai, int mute, int direction)
{
struct snd_soc_component *component = dai->component;
struct pcm512x_priv *pcm512x = snd_soc_component_get_drvdata(component);
int ret;
unsigned int mute_det;
mutex_lock(&pcm512x->mutex);
if (mute) {
pcm512x->mute |= 0x1;
ret = regmap_update_bits(pcm512x->regmap, PCM512x_MUTE,
PCM512x_RQML | PCM512x_RQMR,
PCM512x_RQML | PCM512x_RQMR);
if (ret != 0) {
dev_err(component->dev,
"Failed to set digital mute: %d\n", ret);
goto unlock;
}
regmap_read_poll_timeout(pcm512x->regmap,
PCM512x_ANALOG_MUTE_DET,
mute_det, (mute_det & 0x3) == 0,
200, 10000);
} else {
pcm512x->mute &= ~0x1;
ret = pcm512x_update_mute(pcm512x);
if (ret != 0) {
dev_err(component->dev,
"Failed to update digital mute: %d\n", ret);
goto unlock;
}
regmap_read_poll_timeout(pcm512x->regmap,
PCM512x_ANALOG_MUTE_DET,
mute_det,
(mute_det & 0x3)
== ((~pcm512x->mute >> 1) & 0x3),
200, 10000);
}
unlock:
mutex_unlock(&pcm512x->mutex);
return ret;
}
static const struct snd_soc_dai_ops pcm512x_dai_ops = {
.startup = pcm512x_dai_startup,
.hw_params = pcm512x_hw_params,
.set_fmt = pcm512x_set_fmt,
.mute_stream = pcm512x_mute,
.set_bclk_ratio = pcm512x_set_bclk_ratio,
.no_capture_mute = 1,
};
static struct snd_soc_dai_driver pcm512x_dai = {
.name = "pcm512x-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 8000,
.rate_max = 384000,
.formats = SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S24_LE |
SNDRV_PCM_FMTBIT_S32_LE
},
.ops = &pcm512x_dai_ops,
};
static const struct snd_soc_component_driver pcm512x_component_driver = {
.set_bias_level = pcm512x_set_bias_level,
.controls = pcm512x_controls,
.num_controls = ARRAY_SIZE(pcm512x_controls),
.dapm_widgets = pcm512x_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(pcm512x_dapm_widgets),
.dapm_routes = pcm512x_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(pcm512x_dapm_routes),
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct regmap_range_cfg pcm512x_range = {
.name = "Pages", .range_min = PCM512x_VIRT_BASE,
.range_max = PCM512x_MAX_REGISTER,
.selector_reg = PCM512x_PAGE,
.selector_mask = 0xff,
.window_start = 0, .window_len = 0x100,
};
const struct regmap_config pcm512x_regmap = {
.reg_bits = 8,
.val_bits = 8,
.readable_reg = pcm512x_readable,
.volatile_reg = pcm512x_volatile,
.ranges = &pcm512x_range,
.num_ranges = 1,
.max_register = PCM512x_MAX_REGISTER,
.reg_defaults = pcm512x_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(pcm512x_reg_defaults),
.cache_type = REGCACHE_RBTREE,
};
EXPORT_SYMBOL_GPL(pcm512x_regmap);
int pcm512x_probe(struct device *dev, struct regmap *regmap)
{
struct pcm512x_priv *pcm512x;
int i, ret;
pcm512x = devm_kzalloc(dev, sizeof(struct pcm512x_priv), GFP_KERNEL);
if (!pcm512x)
return -ENOMEM;
mutex_init(&pcm512x->mutex);
dev_set_drvdata(dev, pcm512x);
pcm512x->regmap = regmap;
for (i = 0; i < ARRAY_SIZE(pcm512x->supplies); i++)
pcm512x->supplies[i].supply = pcm512x_supply_names[i];
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
if (ret != 0) {
dev_err(dev, "Failed to get supplies: %d\n", ret);
return ret;
}
pcm512x->supply_nb[0].notifier_call = pcm512x_regulator_event_0;
pcm512x->supply_nb[1].notifier_call = pcm512x_regulator_event_1;
pcm512x->supply_nb[2].notifier_call = pcm512x_regulator_event_2;
for (i = 0; i < ARRAY_SIZE(pcm512x->supplies); i++) {
ret = devm_regulator_register_notifier(
pcm512x->supplies[i].consumer,
&pcm512x->supply_nb[i]);
if (ret != 0) {
dev_err(dev,
"Failed to register regulator notifier: %d\n",
ret);
}
}
ret = regulator_bulk_enable(ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
if (ret != 0) {
dev_err(dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
/* Reset the device, verifying I/O in the process for I2C */
ret = regmap_write(regmap, PCM512x_RESET,
PCM512x_RSTM | PCM512x_RSTR);
if (ret != 0) {
dev_err(dev, "Failed to reset device: %d\n", ret);
goto err;
}
ret = regmap_write(regmap, PCM512x_RESET, 0);
if (ret != 0) {
dev_err(dev, "Failed to reset device: %d\n", ret);
goto err;
}
pcm512x->sclk = devm_clk_get(dev, NULL);
if (PTR_ERR(pcm512x->sclk) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto err;
}
if (!IS_ERR(pcm512x->sclk)) {
ret = clk_prepare_enable(pcm512x->sclk);
if (ret != 0) {
dev_err(dev, "Failed to enable SCLK: %d\n", ret);
goto err;
}
}
/* Default to standby mode */
ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER,
PCM512x_RQST, PCM512x_RQST);
if (ret != 0) {
dev_err(dev, "Failed to request standby: %d\n",
ret);
goto err_clk;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
#ifdef CONFIG_OF
if (dev->of_node) {
const struct device_node *np = dev->of_node;
u32 val;
if (of_property_read_u32(np, "pll-in", &val) >= 0) {
if (val > 6) {
dev_err(dev, "Invalid pll-in\n");
ret = -EINVAL;
goto err_clk;
}
pcm512x->pll_in = val;
}
if (of_property_read_u32(np, "pll-out", &val) >= 0) {
if (val > 6) {
dev_err(dev, "Invalid pll-out\n");
ret = -EINVAL;
goto err_clk;
}
pcm512x->pll_out = val;
}
if (!pcm512x->pll_in != !pcm512x->pll_out) {
dev_err(dev,
"Error: both pll-in and pll-out, or none\n");
ret = -EINVAL;
goto err_clk;
}
if (pcm512x->pll_in && pcm512x->pll_in == pcm512x->pll_out) {
dev_err(dev, "Error: pll-in == pll-out\n");
ret = -EINVAL;
goto err_clk;
}
}
#endif
ret = devm_snd_soc_register_component(dev, &pcm512x_component_driver,
&pcm512x_dai, 1);
if (ret != 0) {
dev_err(dev, "Failed to register CODEC: %d\n", ret);
goto err_pm;
}
return 0;
err_pm:
pm_runtime_disable(dev);
err_clk:
if (!IS_ERR(pcm512x->sclk))
clk_disable_unprepare(pcm512x->sclk);
err:
regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
return ret;
}
EXPORT_SYMBOL_GPL(pcm512x_probe);
void pcm512x_remove(struct device *dev)
{
struct pcm512x_priv *pcm512x = dev_get_drvdata(dev);
pm_runtime_disable(dev);
if (!IS_ERR(pcm512x->sclk))
clk_disable_unprepare(pcm512x->sclk);
regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
}
EXPORT_SYMBOL_GPL(pcm512x_remove);
#ifdef CONFIG_PM
static int pcm512x_suspend(struct device *dev)
{
struct pcm512x_priv *pcm512x = dev_get_drvdata(dev);
int ret;
ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER,
PCM512x_RQPD, PCM512x_RQPD);
if (ret != 0) {
dev_err(dev, "Failed to request power down: %d\n", ret);
return ret;
}
ret = regulator_bulk_disable(ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
if (ret != 0) {
dev_err(dev, "Failed to disable supplies: %d\n", ret);
return ret;
}
if (!IS_ERR(pcm512x->sclk))
clk_disable_unprepare(pcm512x->sclk);
return 0;
}
static int pcm512x_resume(struct device *dev)
{
struct pcm512x_priv *pcm512x = dev_get_drvdata(dev);
int ret;
if (!IS_ERR(pcm512x->sclk)) {
ret = clk_prepare_enable(pcm512x->sclk);
if (ret != 0) {
dev_err(dev, "Failed to enable SCLK: %d\n", ret);
return ret;
}
}
ret = regulator_bulk_enable(ARRAY_SIZE(pcm512x->supplies),
pcm512x->supplies);
if (ret != 0) {
dev_err(dev, "Failed to enable supplies: %d\n", ret);
return ret;
}
regcache_cache_only(pcm512x->regmap, false);
ret = regcache_sync(pcm512x->regmap);
if (ret != 0) {
dev_err(dev, "Failed to sync cache: %d\n", ret);
return ret;
}
ret = regmap_update_bits(pcm512x->regmap, PCM512x_POWER,
PCM512x_RQPD, 0);
if (ret != 0) {
dev_err(dev, "Failed to remove power down: %d\n", ret);
return ret;
}
return 0;
}
#endif
const struct dev_pm_ops pcm512x_pm_ops = {
SET_RUNTIME_PM_OPS(pcm512x_suspend, pcm512x_resume, NULL)
};
EXPORT_SYMBOL_GPL(pcm512x_pm_ops);
MODULE_DESCRIPTION("ASoC PCM512x codec driver");
MODULE_AUTHOR("Mark Brown <broonie@kernel.org>");
MODULE_LICENSE("GPL v2");