| /* |
| * include/asm-xtensa/uaccess.h |
| * |
| * User space memory access functions |
| * |
| * These routines provide basic accessing functions to the user memory |
| * space for the kernel. This header file provides functions such as: |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (C) 2001 - 2005 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_UACCESS_H |
| #define _XTENSA_UACCESS_H |
| |
| #include <linux/errno.h> |
| #ifndef __ASSEMBLY__ |
| #include <linux/prefetch.h> |
| #endif |
| #include <asm/types.h> |
| |
| #define VERIFY_READ 0 |
| #define VERIFY_WRITE 1 |
| |
| #ifdef __ASSEMBLY__ |
| |
| #include <asm/current.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/processor.h> |
| |
| /* |
| * These assembly macros mirror the C macros that follow below. They |
| * should always have identical functionality. See |
| * arch/xtensa/kernel/sys.S for usage. |
| */ |
| |
| #define KERNEL_DS 0 |
| #define USER_DS 1 |
| |
| #define get_ds (KERNEL_DS) |
| |
| /* |
| * get_fs reads current->thread.current_ds into a register. |
| * On Entry: |
| * <ad> anything |
| * <sp> stack |
| * On Exit: |
| * <ad> contains current->thread.current_ds |
| */ |
| .macro get_fs ad, sp |
| GET_CURRENT(\ad,\sp) |
| #if THREAD_CURRENT_DS > 1020 |
| addi \ad, \ad, TASK_THREAD |
| l32i \ad, \ad, THREAD_CURRENT_DS - TASK_THREAD |
| #else |
| l32i \ad, \ad, THREAD_CURRENT_DS |
| #endif |
| .endm |
| |
| /* |
| * set_fs sets current->thread.current_ds to some value. |
| * On Entry: |
| * <at> anything (temp register) |
| * <av> value to write |
| * <sp> stack |
| * On Exit: |
| * <at> destroyed (actually, current) |
| * <av> preserved, value to write |
| */ |
| .macro set_fs at, av, sp |
| GET_CURRENT(\at,\sp) |
| s32i \av, \at, THREAD_CURRENT_DS |
| .endm |
| |
| /* |
| * kernel_ok determines whether we should bypass addr/size checking. |
| * See the equivalent C-macro version below for clarity. |
| * On success, kernel_ok branches to a label indicated by parameter |
| * <success>. This implies that the macro falls through to the next |
| * insruction on an error. |
| * |
| * Note that while this macro can be used independently, we designed |
| * in for optimal use in the access_ok macro below (i.e., we fall |
| * through on error). |
| * |
| * On Entry: |
| * <at> anything (temp register) |
| * <success> label to branch to on success; implies |
| * fall-through macro on error |
| * <sp> stack pointer |
| * On Exit: |
| * <at> destroyed (actually, current->thread.current_ds) |
| */ |
| |
| #if ((KERNEL_DS != 0) || (USER_DS == 0)) |
| # error Assembly macro kernel_ok fails |
| #endif |
| .macro kernel_ok at, sp, success |
| get_fs \at, \sp |
| beqz \at, \success |
| .endm |
| |
| /* |
| * user_ok determines whether the access to user-space memory is allowed. |
| * See the equivalent C-macro version below for clarity. |
| * |
| * On error, user_ok branches to a label indicated by parameter |
| * <error>. This implies that the macro falls through to the next |
| * instruction on success. |
| * |
| * Note that while this macro can be used independently, we designed |
| * in for optimal use in the access_ok macro below (i.e., we fall |
| * through on success). |
| * |
| * On Entry: |
| * <aa> register containing memory address |
| * <as> register containing memory size |
| * <at> temp register |
| * <error> label to branch to on error; implies fall-through |
| * macro on success |
| * On Exit: |
| * <aa> preserved |
| * <as> preserved |
| * <at> destroyed (actually, (TASK_SIZE + 1 - size)) |
| */ |
| .macro user_ok aa, as, at, error |
| movi \at, __XTENSA_UL_CONST(TASK_SIZE) |
| bgeu \as, \at, \error |
| sub \at, \at, \as |
| bgeu \aa, \at, \error |
| .endm |
| |
| /* |
| * access_ok determines whether a memory access is allowed. See the |
| * equivalent C-macro version below for clarity. |
| * |
| * On error, access_ok branches to a label indicated by parameter |
| * <error>. This implies that the macro falls through to the next |
| * instruction on success. |
| * |
| * Note that we assume success is the common case, and we optimize the |
| * branch fall-through case on success. |
| * |
| * On Entry: |
| * <aa> register containing memory address |
| * <as> register containing memory size |
| * <at> temp register |
| * <sp> |
| * <error> label to branch to on error; implies fall-through |
| * macro on success |
| * On Exit: |
| * <aa> preserved |
| * <as> preserved |
| * <at> destroyed |
| */ |
| .macro access_ok aa, as, at, sp, error |
| kernel_ok \at, \sp, .Laccess_ok_\@ |
| user_ok \aa, \as, \at, \error |
| .Laccess_ok_\@: |
| .endm |
| |
| #else /* __ASSEMBLY__ not defined */ |
| |
| #include <linux/sched.h> |
| |
| /* |
| * The fs value determines whether argument validity checking should |
| * be performed or not. If get_fs() == USER_DS, checking is |
| * performed, with get_fs() == KERNEL_DS, checking is bypassed. |
| * |
| * For historical reasons (Data Segment Register?), these macros are |
| * grossly misnamed. |
| */ |
| |
| #define KERNEL_DS ((mm_segment_t) { 0 }) |
| #define USER_DS ((mm_segment_t) { 1 }) |
| |
| #define get_ds() (KERNEL_DS) |
| #define get_fs() (current->thread.current_ds) |
| #define set_fs(val) (current->thread.current_ds = (val)) |
| |
| #define segment_eq(a, b) ((a).seg == (b).seg) |
| |
| #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS)) |
| #define __user_ok(addr, size) \ |
| (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size))) |
| #define __access_ok(addr, size) (__kernel_ok || __user_ok((addr), (size))) |
| #define access_ok(type, addr, size) __access_ok((unsigned long)(addr), (size)) |
| |
| /* |
| * These are the main single-value transfer routines. They |
| * automatically use the right size if we just have the right pointer |
| * type. |
| * |
| * This gets kind of ugly. We want to return _two_ values in |
| * "get_user()" and yet we don't want to do any pointers, because that |
| * is too much of a performance impact. Thus we have a few rather ugly |
| * macros here, and hide all the uglyness from the user. |
| * |
| * Careful to not |
| * (a) re-use the arguments for side effects (sizeof is ok) |
| * (b) require any knowledge of processes at this stage |
| */ |
| #define put_user(x, ptr) __put_user_check((x), (ptr), sizeof(*(ptr))) |
| #define get_user(x, ptr) __get_user_check((x), (ptr), sizeof(*(ptr))) |
| |
| /* |
| * The "__xxx" versions of the user access functions are versions that |
| * do not verify the address space, that must have been done previously |
| * with a separate "access_ok()" call (this is used when we do multiple |
| * accesses to the same area of user memory). |
| */ |
| #define __put_user(x, ptr) __put_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| #define __get_user(x, ptr) __get_user_nocheck((x), (ptr), sizeof(*(ptr))) |
| |
| |
| extern long __put_user_bad(void); |
| |
| #define __put_user_nocheck(x, ptr, size) \ |
| ({ \ |
| long __pu_err; \ |
| __put_user_size((x), (ptr), (size), __pu_err); \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_check(x, ptr, size) \ |
| ({ \ |
| long __pu_err = -EFAULT; \ |
| __typeof__(*(ptr)) *__pu_addr = (ptr); \ |
| if (access_ok(VERIFY_WRITE, __pu_addr, size)) \ |
| __put_user_size((x), __pu_addr, (size), __pu_err); \ |
| __pu_err; \ |
| }) |
| |
| #define __put_user_size(x, ptr, size, retval) \ |
| do { \ |
| int __cb; \ |
| retval = 0; \ |
| switch (size) { \ |
| case 1: __put_user_asm(x, ptr, retval, 1, "s8i", __cb); break; \ |
| case 2: __put_user_asm(x, ptr, retval, 2, "s16i", __cb); break; \ |
| case 4: __put_user_asm(x, ptr, retval, 4, "s32i", __cb); break; \ |
| case 8: { \ |
| __typeof__(*ptr) __v64 = x; \ |
| retval = __copy_to_user(ptr, &__v64, 8); \ |
| break; \ |
| } \ |
| default: __put_user_bad(); \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * Consider a case of a user single load/store would cause both an |
| * unaligned exception and an MMU-related exception (unaligned |
| * exceptions happen first): |
| * |
| * User code passes a bad variable ptr to a system call. |
| * Kernel tries to access the variable. |
| * Unaligned exception occurs. |
| * Unaligned exception handler tries to make aligned accesses. |
| * Double exception occurs for MMU-related cause (e.g., page not mapped). |
| * do_page_fault() thinks the fault address belongs to the kernel, not the |
| * user, and panics. |
| * |
| * The kernel currently prohibits user unaligned accesses. We use the |
| * __check_align_* macros to check for unaligned addresses before |
| * accessing user space so we don't crash the kernel. Both |
| * __put_user_asm and __get_user_asm use these alignment macros, so |
| * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in |
| * sync. |
| */ |
| |
| #define __check_align_1 "" |
| |
| #define __check_align_2 \ |
| " _bbci.l %3, 0, 1f \n" \ |
| " movi %0, %4 \n" \ |
| " _j 2f \n" |
| |
| #define __check_align_4 \ |
| " _bbsi.l %3, 0, 0f \n" \ |
| " _bbci.l %3, 1, 1f \n" \ |
| "0: movi %0, %4 \n" \ |
| " _j 2f \n" |
| |
| |
| /* |
| * We don't tell gcc that we are accessing memory, but this is OK |
| * because we do not write to any memory gcc knows about, so there |
| * are no aliasing issues. |
| * |
| * WARNING: If you modify this macro at all, verify that the |
| * __check_align_* macros still work. |
| */ |
| #define __put_user_asm(x, addr, err, align, insn, cb) \ |
| __asm__ __volatile__( \ |
| __check_align_##align \ |
| "1: "insn" %2, %3, 0 \n" \ |
| "2: \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| " .align 4 \n" \ |
| "4: \n" \ |
| " .long 2b \n" \ |
| "5: \n" \ |
| " l32r %1, 4b \n" \ |
| " movi %0, %4 \n" \ |
| " jx %1 \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " .long 1b, 5b \n" \ |
| " .previous" \ |
| :"=r" (err), "=r" (cb) \ |
| :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err)) |
| |
| #define __get_user_nocheck(x, ptr, size) \ |
| ({ \ |
| long __gu_err, __gu_val; \ |
| __get_user_size(__gu_val, (ptr), (size), __gu_err); \ |
| (x) = (__force __typeof__(*(ptr)))__gu_val; \ |
| __gu_err; \ |
| }) |
| |
| #define __get_user_check(x, ptr, size) \ |
| ({ \ |
| long __gu_err = -EFAULT, __gu_val = 0; \ |
| const __typeof__(*(ptr)) *__gu_addr = (ptr); \ |
| if (access_ok(VERIFY_READ, __gu_addr, size)) \ |
| __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \ |
| (x) = (__force __typeof__(*(ptr)))__gu_val; \ |
| __gu_err; \ |
| }) |
| |
| extern long __get_user_bad(void); |
| |
| #define __get_user_size(x, ptr, size, retval) \ |
| do { \ |
| int __cb; \ |
| retval = 0; \ |
| switch (size) { \ |
| case 1: __get_user_asm(x, ptr, retval, 1, "l8ui", __cb); break;\ |
| case 2: __get_user_asm(x, ptr, retval, 2, "l16ui", __cb); break;\ |
| case 4: __get_user_asm(x, ptr, retval, 4, "l32i", __cb); break;\ |
| case 8: retval = __copy_from_user(&x, ptr, 8); break; \ |
| default: (x) = __get_user_bad(); \ |
| } \ |
| } while (0) |
| |
| |
| /* |
| * WARNING: If you modify this macro at all, verify that the |
| * __check_align_* macros still work. |
| */ |
| #define __get_user_asm(x, addr, err, align, insn, cb) \ |
| __asm__ __volatile__( \ |
| __check_align_##align \ |
| "1: "insn" %2, %3, 0 \n" \ |
| "2: \n" \ |
| " .section .fixup,\"ax\" \n" \ |
| " .align 4 \n" \ |
| "4: \n" \ |
| " .long 2b \n" \ |
| "5: \n" \ |
| " l32r %1, 4b \n" \ |
| " movi %2, 0 \n" \ |
| " movi %0, %4 \n" \ |
| " jx %1 \n" \ |
| " .previous \n" \ |
| " .section __ex_table,\"a\" \n" \ |
| " .long 1b, 5b \n" \ |
| " .previous" \ |
| :"=r" (err), "=r" (cb), "=r" (x) \ |
| :"r" (addr), "i" (-EFAULT), "0" (err)) |
| |
| |
| /* |
| * Copy to/from user space |
| */ |
| |
| /* |
| * We use a generic, arbitrary-sized copy subroutine. The Xtensa |
| * architecture would cause heavy code bloat if we tried to inline |
| * these functions and provide __constant_copy_* equivalents like the |
| * i386 versions. __xtensa_copy_user is quite efficient. See the |
| * .fixup section of __xtensa_copy_user for a discussion on the |
| * X_zeroing equivalents for Xtensa. |
| */ |
| |
| extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n); |
| #define __copy_user(to, from, size) __xtensa_copy_user(to, from, size) |
| |
| |
| static inline unsigned long |
| __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n) |
| { |
| return __copy_user(to, from, n); |
| } |
| |
| static inline unsigned long |
| __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n) |
| { |
| return __copy_user(to, from, n); |
| } |
| |
| static inline unsigned long |
| __generic_copy_to_user(void *to, const void *from, unsigned long n) |
| { |
| prefetch(from); |
| if (access_ok(VERIFY_WRITE, to, n)) |
| return __copy_user(to, from, n); |
| return n; |
| } |
| |
| static inline unsigned long |
| __generic_copy_from_user(void *to, const void *from, unsigned long n) |
| { |
| prefetchw(to); |
| if (access_ok(VERIFY_READ, from, n)) |
| return __copy_user(to, from, n); |
| else |
| memset(to, 0, n); |
| return n; |
| } |
| |
| #define copy_to_user(to, from, n) __generic_copy_to_user((to), (from), (n)) |
| #define copy_from_user(to, from, n) __generic_copy_from_user((to), (from), (n)) |
| #define __copy_to_user(to, from, n) \ |
| __generic_copy_to_user_nocheck((to), (from), (n)) |
| #define __copy_from_user(to, from, n) \ |
| __generic_copy_from_user_nocheck((to), (from), (n)) |
| #define __copy_to_user_inatomic __copy_to_user |
| #define __copy_from_user_inatomic __copy_from_user |
| |
| |
| /* |
| * We need to return the number of bytes not cleared. Our memset() |
| * returns zero if a problem occurs while accessing user-space memory. |
| * In that event, return no memory cleared. Otherwise, zero for |
| * success. |
| */ |
| |
| static inline unsigned long |
| __xtensa_clear_user(void *addr, unsigned long size) |
| { |
| if ( ! memset(addr, 0, size) ) |
| return size; |
| return 0; |
| } |
| |
| static inline unsigned long |
| clear_user(void *addr, unsigned long size) |
| { |
| if (access_ok(VERIFY_WRITE, addr, size)) |
| return __xtensa_clear_user(addr, size); |
| return size ? -EFAULT : 0; |
| } |
| |
| #define __clear_user __xtensa_clear_user |
| |
| |
| extern long __strncpy_user(char *, const char *, long); |
| #define __strncpy_from_user __strncpy_user |
| |
| static inline long |
| strncpy_from_user(char *dst, const char *src, long count) |
| { |
| if (access_ok(VERIFY_READ, src, 1)) |
| return __strncpy_from_user(dst, src, count); |
| return -EFAULT; |
| } |
| |
| |
| #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1) |
| |
| /* |
| * Return the size of a string (including the ending 0!) |
| */ |
| extern long __strnlen_user(const char *, long); |
| |
| static inline long strnlen_user(const char *str, long len) |
| { |
| unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1; |
| |
| if ((unsigned long)str > top) |
| return 0; |
| return __strnlen_user(str, len); |
| } |
| |
| |
| struct exception_table_entry |
| { |
| unsigned long insn, fixup; |
| }; |
| |
| /* Returns 0 if exception not found and fixup.unit otherwise. */ |
| |
| extern unsigned long search_exception_table(unsigned long addr); |
| extern void sort_exception_table(void); |
| |
| /* Returns the new pc */ |
| #define fixup_exception(map_reg, fixup_unit, pc) \ |
| ({ \ |
| fixup_unit; \ |
| }) |
| |
| #endif /* __ASSEMBLY__ */ |
| #endif /* _XTENSA_UACCESS_H */ |