blob: 781217c030a6357540b2f1144a5dab48efb94c05 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel MIC Platform Software Stack (MPSS)
*
* Copyright(c) 2014 Intel Corporation.
*
* Intel SCIF driver.
*/
#include <linux/scif.h>
#include "scif_main.h"
#include "scif_map.h"
static const char * const scif_ep_states[] = {
"Unbound",
"Bound",
"Listening",
"Connected",
"Connecting",
"Mapping",
"Closing",
"Close Listening",
"Disconnected",
"Zombie"};
enum conn_async_state {
ASYNC_CONN_IDLE = 1, /* ep setup for async connect */
ASYNC_CONN_INPROGRESS, /* async connect in progress */
ASYNC_CONN_FLUSH_WORK /* async work flush in progress */
};
/*
* File operations for anonymous inode file associated with a SCIF endpoint,
* used in kernel mode SCIF poll. Kernel mode SCIF poll calls portions of the
* poll API in the kernel and these take in a struct file *. Since a struct
* file is not available to kernel mode SCIF, it uses an anonymous file for
* this purpose.
*/
const struct file_operations scif_anon_fops = {
.owner = THIS_MODULE,
};
scif_epd_t scif_open(void)
{
struct scif_endpt *ep;
int err;
might_sleep();
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
if (!ep)
goto err_ep_alloc;
ep->qp_info.qp = kzalloc(sizeof(*ep->qp_info.qp), GFP_KERNEL);
if (!ep->qp_info.qp)
goto err_qp_alloc;
err = scif_anon_inode_getfile(ep);
if (err)
goto err_anon_inode;
spin_lock_init(&ep->lock);
mutex_init(&ep->sendlock);
mutex_init(&ep->recvlock);
scif_rma_ep_init(ep);
ep->state = SCIFEP_UNBOUND;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI open: ep %p success\n", ep);
return ep;
err_anon_inode:
kfree(ep->qp_info.qp);
err_qp_alloc:
kfree(ep);
err_ep_alloc:
return NULL;
}
EXPORT_SYMBOL_GPL(scif_open);
/*
* scif_disconnect_ep - Disconnects the endpoint if found
* @epd: The end point returned from scif_open()
*/
static struct scif_endpt *scif_disconnect_ep(struct scif_endpt *ep)
{
struct scifmsg msg;
struct scif_endpt *fep = NULL;
struct scif_endpt *tmpep;
struct list_head *pos, *tmpq;
int err;
/*
* Wake up any threads blocked in send()/recv() before closing
* out the connection. Grabbing and releasing the send/recv lock
* will ensure that any blocked senders/receivers have exited for
* Ring 0 endpoints. It is a Ring 0 bug to call send/recv after
* close. Ring 3 endpoints are not affected since close will not
* be called while there are IOCTLs executing.
*/
wake_up_interruptible(&ep->sendwq);
wake_up_interruptible(&ep->recvwq);
mutex_lock(&ep->sendlock);
mutex_unlock(&ep->sendlock);
mutex_lock(&ep->recvlock);
mutex_unlock(&ep->recvlock);
/* Remove from the connected list */
mutex_lock(&scif_info.connlock);
list_for_each_safe(pos, tmpq, &scif_info.connected) {
tmpep = list_entry(pos, struct scif_endpt, list);
if (tmpep == ep) {
list_del(pos);
fep = tmpep;
spin_lock(&ep->lock);
break;
}
}
if (!fep) {
/*
* The other side has completed the disconnect before
* the end point can be removed from the list. Therefore
* the ep lock is not locked, traverse the disconnected
* list to find the endpoint and release the conn lock.
*/
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
tmpep = list_entry(pos, struct scif_endpt, list);
if (tmpep == ep) {
list_del(pos);
break;
}
}
mutex_unlock(&scif_info.connlock);
return NULL;
}
init_completion(&ep->discon);
msg.uop = SCIF_DISCNCT;
msg.src = ep->port;
msg.dst = ep->peer;
msg.payload[0] = (u64)ep;
msg.payload[1] = ep->remote_ep;
err = scif_nodeqp_send(ep->remote_dev, &msg);
spin_unlock(&ep->lock);
mutex_unlock(&scif_info.connlock);
if (!err)
/* Wait for the remote node to respond with SCIF_DISCNT_ACK */
wait_for_completion_timeout(&ep->discon,
SCIF_NODE_ALIVE_TIMEOUT);
return ep;
}
int scif_close(scif_epd_t epd)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
struct scif_endpt *tmpep;
struct list_head *pos, *tmpq;
enum scif_epd_state oldstate;
bool flush_conn;
dev_dbg(scif_info.mdev.this_device, "SCIFAPI close: ep %p %s\n",
ep, scif_ep_states[ep->state]);
might_sleep();
spin_lock(&ep->lock);
flush_conn = (ep->conn_async_state == ASYNC_CONN_INPROGRESS);
spin_unlock(&ep->lock);
if (flush_conn)
flush_work(&scif_info.conn_work);
spin_lock(&ep->lock);
oldstate = ep->state;
ep->state = SCIFEP_CLOSING;
switch (oldstate) {
case SCIFEP_ZOMBIE:
dev_err(scif_info.mdev.this_device,
"SCIFAPI close: zombie state unexpected\n");
/* fall through */
case SCIFEP_DISCONNECTED:
spin_unlock(&ep->lock);
scif_unregister_all_windows(epd);
/* Remove from the disconnected list */
mutex_lock(&scif_info.connlock);
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
tmpep = list_entry(pos, struct scif_endpt, list);
if (tmpep == ep) {
list_del(pos);
break;
}
}
mutex_unlock(&scif_info.connlock);
break;
case SCIFEP_UNBOUND:
case SCIFEP_BOUND:
case SCIFEP_CONNECTING:
spin_unlock(&ep->lock);
break;
case SCIFEP_MAPPING:
case SCIFEP_CONNECTED:
case SCIFEP_CLOSING:
{
spin_unlock(&ep->lock);
scif_unregister_all_windows(epd);
scif_disconnect_ep(ep);
break;
}
case SCIFEP_LISTENING:
case SCIFEP_CLLISTEN:
{
struct scif_conreq *conreq;
struct scifmsg msg;
struct scif_endpt *aep;
spin_unlock(&ep->lock);
mutex_lock(&scif_info.eplock);
/* remove from listen list */
list_for_each_safe(pos, tmpq, &scif_info.listen) {
tmpep = list_entry(pos, struct scif_endpt, list);
if (tmpep == ep)
list_del(pos);
}
/* Remove any dangling accepts */
while (ep->acceptcnt) {
aep = list_first_entry(&ep->li_accept,
struct scif_endpt, liacceptlist);
list_del(&aep->liacceptlist);
scif_put_port(aep->port.port);
list_for_each_safe(pos, tmpq, &scif_info.uaccept) {
tmpep = list_entry(pos, struct scif_endpt,
miacceptlist);
if (tmpep == aep) {
list_del(pos);
break;
}
}
mutex_unlock(&scif_info.eplock);
mutex_lock(&scif_info.connlock);
list_for_each_safe(pos, tmpq, &scif_info.connected) {
tmpep = list_entry(pos,
struct scif_endpt, list);
if (tmpep == aep) {
list_del(pos);
break;
}
}
list_for_each_safe(pos, tmpq, &scif_info.disconnected) {
tmpep = list_entry(pos,
struct scif_endpt, list);
if (tmpep == aep) {
list_del(pos);
break;
}
}
mutex_unlock(&scif_info.connlock);
scif_teardown_ep(aep);
mutex_lock(&scif_info.eplock);
scif_add_epd_to_zombie_list(aep, SCIF_EPLOCK_HELD);
ep->acceptcnt--;
}
spin_lock(&ep->lock);
mutex_unlock(&scif_info.eplock);
/* Remove and reject any pending connection requests. */
while (ep->conreqcnt) {
conreq = list_first_entry(&ep->conlist,
struct scif_conreq, list);
list_del(&conreq->list);
msg.uop = SCIF_CNCT_REJ;
msg.dst.node = conreq->msg.src.node;
msg.dst.port = conreq->msg.src.port;
msg.payload[0] = conreq->msg.payload[0];
msg.payload[1] = conreq->msg.payload[1];
/*
* No Error Handling on purpose for scif_nodeqp_send().
* If the remote node is lost we still want free the
* connection requests on the self node.
*/
scif_nodeqp_send(&scif_dev[conreq->msg.src.node],
&msg);
ep->conreqcnt--;
kfree(conreq);
}
spin_unlock(&ep->lock);
/* If a kSCIF accept is waiting wake it up */
wake_up_interruptible(&ep->conwq);
break;
}
}
scif_put_port(ep->port.port);
scif_anon_inode_fput(ep);
scif_teardown_ep(ep);
scif_add_epd_to_zombie_list(ep, !SCIF_EPLOCK_HELD);
return 0;
}
EXPORT_SYMBOL_GPL(scif_close);
/**
* scif_flush() - Wakes up any blocking accepts. The endpoint will no longer
* accept new connections.
* @epd: The end point returned from scif_open()
*/
int __scif_flush(scif_epd_t epd)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
switch (ep->state) {
case SCIFEP_LISTENING:
{
ep->state = SCIFEP_CLLISTEN;
/* If an accept is waiting wake it up */
wake_up_interruptible(&ep->conwq);
break;
}
default:
break;
}
return 0;
}
int scif_bind(scif_epd_t epd, u16 pn)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int ret = 0;
int tmp;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI bind: ep %p %s requested port number %d\n",
ep, scif_ep_states[ep->state], pn);
if (pn) {
/*
* Similar to IETF RFC 1700, SCIF ports below
* SCIF_ADMIN_PORT_END can only be bound by system (or root)
* processes or by processes executed by privileged users.
*/
if (pn < SCIF_ADMIN_PORT_END && !capable(CAP_SYS_ADMIN)) {
ret = -EACCES;
goto scif_bind_admin_exit;
}
}
spin_lock(&ep->lock);
if (ep->state == SCIFEP_BOUND) {
ret = -EINVAL;
goto scif_bind_exit;
} else if (ep->state != SCIFEP_UNBOUND) {
ret = -EISCONN;
goto scif_bind_exit;
}
if (pn) {
tmp = scif_rsrv_port(pn);
if (tmp != pn) {
ret = -EINVAL;
goto scif_bind_exit;
}
} else {
ret = scif_get_new_port();
if (ret < 0)
goto scif_bind_exit;
pn = ret;
}
ep->state = SCIFEP_BOUND;
ep->port.node = scif_info.nodeid;
ep->port.port = pn;
ep->conn_async_state = ASYNC_CONN_IDLE;
ret = pn;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI bind: bound to port number %d\n", pn);
scif_bind_exit:
spin_unlock(&ep->lock);
scif_bind_admin_exit:
return ret;
}
EXPORT_SYMBOL_GPL(scif_bind);
int scif_listen(scif_epd_t epd, int backlog)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI listen: ep %p %s\n", ep, scif_ep_states[ep->state]);
spin_lock(&ep->lock);
switch (ep->state) {
case SCIFEP_ZOMBIE:
case SCIFEP_CLOSING:
case SCIFEP_CLLISTEN:
case SCIFEP_UNBOUND:
case SCIFEP_DISCONNECTED:
spin_unlock(&ep->lock);
return -EINVAL;
case SCIFEP_LISTENING:
case SCIFEP_CONNECTED:
case SCIFEP_CONNECTING:
case SCIFEP_MAPPING:
spin_unlock(&ep->lock);
return -EISCONN;
case SCIFEP_BOUND:
break;
}
ep->state = SCIFEP_LISTENING;
ep->backlog = backlog;
ep->conreqcnt = 0;
ep->acceptcnt = 0;
INIT_LIST_HEAD(&ep->conlist);
init_waitqueue_head(&ep->conwq);
INIT_LIST_HEAD(&ep->li_accept);
spin_unlock(&ep->lock);
/*
* Listen status is complete so delete the qp information not needed
* on a listen before placing on the list of listening ep's
*/
scif_teardown_ep(ep);
ep->qp_info.qp = NULL;
mutex_lock(&scif_info.eplock);
list_add_tail(&ep->list, &scif_info.listen);
mutex_unlock(&scif_info.eplock);
return 0;
}
EXPORT_SYMBOL_GPL(scif_listen);
/*
************************************************************************
* SCIF connection flow:
*
* 1) A SCIF listening endpoint can call scif_accept(..) to wait for SCIF
* connections via a SCIF_CNCT_REQ message
* 2) A SCIF endpoint can initiate a SCIF connection by calling
* scif_connect(..) which calls scif_setup_qp_connect(..) which
* allocates the local qp for the endpoint ring buffer and then sends
* a SCIF_CNCT_REQ to the remote node and waits for a SCIF_CNCT_GNT or
* a SCIF_CNCT_REJ message
* 3) The peer node handles a SCIF_CNCT_REQ via scif_cnctreq_resp(..) which
* wakes up any threads blocked in step 1 or sends a SCIF_CNCT_REJ
* message otherwise
* 4) A thread blocked waiting for incoming connections allocates its local
* endpoint QP and ring buffer following which it sends a SCIF_CNCT_GNT
* and waits for a SCIF_CNCT_GNT(N)ACK. If the allocation fails then
* the node sends a SCIF_CNCT_REJ message
* 5) Upon receipt of a SCIF_CNCT_GNT or a SCIF_CNCT_REJ message the
* connecting endpoint is woken up as part of handling
* scif_cnctgnt_resp(..) following which it maps the remote endpoints'
* QP, updates its outbound QP and sends a SCIF_CNCT_GNTACK message on
* success or a SCIF_CNCT_GNTNACK message on failure and completes
* the scif_connect(..) API
* 6) Upon receipt of a SCIF_CNCT_GNT(N)ACK the accepting endpoint blocked
* in step 4 is woken up and completes the scif_accept(..) API
* 7) The SCIF connection is now established between the two SCIF endpoints.
*/
static int scif_conn_func(struct scif_endpt *ep)
{
int err = 0;
struct scifmsg msg;
struct device *spdev;
err = scif_reserve_dma_chan(ep);
if (err) {
dev_err(&ep->remote_dev->sdev->dev,
"%s %d err %d\n", __func__, __LINE__, err);
ep->state = SCIFEP_BOUND;
goto connect_error_simple;
}
/* Initiate the first part of the endpoint QP setup */
err = scif_setup_qp_connect(ep->qp_info.qp, &ep->qp_info.qp_offset,
SCIF_ENDPT_QP_SIZE, ep->remote_dev);
if (err) {
dev_err(&ep->remote_dev->sdev->dev,
"%s err %d qp_offset 0x%llx\n",
__func__, err, ep->qp_info.qp_offset);
ep->state = SCIFEP_BOUND;
goto connect_error_simple;
}
spdev = scif_get_peer_dev(ep->remote_dev);
if (IS_ERR(spdev)) {
err = PTR_ERR(spdev);
goto cleanup_qp;
}
/* Format connect message and send it */
msg.src = ep->port;
msg.dst = ep->conn_port;
msg.uop = SCIF_CNCT_REQ;
msg.payload[0] = (u64)ep;
msg.payload[1] = ep->qp_info.qp_offset;
err = _scif_nodeqp_send(ep->remote_dev, &msg);
if (err)
goto connect_error_dec;
scif_put_peer_dev(spdev);
/*
* Wait for the remote node to respond with SCIF_CNCT_GNT or
* SCIF_CNCT_REJ message.
*/
err = wait_event_timeout(ep->conwq, ep->state != SCIFEP_CONNECTING,
SCIF_NODE_ALIVE_TIMEOUT);
if (!err) {
dev_err(&ep->remote_dev->sdev->dev,
"%s %d timeout\n", __func__, __LINE__);
ep->state = SCIFEP_BOUND;
}
spdev = scif_get_peer_dev(ep->remote_dev);
if (IS_ERR(spdev)) {
err = PTR_ERR(spdev);
goto cleanup_qp;
}
if (ep->state == SCIFEP_MAPPING) {
err = scif_setup_qp_connect_response(ep->remote_dev,
ep->qp_info.qp,
ep->qp_info.gnt_pld);
/*
* If the resource to map the queue are not available then
* we need to tell the other side to terminate the accept
*/
if (err) {
dev_err(&ep->remote_dev->sdev->dev,
"%s %d err %d\n", __func__, __LINE__, err);
msg.uop = SCIF_CNCT_GNTNACK;
msg.payload[0] = ep->remote_ep;
_scif_nodeqp_send(ep->remote_dev, &msg);
ep->state = SCIFEP_BOUND;
goto connect_error_dec;
}
msg.uop = SCIF_CNCT_GNTACK;
msg.payload[0] = ep->remote_ep;
err = _scif_nodeqp_send(ep->remote_dev, &msg);
if (err) {
ep->state = SCIFEP_BOUND;
goto connect_error_dec;
}
ep->state = SCIFEP_CONNECTED;
mutex_lock(&scif_info.connlock);
list_add_tail(&ep->list, &scif_info.connected);
mutex_unlock(&scif_info.connlock);
dev_dbg(&ep->remote_dev->sdev->dev,
"SCIFAPI connect: ep %p connected\n", ep);
} else if (ep->state == SCIFEP_BOUND) {
dev_dbg(&ep->remote_dev->sdev->dev,
"SCIFAPI connect: ep %p connection refused\n", ep);
err = -ECONNREFUSED;
goto connect_error_dec;
}
scif_put_peer_dev(spdev);
return err;
connect_error_dec:
scif_put_peer_dev(spdev);
cleanup_qp:
scif_cleanup_ep_qp(ep);
connect_error_simple:
return err;
}
/*
* scif_conn_handler:
*
* Workqueue handler for servicing non-blocking SCIF connect
*
*/
void scif_conn_handler(struct work_struct *work)
{
struct scif_endpt *ep;
do {
ep = NULL;
spin_lock(&scif_info.nb_connect_lock);
if (!list_empty(&scif_info.nb_connect_list)) {
ep = list_first_entry(&scif_info.nb_connect_list,
struct scif_endpt, conn_list);
list_del(&ep->conn_list);
}
spin_unlock(&scif_info.nb_connect_lock);
if (ep) {
ep->conn_err = scif_conn_func(ep);
wake_up_interruptible(&ep->conn_pend_wq);
}
} while (ep);
}
int __scif_connect(scif_epd_t epd, struct scif_port_id *dst, bool non_block)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int err = 0;
struct scif_dev *remote_dev;
struct device *spdev;
dev_dbg(scif_info.mdev.this_device, "SCIFAPI connect: ep %p %s\n", ep,
scif_ep_states[ep->state]);
if (!scif_dev || dst->node > scif_info.maxid)
return -ENODEV;
might_sleep();
remote_dev = &scif_dev[dst->node];
spdev = scif_get_peer_dev(remote_dev);
if (IS_ERR(spdev)) {
err = PTR_ERR(spdev);
return err;
}
spin_lock(&ep->lock);
switch (ep->state) {
case SCIFEP_ZOMBIE:
case SCIFEP_CLOSING:
err = -EINVAL;
break;
case SCIFEP_DISCONNECTED:
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
else
err = -EINVAL;
break;
case SCIFEP_LISTENING:
case SCIFEP_CLLISTEN:
err = -EOPNOTSUPP;
break;
case SCIFEP_CONNECTING:
case SCIFEP_MAPPING:
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
err = -EINPROGRESS;
else
err = -EISCONN;
break;
case SCIFEP_CONNECTED:
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS)
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
else
err = -EISCONN;
break;
case SCIFEP_UNBOUND:
err = scif_get_new_port();
if (err < 0)
break;
ep->port.port = err;
ep->port.node = scif_info.nodeid;
ep->conn_async_state = ASYNC_CONN_IDLE;
/* Fall through */
case SCIFEP_BOUND:
/*
* If a non-blocking connect has been already initiated
* (conn_async_state is either ASYNC_CONN_INPROGRESS or
* ASYNC_CONN_FLUSH_WORK), the end point could end up in
* SCIF_BOUND due an error in the connection process
* (e.g., connection refused) If conn_async_state is
* ASYNC_CONN_INPROGRESS - transition to ASYNC_CONN_FLUSH_WORK
* so that the error status can be collected. If the state is
* already ASYNC_CONN_FLUSH_WORK - then set the error to
* EINPROGRESS since some other thread is waiting to collect
* error status.
*/
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
ep->conn_async_state = ASYNC_CONN_FLUSH_WORK;
} else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
err = -EINPROGRESS;
} else {
ep->conn_port = *dst;
init_waitqueue_head(&ep->sendwq);
init_waitqueue_head(&ep->recvwq);
init_waitqueue_head(&ep->conwq);
ep->conn_async_state = 0;
if (unlikely(non_block))
ep->conn_async_state = ASYNC_CONN_INPROGRESS;
}
break;
}
if (err || ep->conn_async_state == ASYNC_CONN_FLUSH_WORK)
goto connect_simple_unlock1;
ep->state = SCIFEP_CONNECTING;
ep->remote_dev = &scif_dev[dst->node];
ep->qp_info.qp->magic = SCIFEP_MAGIC;
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
init_waitqueue_head(&ep->conn_pend_wq);
spin_lock(&scif_info.nb_connect_lock);
list_add_tail(&ep->conn_list, &scif_info.nb_connect_list);
spin_unlock(&scif_info.nb_connect_lock);
err = -EINPROGRESS;
schedule_work(&scif_info.conn_work);
}
connect_simple_unlock1:
spin_unlock(&ep->lock);
scif_put_peer_dev(spdev);
if (err) {
return err;
} else if (ep->conn_async_state == ASYNC_CONN_FLUSH_WORK) {
flush_work(&scif_info.conn_work);
err = ep->conn_err;
spin_lock(&ep->lock);
ep->conn_async_state = ASYNC_CONN_IDLE;
spin_unlock(&ep->lock);
} else {
err = scif_conn_func(ep);
}
return err;
}
int scif_connect(scif_epd_t epd, struct scif_port_id *dst)
{
return __scif_connect(epd, dst, false);
}
EXPORT_SYMBOL_GPL(scif_connect);
/**
* scif_accept() - Accept a connection request from the remote node
*
* The function accepts a connection request from the remote node. Successful
* complete is indicate by a new end point being created and passed back
* to the caller for future reference.
*
* Upon successful complete a zero will be returned and the peer information
* will be filled in.
*
* If the end point is not in the listening state -EINVAL will be returned.
*
* If during the connection sequence resource allocation fails the -ENOMEM
* will be returned.
*
* If the function is called with the ASYNC flag set and no connection requests
* are pending it will return -EAGAIN.
*
* If the remote side is not sending any connection requests the caller may
* terminate this function with a signal. If so a -EINTR will be returned.
*/
int scif_accept(scif_epd_t epd, struct scif_port_id *peer,
scif_epd_t *newepd, int flags)
{
struct scif_endpt *lep = (struct scif_endpt *)epd;
struct scif_endpt *cep;
struct scif_conreq *conreq;
struct scifmsg msg;
int err;
struct device *spdev;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI accept: ep %p %s\n", lep, scif_ep_states[lep->state]);
if (flags & ~SCIF_ACCEPT_SYNC)
return -EINVAL;
if (!peer || !newepd)
return -EINVAL;
might_sleep();
spin_lock(&lep->lock);
if (lep->state != SCIFEP_LISTENING) {
spin_unlock(&lep->lock);
return -EINVAL;
}
if (!lep->conreqcnt && !(flags & SCIF_ACCEPT_SYNC)) {
/* No connection request present and we do not want to wait */
spin_unlock(&lep->lock);
return -EAGAIN;
}
lep->files = current->files;
retry_connection:
spin_unlock(&lep->lock);
/* Wait for the remote node to send us a SCIF_CNCT_REQ */
err = wait_event_interruptible(lep->conwq,
(lep->conreqcnt ||
(lep->state != SCIFEP_LISTENING)));
if (err)
return err;
if (lep->state != SCIFEP_LISTENING)
return -EINTR;
spin_lock(&lep->lock);
if (!lep->conreqcnt)
goto retry_connection;
/* Get the first connect request off the list */
conreq = list_first_entry(&lep->conlist, struct scif_conreq, list);
list_del(&conreq->list);
lep->conreqcnt--;
spin_unlock(&lep->lock);
/* Fill in the peer information */
peer->node = conreq->msg.src.node;
peer->port = conreq->msg.src.port;
cep = kzalloc(sizeof(*cep), GFP_KERNEL);
if (!cep) {
err = -ENOMEM;
goto scif_accept_error_epalloc;
}
spin_lock_init(&cep->lock);
mutex_init(&cep->sendlock);
mutex_init(&cep->recvlock);
cep->state = SCIFEP_CONNECTING;
cep->remote_dev = &scif_dev[peer->node];
cep->remote_ep = conreq->msg.payload[0];
scif_rma_ep_init(cep);
err = scif_reserve_dma_chan(cep);
if (err) {
dev_err(scif_info.mdev.this_device,
"%s %d err %d\n", __func__, __LINE__, err);
goto scif_accept_error_qpalloc;
}
cep->qp_info.qp = kzalloc(sizeof(*cep->qp_info.qp), GFP_KERNEL);
if (!cep->qp_info.qp) {
err = -ENOMEM;
goto scif_accept_error_qpalloc;
}
err = scif_anon_inode_getfile(cep);
if (err)
goto scif_accept_error_anon_inode;
cep->qp_info.qp->magic = SCIFEP_MAGIC;
spdev = scif_get_peer_dev(cep->remote_dev);
if (IS_ERR(spdev)) {
err = PTR_ERR(spdev);
goto scif_accept_error_map;
}
err = scif_setup_qp_accept(cep->qp_info.qp, &cep->qp_info.qp_offset,
conreq->msg.payload[1], SCIF_ENDPT_QP_SIZE,
cep->remote_dev);
if (err) {
dev_dbg(&cep->remote_dev->sdev->dev,
"SCIFAPI accept: ep %p new %p scif_setup_qp_accept %d qp_offset 0x%llx\n",
lep, cep, err, cep->qp_info.qp_offset);
scif_put_peer_dev(spdev);
goto scif_accept_error_map;
}
cep->port.node = lep->port.node;
cep->port.port = lep->port.port;
cep->peer.node = peer->node;
cep->peer.port = peer->port;
init_waitqueue_head(&cep->sendwq);
init_waitqueue_head(&cep->recvwq);
init_waitqueue_head(&cep->conwq);
msg.uop = SCIF_CNCT_GNT;
msg.src = cep->port;
msg.payload[0] = cep->remote_ep;
msg.payload[1] = cep->qp_info.qp_offset;
msg.payload[2] = (u64)cep;
err = _scif_nodeqp_send(cep->remote_dev, &msg);
scif_put_peer_dev(spdev);
if (err)
goto scif_accept_error_map;
retry:
/* Wait for the remote node to respond with SCIF_CNCT_GNT(N)ACK */
err = wait_event_timeout(cep->conwq, cep->state != SCIFEP_CONNECTING,
SCIF_NODE_ACCEPT_TIMEOUT);
if (!err && scifdev_alive(cep))
goto retry;
err = !err ? -ENODEV : 0;
if (err)
goto scif_accept_error_map;
kfree(conreq);
spin_lock(&cep->lock);
if (cep->state == SCIFEP_CLOSING) {
/*
* Remote failed to allocate resources and NAKed the grant.
* There is at this point nothing referencing the new end point.
*/
spin_unlock(&cep->lock);
scif_teardown_ep(cep);
kfree(cep);
/* If call with sync flag then go back and wait. */
if (flags & SCIF_ACCEPT_SYNC) {
spin_lock(&lep->lock);
goto retry_connection;
}
return -EAGAIN;
}
scif_get_port(cep->port.port);
*newepd = (scif_epd_t)cep;
spin_unlock(&cep->lock);
return 0;
scif_accept_error_map:
scif_anon_inode_fput(cep);
scif_accept_error_anon_inode:
scif_teardown_ep(cep);
scif_accept_error_qpalloc:
kfree(cep);
scif_accept_error_epalloc:
msg.uop = SCIF_CNCT_REJ;
msg.dst.node = conreq->msg.src.node;
msg.dst.port = conreq->msg.src.port;
msg.payload[0] = conreq->msg.payload[0];
msg.payload[1] = conreq->msg.payload[1];
scif_nodeqp_send(&scif_dev[conreq->msg.src.node], &msg);
kfree(conreq);
return err;
}
EXPORT_SYMBOL_GPL(scif_accept);
/*
* scif_msg_param_check:
* @epd: The end point returned from scif_open()
* @len: Length to receive
* @flags: blocking or non blocking
*
* Validate parameters for messaging APIs scif_send(..)/scif_recv(..).
*/
static inline int scif_msg_param_check(scif_epd_t epd, int len, int flags)
{
int ret = -EINVAL;
if (len < 0)
goto err_ret;
if (flags && (!(flags & SCIF_RECV_BLOCK)))
goto err_ret;
ret = 0;
err_ret:
return ret;
}
static int _scif_send(scif_epd_t epd, void *msg, int len, int flags)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
struct scifmsg notif_msg;
int curr_xfer_len = 0, sent_len = 0, write_count;
int ret = 0;
struct scif_qp *qp = ep->qp_info.qp;
if (flags & SCIF_SEND_BLOCK)
might_sleep();
spin_lock(&ep->lock);
while (sent_len != len && SCIFEP_CONNECTED == ep->state) {
write_count = scif_rb_space(&qp->outbound_q);
if (write_count) {
/* Best effort to send as much data as possible */
curr_xfer_len = min(len - sent_len, write_count);
ret = scif_rb_write(&qp->outbound_q, msg,
curr_xfer_len);
if (ret < 0)
break;
/* Success. Update write pointer */
scif_rb_commit(&qp->outbound_q);
/*
* Send a notification to the peer about the
* produced data message.
*/
notif_msg.src = ep->port;
notif_msg.uop = SCIF_CLIENT_SENT;
notif_msg.payload[0] = ep->remote_ep;
ret = _scif_nodeqp_send(ep->remote_dev, &notif_msg);
if (ret)
break;
sent_len += curr_xfer_len;
msg = msg + curr_xfer_len;
continue;
}
curr_xfer_len = min(len - sent_len, SCIF_ENDPT_QP_SIZE - 1);
/* Not enough RB space. return for the Non Blocking case */
if (!(flags & SCIF_SEND_BLOCK))
break;
spin_unlock(&ep->lock);
/* Wait for a SCIF_CLIENT_RCVD message in the Blocking case */
ret =
wait_event_interruptible(ep->sendwq,
(SCIFEP_CONNECTED != ep->state) ||
(scif_rb_space(&qp->outbound_q) >=
curr_xfer_len));
spin_lock(&ep->lock);
if (ret)
break;
}
if (sent_len)
ret = sent_len;
else if (!ret && SCIFEP_CONNECTED != ep->state)
ret = SCIFEP_DISCONNECTED == ep->state ?
-ECONNRESET : -ENOTCONN;
spin_unlock(&ep->lock);
return ret;
}
static int _scif_recv(scif_epd_t epd, void *msg, int len, int flags)
{
int read_size;
struct scif_endpt *ep = (struct scif_endpt *)epd;
struct scifmsg notif_msg;
int curr_recv_len = 0, remaining_len = len, read_count;
int ret = 0;
struct scif_qp *qp = ep->qp_info.qp;
if (flags & SCIF_RECV_BLOCK)
might_sleep();
spin_lock(&ep->lock);
while (remaining_len && (SCIFEP_CONNECTED == ep->state ||
SCIFEP_DISCONNECTED == ep->state)) {
read_count = scif_rb_count(&qp->inbound_q, remaining_len);
if (read_count) {
/*
* Best effort to recv as much data as there
* are bytes to read in the RB particularly
* important for the Non Blocking case.
*/
curr_recv_len = min(remaining_len, read_count);
read_size = scif_rb_get_next(&qp->inbound_q,
msg, curr_recv_len);
if (ep->state == SCIFEP_CONNECTED) {
/*
* Update the read pointer only if the endpoint
* is still connected else the read pointer
* might no longer exist since the peer has
* freed resources!
*/
scif_rb_update_read_ptr(&qp->inbound_q);
/*
* Send a notification to the peer about the
* consumed data message only if the EP is in
* SCIFEP_CONNECTED state.
*/
notif_msg.src = ep->port;
notif_msg.uop = SCIF_CLIENT_RCVD;
notif_msg.payload[0] = ep->remote_ep;
ret = _scif_nodeqp_send(ep->remote_dev,
&notif_msg);
if (ret)
break;
}
remaining_len -= curr_recv_len;
msg = msg + curr_recv_len;
continue;
}
/*
* Bail out now if the EP is in SCIFEP_DISCONNECTED state else
* we will keep looping forever.
*/
if (ep->state == SCIFEP_DISCONNECTED)
break;
/*
* Return in the Non Blocking case if there is no data
* to read in this iteration.
*/
if (!(flags & SCIF_RECV_BLOCK))
break;
curr_recv_len = min(remaining_len, SCIF_ENDPT_QP_SIZE - 1);
spin_unlock(&ep->lock);
/*
* Wait for a SCIF_CLIENT_SEND message in the blocking case
* or until other side disconnects.
*/
ret =
wait_event_interruptible(ep->recvwq,
SCIFEP_CONNECTED != ep->state ||
scif_rb_count(&qp->inbound_q,
curr_recv_len)
>= curr_recv_len);
spin_lock(&ep->lock);
if (ret)
break;
}
if (len - remaining_len)
ret = len - remaining_len;
else if (!ret && ep->state != SCIFEP_CONNECTED)
ret = ep->state == SCIFEP_DISCONNECTED ?
-ECONNRESET : -ENOTCONN;
spin_unlock(&ep->lock);
return ret;
}
/**
* scif_user_send() - Send data to connection queue
* @epd: The end point returned from scif_open()
* @msg: Address to place data
* @len: Length to receive
* @flags: blocking or non blocking
*
* This function is called from the driver IOCTL entry point
* only and is a wrapper for _scif_send().
*/
int scif_user_send(scif_epd_t epd, void __user *msg, int len, int flags)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int err = 0;
int sent_len = 0;
char *tmp;
int loop_len;
int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI send (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
if (!len)
return 0;
err = scif_msg_param_check(epd, len, flags);
if (err)
goto send_err;
tmp = kmalloc(chunk_len, GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto send_err;
}
/*
* Grabbing the lock before breaking up the transfer in
* multiple chunks is required to ensure that messages do
* not get fragmented and reordered.
*/
mutex_lock(&ep->sendlock);
while (sent_len != len) {
loop_len = len - sent_len;
loop_len = min(chunk_len, loop_len);
if (copy_from_user(tmp, msg, loop_len)) {
err = -EFAULT;
goto send_free_err;
}
err = _scif_send(epd, tmp, loop_len, flags);
if (err < 0)
goto send_free_err;
sent_len += err;
msg += err;
if (err != loop_len)
goto send_free_err;
}
send_free_err:
mutex_unlock(&ep->sendlock);
kfree(tmp);
send_err:
return err < 0 ? err : sent_len;
}
/**
* scif_user_recv() - Receive data from connection queue
* @epd: The end point returned from scif_open()
* @msg: Address to place data
* @len: Length to receive
* @flags: blocking or non blocking
*
* This function is called from the driver IOCTL entry point
* only and is a wrapper for _scif_recv().
*/
int scif_user_recv(scif_epd_t epd, void __user *msg, int len, int flags)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int err = 0;
int recv_len = 0;
char *tmp;
int loop_len;
int chunk_len = min(len, (1 << (MAX_ORDER + PAGE_SHIFT - 1)));
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI recv (U): ep %p %s\n", ep, scif_ep_states[ep->state]);
if (!len)
return 0;
err = scif_msg_param_check(epd, len, flags);
if (err)
goto recv_err;
tmp = kmalloc(chunk_len, GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto recv_err;
}
/*
* Grabbing the lock before breaking up the transfer in
* multiple chunks is required to ensure that messages do
* not get fragmented and reordered.
*/
mutex_lock(&ep->recvlock);
while (recv_len != len) {
loop_len = len - recv_len;
loop_len = min(chunk_len, loop_len);
err = _scif_recv(epd, tmp, loop_len, flags);
if (err < 0)
goto recv_free_err;
if (copy_to_user(msg, tmp, err)) {
err = -EFAULT;
goto recv_free_err;
}
recv_len += err;
msg += err;
if (err != loop_len)
goto recv_free_err;
}
recv_free_err:
mutex_unlock(&ep->recvlock);
kfree(tmp);
recv_err:
return err < 0 ? err : recv_len;
}
/**
* scif_send() - Send data to connection queue
* @epd: The end point returned from scif_open()
* @msg: Address to place data
* @len: Length to receive
* @flags: blocking or non blocking
*
* This function is called from the kernel mode only and is
* a wrapper for _scif_send().
*/
int scif_send(scif_epd_t epd, void *msg, int len, int flags)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int ret;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI send (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
if (!len)
return 0;
ret = scif_msg_param_check(epd, len, flags);
if (ret)
return ret;
if (!ep->remote_dev)
return -ENOTCONN;
/*
* Grab the mutex lock in the blocking case only
* to ensure messages do not get fragmented/reordered.
* The non blocking mode is protected using spin locks
* in _scif_send().
*/
if (flags & SCIF_SEND_BLOCK)
mutex_lock(&ep->sendlock);
ret = _scif_send(epd, msg, len, flags);
if (flags & SCIF_SEND_BLOCK)
mutex_unlock(&ep->sendlock);
return ret;
}
EXPORT_SYMBOL_GPL(scif_send);
/**
* scif_recv() - Receive data from connection queue
* @epd: The end point returned from scif_open()
* @msg: Address to place data
* @len: Length to receive
* @flags: blocking or non blocking
*
* This function is called from the kernel mode only and is
* a wrapper for _scif_recv().
*/
int scif_recv(scif_epd_t epd, void *msg, int len, int flags)
{
struct scif_endpt *ep = (struct scif_endpt *)epd;
int ret;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI recv (K): ep %p %s\n", ep, scif_ep_states[ep->state]);
if (!len)
return 0;
ret = scif_msg_param_check(epd, len, flags);
if (ret)
return ret;
/*
* Grab the mutex lock in the blocking case only
* to ensure messages do not get fragmented/reordered.
* The non blocking mode is protected using spin locks
* in _scif_send().
*/
if (flags & SCIF_RECV_BLOCK)
mutex_lock(&ep->recvlock);
ret = _scif_recv(epd, msg, len, flags);
if (flags & SCIF_RECV_BLOCK)
mutex_unlock(&ep->recvlock);
return ret;
}
EXPORT_SYMBOL_GPL(scif_recv);
static inline void _scif_poll_wait(struct file *f, wait_queue_head_t *wq,
poll_table *p, struct scif_endpt *ep)
{
/*
* Because poll_wait makes a GFP_KERNEL allocation, give up the lock
* and regrab it afterwards. Because the endpoint state might have
* changed while the lock was given up, the state must be checked
* again after re-acquiring the lock. The code in __scif_pollfd(..)
* does this.
*/
spin_unlock(&ep->lock);
poll_wait(f, wq, p);
spin_lock(&ep->lock);
}
__poll_t
__scif_pollfd(struct file *f, poll_table *wait, struct scif_endpt *ep)
{
__poll_t mask = 0;
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI pollfd: ep %p %s\n", ep, scif_ep_states[ep->state]);
spin_lock(&ep->lock);
/* Endpoint is waiting for a non-blocking connect to complete */
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
_scif_poll_wait(f, &ep->conn_pend_wq, wait, ep);
if (ep->conn_async_state == ASYNC_CONN_INPROGRESS) {
if (ep->state == SCIFEP_CONNECTED ||
ep->state == SCIFEP_DISCONNECTED ||
ep->conn_err)
mask |= EPOLLOUT;
goto exit;
}
}
/* Endpoint is listening for incoming connection requests */
if (ep->state == SCIFEP_LISTENING) {
_scif_poll_wait(f, &ep->conwq, wait, ep);
if (ep->state == SCIFEP_LISTENING) {
if (ep->conreqcnt)
mask |= EPOLLIN;
goto exit;
}
}
/* Endpoint is connected or disconnected */
if (ep->state == SCIFEP_CONNECTED || ep->state == SCIFEP_DISCONNECTED) {
if (poll_requested_events(wait) & EPOLLIN)
_scif_poll_wait(f, &ep->recvwq, wait, ep);
if (poll_requested_events(wait) & EPOLLOUT)
_scif_poll_wait(f, &ep->sendwq, wait, ep);
if (ep->state == SCIFEP_CONNECTED ||
ep->state == SCIFEP_DISCONNECTED) {
/* Data can be read without blocking */
if (scif_rb_count(&ep->qp_info.qp->inbound_q, 1))
mask |= EPOLLIN;
/* Data can be written without blocking */
if (scif_rb_space(&ep->qp_info.qp->outbound_q))
mask |= EPOLLOUT;
/* Return EPOLLHUP if endpoint is disconnected */
if (ep->state == SCIFEP_DISCONNECTED)
mask |= EPOLLHUP;
goto exit;
}
}
/* Return EPOLLERR if the endpoint is in none of the above states */
mask |= EPOLLERR;
exit:
spin_unlock(&ep->lock);
return mask;
}
/**
* scif_poll() - Kernel mode SCIF poll
* @ufds: Array of scif_pollepd structures containing the end points
* and events to poll on
* @nfds: Size of the ufds array
* @timeout_msecs: Timeout in msecs, -ve implies infinite timeout
*
* The code flow in this function is based on do_poll(..) in select.c
*
* Returns the number of endpoints which have pending events or 0 in
* the event of a timeout. If a signal is used for wake up, -EINTR is
* returned.
*/
int
scif_poll(struct scif_pollepd *ufds, unsigned int nfds, long timeout_msecs)
{
struct poll_wqueues table;
poll_table *pt;
int i, count = 0, timed_out = timeout_msecs == 0;
__poll_t mask;
u64 timeout = timeout_msecs < 0 ? MAX_SCHEDULE_TIMEOUT
: msecs_to_jiffies(timeout_msecs);
poll_initwait(&table);
pt = &table.pt;
while (1) {
for (i = 0; i < nfds; i++) {
pt->_key = ufds[i].events | EPOLLERR | EPOLLHUP;
mask = __scif_pollfd(ufds[i].epd->anon,
pt, ufds[i].epd);
mask &= ufds[i].events | EPOLLERR | EPOLLHUP;
if (mask) {
count++;
pt->_qproc = NULL;
}
ufds[i].revents = mask;
}
pt->_qproc = NULL;
if (!count) {
count = table.error;
if (signal_pending(current))
count = -EINTR;
}
if (count || timed_out)
break;
if (!schedule_timeout_interruptible(timeout))
timed_out = 1;
}
poll_freewait(&table);
return count;
}
EXPORT_SYMBOL_GPL(scif_poll);
int scif_get_node_ids(u16 *nodes, int len, u16 *self)
{
int online = 0;
int offset = 0;
int node;
if (!scif_is_mgmt_node())
scif_get_node_info();
*self = scif_info.nodeid;
mutex_lock(&scif_info.conflock);
len = min_t(int, len, scif_info.total);
for (node = 0; node <= scif_info.maxid; node++) {
if (_scifdev_alive(&scif_dev[node])) {
online++;
if (offset < len)
nodes[offset++] = node;
}
}
dev_dbg(scif_info.mdev.this_device,
"SCIFAPI get_node_ids total %d online %d filled in %d nodes\n",
scif_info.total, online, offset);
mutex_unlock(&scif_info.conflock);
return online;
}
EXPORT_SYMBOL_GPL(scif_get_node_ids);
static int scif_add_client_dev(struct device *dev, struct subsys_interface *si)
{
struct scif_client *client =
container_of(si, struct scif_client, si);
struct scif_peer_dev *spdev =
container_of(dev, struct scif_peer_dev, dev);
if (client->probe)
client->probe(spdev);
return 0;
}
static void scif_remove_client_dev(struct device *dev,
struct subsys_interface *si)
{
struct scif_client *client =
container_of(si, struct scif_client, si);
struct scif_peer_dev *spdev =
container_of(dev, struct scif_peer_dev, dev);
if (client->remove)
client->remove(spdev);
}
void scif_client_unregister(struct scif_client *client)
{
subsys_interface_unregister(&client->si);
}
EXPORT_SYMBOL_GPL(scif_client_unregister);
int scif_client_register(struct scif_client *client)
{
struct subsys_interface *si = &client->si;
si->name = client->name;
si->subsys = &scif_peer_bus;
si->add_dev = scif_add_client_dev;
si->remove_dev = scif_remove_client_dev;
return subsys_interface_register(&client->si);
}
EXPORT_SYMBOL_GPL(scif_client_register);