|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/pgtable.h> | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/clock.h> | 
|  | #include <linux/thread_info.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/bugs.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/intel-family.h> | 
|  | #include <asm/microcode_intel.h> | 
|  | #include <asm/hwcap2.h> | 
|  | #include <asm/elf.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/cmdline.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/resctrl.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/thermal.h> | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | #include <linux/topology.h> | 
|  | #endif | 
|  |  | 
|  | #include "cpu.h" | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | #include <asm/mpspec.h> | 
|  | #include <asm/apic.h> | 
|  | #endif | 
|  |  | 
|  | enum split_lock_detect_state { | 
|  | sld_off = 0, | 
|  | sld_warn, | 
|  | sld_fatal, | 
|  | sld_ratelimit, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Default to sld_off because most systems do not support split lock detection. | 
|  | * sld_state_setup() will switch this to sld_warn on systems that support | 
|  | * split lock/bus lock detect, unless there is a command line override. | 
|  | */ | 
|  | static enum split_lock_detect_state sld_state __ro_after_init = sld_off; | 
|  | static u64 msr_test_ctrl_cache __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * With a name like MSR_TEST_CTL it should go without saying, but don't touch | 
|  | * MSR_TEST_CTL unless the CPU is one of the whitelisted models.  Writing it | 
|  | * on CPUs that do not support SLD can cause fireworks, even when writing '0'. | 
|  | */ | 
|  | static bool cpu_model_supports_sld __ro_after_init; | 
|  |  | 
|  | /* | 
|  | * Processors which have self-snooping capability can handle conflicting | 
|  | * memory type across CPUs by snooping its own cache. However, there exists | 
|  | * CPU models in which having conflicting memory types still leads to | 
|  | * unpredictable behavior, machine check errors, or hangs. Clear this | 
|  | * feature to prevent its use on machines with known erratas. | 
|  | */ | 
|  | static void check_memory_type_self_snoop_errata(struct cpuinfo_x86 *c) | 
|  | { | 
|  | switch (c->x86_model) { | 
|  | case INTEL_FAM6_CORE_YONAH: | 
|  | case INTEL_FAM6_CORE2_MEROM: | 
|  | case INTEL_FAM6_CORE2_MEROM_L: | 
|  | case INTEL_FAM6_CORE2_PENRYN: | 
|  | case INTEL_FAM6_CORE2_DUNNINGTON: | 
|  | case INTEL_FAM6_NEHALEM: | 
|  | case INTEL_FAM6_NEHALEM_G: | 
|  | case INTEL_FAM6_NEHALEM_EP: | 
|  | case INTEL_FAM6_NEHALEM_EX: | 
|  | case INTEL_FAM6_WESTMERE: | 
|  | case INTEL_FAM6_WESTMERE_EP: | 
|  | case INTEL_FAM6_SANDYBRIDGE: | 
|  | setup_clear_cpu_cap(X86_FEATURE_SELFSNOOP); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool ring3mwait_disabled __read_mostly; | 
|  |  | 
|  | static int __init ring3mwait_disable(char *__unused) | 
|  | { | 
|  | ring3mwait_disabled = true; | 
|  | return 0; | 
|  | } | 
|  | __setup("ring3mwait=disable", ring3mwait_disable); | 
|  |  | 
|  | static void probe_xeon_phi_r3mwait(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* | 
|  | * Ring 3 MONITOR/MWAIT feature cannot be detected without | 
|  | * cpu model and family comparison. | 
|  | */ | 
|  | if (c->x86 != 6) | 
|  | return; | 
|  | switch (c->x86_model) { | 
|  | case INTEL_FAM6_XEON_PHI_KNL: | 
|  | case INTEL_FAM6_XEON_PHI_KNM: | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ring3mwait_disabled) | 
|  | return; | 
|  |  | 
|  | set_cpu_cap(c, X86_FEATURE_RING3MWAIT); | 
|  | this_cpu_or(msr_misc_features_shadow, | 
|  | 1UL << MSR_MISC_FEATURES_ENABLES_RING3MWAIT_BIT); | 
|  |  | 
|  | if (c == &boot_cpu_data) | 
|  | ELF_HWCAP2 |= HWCAP2_RING3MWAIT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early microcode releases for the Spectre v2 mitigation were broken. | 
|  | * Information taken from; | 
|  | * - https://newsroom.intel.com/wp-content/uploads/sites/11/2018/03/microcode-update-guidance.pdf | 
|  | * - https://kb.vmware.com/s/article/52345 | 
|  | * - Microcode revisions observed in the wild | 
|  | * - Release note from 20180108 microcode release | 
|  | */ | 
|  | struct sku_microcode { | 
|  | u8 model; | 
|  | u8 stepping; | 
|  | u32 microcode; | 
|  | }; | 
|  | static const struct sku_microcode spectre_bad_microcodes[] = { | 
|  | { INTEL_FAM6_KABYLAKE,		0x0B,	0x80 }, | 
|  | { INTEL_FAM6_KABYLAKE,		0x0A,	0x80 }, | 
|  | { INTEL_FAM6_KABYLAKE,		0x09,	0x80 }, | 
|  | { INTEL_FAM6_KABYLAKE_L,	0x0A,	0x80 }, | 
|  | { INTEL_FAM6_KABYLAKE_L,	0x09,	0x80 }, | 
|  | { INTEL_FAM6_SKYLAKE_X,		0x03,	0x0100013e }, | 
|  | { INTEL_FAM6_SKYLAKE_X,		0x04,	0x0200003c }, | 
|  | { INTEL_FAM6_BROADWELL,		0x04,	0x28 }, | 
|  | { INTEL_FAM6_BROADWELL_G,	0x01,	0x1b }, | 
|  | { INTEL_FAM6_BROADWELL_D,	0x02,	0x14 }, | 
|  | { INTEL_FAM6_BROADWELL_D,	0x03,	0x07000011 }, | 
|  | { INTEL_FAM6_BROADWELL_X,	0x01,	0x0b000025 }, | 
|  | { INTEL_FAM6_HASWELL_L,		0x01,	0x21 }, | 
|  | { INTEL_FAM6_HASWELL_G,		0x01,	0x18 }, | 
|  | { INTEL_FAM6_HASWELL,		0x03,	0x23 }, | 
|  | { INTEL_FAM6_HASWELL_X,		0x02,	0x3b }, | 
|  | { INTEL_FAM6_HASWELL_X,		0x04,	0x10 }, | 
|  | { INTEL_FAM6_IVYBRIDGE_X,	0x04,	0x42a }, | 
|  | /* Observed in the wild */ | 
|  | { INTEL_FAM6_SANDYBRIDGE_X,	0x06,	0x61b }, | 
|  | { INTEL_FAM6_SANDYBRIDGE_X,	0x07,	0x712 }, | 
|  | }; | 
|  |  | 
|  | static bool bad_spectre_microcode(struct cpuinfo_x86 *c) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * We know that the hypervisor lie to us on the microcode version so | 
|  | * we may as well hope that it is running the correct version. | 
|  | */ | 
|  | if (cpu_has(c, X86_FEATURE_HYPERVISOR)) | 
|  | return false; | 
|  |  | 
|  | if (c->x86 != 6) | 
|  | return false; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(spectre_bad_microcodes); i++) { | 
|  | if (c->x86_model == spectre_bad_microcodes[i].model && | 
|  | c->x86_stepping == spectre_bad_microcodes[i].stepping) | 
|  | return (c->microcode <= spectre_bad_microcodes[i].microcode); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void early_init_intel(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 misc_enable; | 
|  |  | 
|  | /* Unmask CPUID levels if masked: */ | 
|  | if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { | 
|  | if (msr_clear_bit(MSR_IA32_MISC_ENABLE, | 
|  | MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) { | 
|  | c->cpuid_level = cpuid_eax(0); | 
|  | get_cpu_cap(c); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((c->x86 == 0xf && c->x86_model >= 0x03) || | 
|  | (c->x86 == 0x6 && c->x86_model >= 0x0e)) | 
|  | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 
|  |  | 
|  | if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) | 
|  | c->microcode = intel_get_microcode_revision(); | 
|  |  | 
|  | /* Now if any of them are set, check the blacklist and clear the lot */ | 
|  | if ((cpu_has(c, X86_FEATURE_SPEC_CTRL) || | 
|  | cpu_has(c, X86_FEATURE_INTEL_STIBP) || | 
|  | cpu_has(c, X86_FEATURE_IBRS) || cpu_has(c, X86_FEATURE_IBPB) || | 
|  | cpu_has(c, X86_FEATURE_STIBP)) && bad_spectre_microcode(c)) { | 
|  | pr_warn("Intel Spectre v2 broken microcode detected; disabling Speculation Control\n"); | 
|  | setup_clear_cpu_cap(X86_FEATURE_IBRS); | 
|  | setup_clear_cpu_cap(X86_FEATURE_IBPB); | 
|  | setup_clear_cpu_cap(X86_FEATURE_STIBP); | 
|  | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL); | 
|  | setup_clear_cpu_cap(X86_FEATURE_MSR_SPEC_CTRL); | 
|  | setup_clear_cpu_cap(X86_FEATURE_INTEL_STIBP); | 
|  | setup_clear_cpu_cap(X86_FEATURE_SSBD); | 
|  | setup_clear_cpu_cap(X86_FEATURE_SPEC_CTRL_SSBD); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Atom erratum AAE44/AAF40/AAG38/AAH41: | 
|  | * | 
|  | * A race condition between speculative fetches and invalidating | 
|  | * a large page.  This is worked around in microcode, but we | 
|  | * need the microcode to have already been loaded... so if it is | 
|  | * not, recommend a BIOS update and disable large pages. | 
|  | */ | 
|  | if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_stepping <= 2 && | 
|  | c->microcode < 0x20e) { | 
|  | pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n"); | 
|  | clear_cpu_cap(c, X86_FEATURE_PSE); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | set_cpu_cap(c, X86_FEATURE_SYSENTER32); | 
|  | #else | 
|  | /* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */ | 
|  | if (c->x86 == 15 && c->x86_cache_alignment == 64) | 
|  | c->x86_cache_alignment = 128; | 
|  | #endif | 
|  |  | 
|  | /* CPUID workaround for 0F33/0F34 CPU */ | 
|  | if (c->x86 == 0xF && c->x86_model == 0x3 | 
|  | && (c->x86_stepping == 0x3 || c->x86_stepping == 0x4)) | 
|  | c->x86_phys_bits = 36; | 
|  |  | 
|  | /* | 
|  | * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate | 
|  | * with P/T states and does not stop in deep C-states. | 
|  | * | 
|  | * It is also reliable across cores and sockets. (but not across | 
|  | * cabinets - we turn it off in that case explicitly.) | 
|  | */ | 
|  | if (c->x86_power & (1 << 8)) { | 
|  | set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); | 
|  | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); | 
|  | } | 
|  |  | 
|  | /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ | 
|  | if (c->x86 == 6) { | 
|  | switch (c->x86_model) { | 
|  | case INTEL_FAM6_ATOM_SALTWELL_MID: | 
|  | case INTEL_FAM6_ATOM_SALTWELL_TABLET: | 
|  | case INTEL_FAM6_ATOM_SILVERMONT_MID: | 
|  | case INTEL_FAM6_ATOM_AIRMONT_NP: | 
|  | set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is a known erratum on Pentium III and Core Solo | 
|  | * and Core Duo CPUs. | 
|  | * " Page with PAT set to WC while associated MTRR is UC | 
|  | *   may consolidate to UC " | 
|  | * Because of this erratum, it is better to stick with | 
|  | * setting WC in MTRR rather than using PAT on these CPUs. | 
|  | * | 
|  | * Enable PAT WC only on P4, Core 2 or later CPUs. | 
|  | */ | 
|  | if (c->x86 == 6 && c->x86_model < 15) | 
|  | clear_cpu_cap(c, X86_FEATURE_PAT); | 
|  |  | 
|  | /* | 
|  | * If fast string is not enabled in IA32_MISC_ENABLE for any reason, | 
|  | * clear the fast string and enhanced fast string CPU capabilities. | 
|  | */ | 
|  | if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) { | 
|  | rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable); | 
|  | if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) { | 
|  | pr_info("Disabled fast string operations\n"); | 
|  | setup_clear_cpu_cap(X86_FEATURE_REP_GOOD); | 
|  | setup_clear_cpu_cap(X86_FEATURE_ERMS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Intel Quark Core DevMan_001.pdf section 6.4.11 | 
|  | * "The operating system also is required to invalidate (i.e., flush) | 
|  | *  the TLB when any changes are made to any of the page table entries. | 
|  | *  The operating system must reload CR3 to cause the TLB to be flushed" | 
|  | * | 
|  | * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h | 
|  | * should be false so that __flush_tlb_all() causes CR3 instead of CR4.PGE | 
|  | * to be modified. | 
|  | */ | 
|  | if (c->x86 == 5 && c->x86_model == 9) { | 
|  | pr_info("Disabling PGE capability bit\n"); | 
|  | setup_clear_cpu_cap(X86_FEATURE_PGE); | 
|  | } | 
|  |  | 
|  | if (c->cpuid_level >= 0x00000001) { | 
|  | u32 eax, ebx, ecx, edx; | 
|  |  | 
|  | cpuid(0x00000001, &eax, &ebx, &ecx, &edx); | 
|  | /* | 
|  | * If HTT (EDX[28]) is set EBX[16:23] contain the number of | 
|  | * apicids which are reserved per package. Store the resulting | 
|  | * shift value for the package management code. | 
|  | */ | 
|  | if (edx & (1U << 28)) | 
|  | c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff); | 
|  | } | 
|  |  | 
|  | check_memory_type_self_snoop_errata(c); | 
|  |  | 
|  | /* | 
|  | * Get the number of SMT siblings early from the extended topology | 
|  | * leaf, if available. Otherwise try the legacy SMT detection. | 
|  | */ | 
|  | if (detect_extended_topology_early(c) < 0) | 
|  | detect_ht_early(c); | 
|  | } | 
|  |  | 
|  | static void bsp_init_intel(struct cpuinfo_x86 *c) | 
|  | { | 
|  | resctrl_cpu_detect(c); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | *	Early probe support logic for ppro memory erratum #50 | 
|  | * | 
|  | *	This is called before we do cpu ident work | 
|  | */ | 
|  |  | 
|  | int ppro_with_ram_bug(void) | 
|  | { | 
|  | /* Uses data from early_cpu_detect now */ | 
|  | if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL && | 
|  | boot_cpu_data.x86 == 6 && | 
|  | boot_cpu_data.x86_model == 1 && | 
|  | boot_cpu_data.x86_stepping < 8) { | 
|  | pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n"); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_smp_check(struct cpuinfo_x86 *c) | 
|  | { | 
|  | /* calling is from identify_secondary_cpu() ? */ | 
|  | if (!c->cpu_index) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Mask B, Pentium, but not Pentium MMX | 
|  | */ | 
|  | if (c->x86 == 5 && | 
|  | c->x86_stepping >= 1 && c->x86_stepping <= 4 && | 
|  | c->x86_model <= 3) { | 
|  | /* | 
|  | * Remember we have B step Pentia with bugs | 
|  | */ | 
|  | WARN_ONCE(1, "WARNING: SMP operation may be unreliable" | 
|  | "with B stepping processors.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int forcepae; | 
|  | static int __init forcepae_setup(char *__unused) | 
|  | { | 
|  | forcepae = 1; | 
|  | return 1; | 
|  | } | 
|  | __setup("forcepae", forcepae_setup); | 
|  |  | 
|  | static void intel_workarounds(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | /* | 
|  | * All models of Pentium and Pentium with MMX technology CPUs | 
|  | * have the F0 0F bug, which lets nonprivileged users lock up the | 
|  | * system. Announce that the fault handler will be checking for it. | 
|  | * The Quark is also family 5, but does not have the same bug. | 
|  | */ | 
|  | clear_cpu_bug(c, X86_BUG_F00F); | 
|  | if (c->x86 == 5 && c->x86_model < 9) { | 
|  | static int f00f_workaround_enabled; | 
|  |  | 
|  | set_cpu_bug(c, X86_BUG_F00F); | 
|  | if (!f00f_workaround_enabled) { | 
|  | pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n"); | 
|  | f00f_workaround_enabled = 1; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until | 
|  | * model 3 mask 3 | 
|  | */ | 
|  | if ((c->x86<<8 | c->x86_model<<4 | c->x86_stepping) < 0x633) | 
|  | clear_cpu_cap(c, X86_FEATURE_SEP); | 
|  |  | 
|  | /* | 
|  | * PAE CPUID issue: many Pentium M report no PAE but may have a | 
|  | * functionally usable PAE implementation. | 
|  | * Forcefully enable PAE if kernel parameter "forcepae" is present. | 
|  | */ | 
|  | if (forcepae) { | 
|  | pr_warn("PAE forced!\n"); | 
|  | set_cpu_cap(c, X86_FEATURE_PAE); | 
|  | add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * P4 Xeon erratum 037 workaround. | 
|  | * Hardware prefetcher may cause stale data to be loaded into the cache. | 
|  | */ | 
|  | if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_stepping == 1)) { | 
|  | if (msr_set_bit(MSR_IA32_MISC_ENABLE, | 
|  | MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) { | 
|  | pr_info("CPU: C0 stepping P4 Xeon detected.\n"); | 
|  | pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See if we have a good local APIC by checking for buggy Pentia, | 
|  | * i.e. all B steppings and the C2 stepping of P54C when using their | 
|  | * integrated APIC (see 11AP erratum in "Pentium Processor | 
|  | * Specification Update"). | 
|  | */ | 
|  | if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 && | 
|  | (c->x86_stepping < 0x6 || c->x86_stepping == 0xb)) | 
|  | set_cpu_bug(c, X86_BUG_11AP); | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_X86_INTEL_USERCOPY | 
|  | /* | 
|  | * Set up the preferred alignment for movsl bulk memory moves | 
|  | */ | 
|  | switch (c->x86) { | 
|  | case 4:		/* 486: untested */ | 
|  | break; | 
|  | case 5:		/* Old Pentia: untested */ | 
|  | break; | 
|  | case 6:		/* PII/PIII only like movsl with 8-byte alignment */ | 
|  | movsl_mask.mask = 7; | 
|  | break; | 
|  | case 15:	/* P4 is OK down to 8-byte alignment */ | 
|  | movsl_mask.mask = 7; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | intel_smp_check(c); | 
|  | } | 
|  | #else | 
|  | static void intel_workarounds(struct cpuinfo_x86 *c) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void srat_detect_node(struct cpuinfo_x86 *c) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | unsigned node; | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | /* Don't do the funky fallback heuristics the AMD version employs | 
|  | for now. */ | 
|  | node = numa_cpu_node(cpu); | 
|  | if (node == NUMA_NO_NODE || !node_online(node)) { | 
|  | /* reuse the value from init_cpu_to_node() */ | 
|  | node = cpu_to_node(cpu); | 
|  | } | 
|  | numa_set_node(cpu, node); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #define MSR_IA32_TME_ACTIVATE		0x982 | 
|  |  | 
|  | /* Helpers to access TME_ACTIVATE MSR */ | 
|  | #define TME_ACTIVATE_LOCKED(x)		(x & 0x1) | 
|  | #define TME_ACTIVATE_ENABLED(x)		(x & 0x2) | 
|  |  | 
|  | #define TME_ACTIVATE_POLICY(x)		((x >> 4) & 0xf)	/* Bits 7:4 */ | 
|  | #define TME_ACTIVATE_POLICY_AES_XTS_128	0 | 
|  |  | 
|  | #define TME_ACTIVATE_KEYID_BITS(x)	((x >> 32) & 0xf)	/* Bits 35:32 */ | 
|  |  | 
|  | #define TME_ACTIVATE_CRYPTO_ALGS(x)	((x >> 48) & 0xffff)	/* Bits 63:48 */ | 
|  | #define TME_ACTIVATE_CRYPTO_AES_XTS_128	1 | 
|  |  | 
|  | /* Values for mktme_status (SW only construct) */ | 
|  | #define MKTME_ENABLED			0 | 
|  | #define MKTME_DISABLED			1 | 
|  | #define MKTME_UNINITIALIZED		2 | 
|  | static int mktme_status = MKTME_UNINITIALIZED; | 
|  |  | 
|  | static void detect_tme(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 tme_activate, tme_policy, tme_crypto_algs; | 
|  | int keyid_bits = 0, nr_keyids = 0; | 
|  | static u64 tme_activate_cpu0 = 0; | 
|  |  | 
|  | rdmsrl(MSR_IA32_TME_ACTIVATE, tme_activate); | 
|  |  | 
|  | if (mktme_status != MKTME_UNINITIALIZED) { | 
|  | if (tme_activate != tme_activate_cpu0) { | 
|  | /* Broken BIOS? */ | 
|  | pr_err_once("x86/tme: configuration is inconsistent between CPUs\n"); | 
|  | pr_err_once("x86/tme: MKTME is not usable\n"); | 
|  | mktme_status = MKTME_DISABLED; | 
|  |  | 
|  | /* Proceed. We may need to exclude bits from x86_phys_bits. */ | 
|  | } | 
|  | } else { | 
|  | tme_activate_cpu0 = tme_activate; | 
|  | } | 
|  |  | 
|  | if (!TME_ACTIVATE_LOCKED(tme_activate) || !TME_ACTIVATE_ENABLED(tme_activate)) { | 
|  | pr_info_once("x86/tme: not enabled by BIOS\n"); | 
|  | mktme_status = MKTME_DISABLED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (mktme_status != MKTME_UNINITIALIZED) | 
|  | goto detect_keyid_bits; | 
|  |  | 
|  | pr_info("x86/tme: enabled by BIOS\n"); | 
|  |  | 
|  | tme_policy = TME_ACTIVATE_POLICY(tme_activate); | 
|  | if (tme_policy != TME_ACTIVATE_POLICY_AES_XTS_128) | 
|  | pr_warn("x86/tme: Unknown policy is active: %#llx\n", tme_policy); | 
|  |  | 
|  | tme_crypto_algs = TME_ACTIVATE_CRYPTO_ALGS(tme_activate); | 
|  | if (!(tme_crypto_algs & TME_ACTIVATE_CRYPTO_AES_XTS_128)) { | 
|  | pr_err("x86/mktme: No known encryption algorithm is supported: %#llx\n", | 
|  | tme_crypto_algs); | 
|  | mktme_status = MKTME_DISABLED; | 
|  | } | 
|  | detect_keyid_bits: | 
|  | keyid_bits = TME_ACTIVATE_KEYID_BITS(tme_activate); | 
|  | nr_keyids = (1UL << keyid_bits) - 1; | 
|  | if (nr_keyids) { | 
|  | pr_info_once("x86/mktme: enabled by BIOS\n"); | 
|  | pr_info_once("x86/mktme: %d KeyIDs available\n", nr_keyids); | 
|  | } else { | 
|  | pr_info_once("x86/mktme: disabled by BIOS\n"); | 
|  | } | 
|  |  | 
|  | if (mktme_status == MKTME_UNINITIALIZED) { | 
|  | /* MKTME is usable */ | 
|  | mktme_status = MKTME_ENABLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * KeyID bits effectively lower the number of physical address | 
|  | * bits.  Update cpuinfo_x86::x86_phys_bits accordingly. | 
|  | */ | 
|  | c->x86_phys_bits -= keyid_bits; | 
|  | } | 
|  |  | 
|  | static void init_cpuid_fault(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | if (!rdmsrl_safe(MSR_PLATFORM_INFO, &msr)) { | 
|  | if (msr & MSR_PLATFORM_INFO_CPUID_FAULT) | 
|  | set_cpu_cap(c, X86_FEATURE_CPUID_FAULT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_intel_misc_features(struct cpuinfo_x86 *c) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | if (rdmsrl_safe(MSR_MISC_FEATURES_ENABLES, &msr)) | 
|  | return; | 
|  |  | 
|  | /* Clear all MISC features */ | 
|  | this_cpu_write(msr_misc_features_shadow, 0); | 
|  |  | 
|  | /* Check features and update capabilities and shadow control bits */ | 
|  | init_cpuid_fault(c); | 
|  | probe_xeon_phi_r3mwait(c); | 
|  |  | 
|  | msr = this_cpu_read(msr_misc_features_shadow); | 
|  | wrmsrl(MSR_MISC_FEATURES_ENABLES, msr); | 
|  | } | 
|  |  | 
|  | static void split_lock_init(void); | 
|  | static void bus_lock_init(void); | 
|  |  | 
|  | static void init_intel(struct cpuinfo_x86 *c) | 
|  | { | 
|  | early_init_intel(c); | 
|  |  | 
|  | intel_workarounds(c); | 
|  |  | 
|  | /* | 
|  | * Detect the extended topology information if available. This | 
|  | * will reinitialise the initial_apicid which will be used | 
|  | * in init_intel_cacheinfo() | 
|  | */ | 
|  | detect_extended_topology(c); | 
|  |  | 
|  | if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) { | 
|  | /* | 
|  | * let's use the legacy cpuid vector 0x1 and 0x4 for topology | 
|  | * detection. | 
|  | */ | 
|  | detect_num_cpu_cores(c); | 
|  | #ifdef CONFIG_X86_32 | 
|  | detect_ht(c); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | init_intel_cacheinfo(c); | 
|  |  | 
|  | if (c->cpuid_level > 9) { | 
|  | unsigned eax = cpuid_eax(10); | 
|  | /* Check for version and the number of counters */ | 
|  | if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) | 
|  | set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON); | 
|  | } | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_XMM2)) | 
|  | set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_DS)) { | 
|  | unsigned int l1, l2; | 
|  |  | 
|  | rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); | 
|  | if (!(l1 & (1<<11))) | 
|  | set_cpu_cap(c, X86_FEATURE_BTS); | 
|  | if (!(l1 & (1<<12))) | 
|  | set_cpu_cap(c, X86_FEATURE_PEBS); | 
|  | } | 
|  |  | 
|  | if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) && | 
|  | (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47)) | 
|  | set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR); | 
|  |  | 
|  | if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) && | 
|  | ((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT))) | 
|  | set_cpu_bug(c, X86_BUG_MONITOR); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (c->x86 == 15) | 
|  | c->x86_cache_alignment = c->x86_clflush_size * 2; | 
|  | if (c->x86 == 6) | 
|  | set_cpu_cap(c, X86_FEATURE_REP_GOOD); | 
|  | #else | 
|  | /* | 
|  | * Names for the Pentium II/Celeron processors | 
|  | * detectable only by also checking the cache size. | 
|  | * Dixon is NOT a Celeron. | 
|  | */ | 
|  | if (c->x86 == 6) { | 
|  | unsigned int l2 = c->x86_cache_size; | 
|  | char *p = NULL; | 
|  |  | 
|  | switch (c->x86_model) { | 
|  | case 5: | 
|  | if (l2 == 0) | 
|  | p = "Celeron (Covington)"; | 
|  | else if (l2 == 256) | 
|  | p = "Mobile Pentium II (Dixon)"; | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | if (l2 == 128) | 
|  | p = "Celeron (Mendocino)"; | 
|  | else if (c->x86_stepping == 0 || c->x86_stepping == 5) | 
|  | p = "Celeron-A"; | 
|  | break; | 
|  |  | 
|  | case 8: | 
|  | if (l2 == 128) | 
|  | p = "Celeron (Coppermine)"; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (p) | 
|  | strcpy(c->x86_model_id, p); | 
|  | } | 
|  |  | 
|  | if (c->x86 == 15) | 
|  | set_cpu_cap(c, X86_FEATURE_P4); | 
|  | if (c->x86 == 6) | 
|  | set_cpu_cap(c, X86_FEATURE_P3); | 
|  | #endif | 
|  |  | 
|  | /* Work around errata */ | 
|  | srat_detect_node(c); | 
|  |  | 
|  | init_ia32_feat_ctl(c); | 
|  |  | 
|  | if (cpu_has(c, X86_FEATURE_TME)) | 
|  | detect_tme(c); | 
|  |  | 
|  | init_intel_misc_features(c); | 
|  |  | 
|  | if (tsx_ctrl_state == TSX_CTRL_ENABLE) | 
|  | tsx_enable(); | 
|  | else if (tsx_ctrl_state == TSX_CTRL_DISABLE) | 
|  | tsx_disable(); | 
|  | else if (tsx_ctrl_state == TSX_CTRL_RTM_ALWAYS_ABORT) | 
|  | tsx_clear_cpuid(); | 
|  |  | 
|  | split_lock_init(); | 
|  | bus_lock_init(); | 
|  |  | 
|  | intel_init_thermal(c); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size) | 
|  | { | 
|  | /* | 
|  | * Intel PIII Tualatin. This comes in two flavours. | 
|  | * One has 256kb of cache, the other 512. We have no way | 
|  | * to determine which, so we use a boottime override | 
|  | * for the 512kb model, and assume 256 otherwise. | 
|  | */ | 
|  | if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0)) | 
|  | size = 256; | 
|  |  | 
|  | /* | 
|  | * Intel Quark SoC X1000 contains a 4-way set associative | 
|  | * 16K cache with a 16 byte cache line and 256 lines per tag | 
|  | */ | 
|  | if ((c->x86 == 5) && (c->x86_model == 9)) | 
|  | size = 16; | 
|  | return size; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #define TLB_INST_4K	0x01 | 
|  | #define TLB_INST_4M	0x02 | 
|  | #define TLB_INST_2M_4M	0x03 | 
|  |  | 
|  | #define TLB_INST_ALL	0x05 | 
|  | #define TLB_INST_1G	0x06 | 
|  |  | 
|  | #define TLB_DATA_4K	0x11 | 
|  | #define TLB_DATA_4M	0x12 | 
|  | #define TLB_DATA_2M_4M	0x13 | 
|  | #define TLB_DATA_4K_4M	0x14 | 
|  |  | 
|  | #define TLB_DATA_1G	0x16 | 
|  |  | 
|  | #define TLB_DATA0_4K	0x21 | 
|  | #define TLB_DATA0_4M	0x22 | 
|  | #define TLB_DATA0_2M_4M	0x23 | 
|  |  | 
|  | #define STLB_4K		0x41 | 
|  | #define STLB_4K_2M	0x42 | 
|  |  | 
|  | static const struct _tlb_table intel_tlb_table[] = { | 
|  | { 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" }, | 
|  | { 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" }, | 
|  | { 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" }, | 
|  | { 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" }, | 
|  | { 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" }, | 
|  | { 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" }, | 
|  | { 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages" }, | 
|  | { 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, | 
|  | { 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, | 
|  | { 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" }, | 
|  | { 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" }, | 
|  | { 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" }, | 
|  | { 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" }, | 
|  | { 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" }, | 
|  | { 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" }, | 
|  | { 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" }, | 
|  | { 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" }, | 
|  | { 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" }, | 
|  | { 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" }, | 
|  | { 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" }, | 
|  | { 0x6b, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 8-way associative" }, | 
|  | { 0x6c, TLB_DATA_2M_4M,		128,	" TLB_DATA 2 MByte or 4 MByte pages, 8-way associative" }, | 
|  | { 0x6d, TLB_DATA_1G,		16,	" TLB_DATA 1 GByte pages, fully associative" }, | 
|  | { 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" }, | 
|  | { 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" }, | 
|  | { 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" }, | 
|  | { 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" }, | 
|  | { 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" }, | 
|  | { 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" }, | 
|  | { 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" }, | 
|  | { 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" }, | 
|  | { 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" }, | 
|  | { 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" }, | 
|  | { 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" }, | 
|  | { 0xc2, TLB_DATA_2M_4M,		16,	" TLB_DATA 2 MByte/4MByte pages, 4-way associative" }, | 
|  | { 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" }, | 
|  | { 0x00, 0, 0 } | 
|  | }; | 
|  |  | 
|  | static void intel_tlb_lookup(const unsigned char desc) | 
|  | { | 
|  | unsigned char k; | 
|  | if (desc == 0) | 
|  | return; | 
|  |  | 
|  | /* look up this descriptor in the table */ | 
|  | for (k = 0; intel_tlb_table[k].descriptor != desc && | 
|  | intel_tlb_table[k].descriptor != 0; k++) | 
|  | ; | 
|  |  | 
|  | if (intel_tlb_table[k].tlb_type == 0) | 
|  | return; | 
|  |  | 
|  | switch (intel_tlb_table[k].tlb_type) { | 
|  | case STLB_4K: | 
|  | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case STLB_4K_2M: | 
|  | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_INST_ALL: | 
|  | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_INST_4K: | 
|  | if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_INST_4M: | 
|  | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_INST_2M_4M: | 
|  | if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_DATA_4K: | 
|  | case TLB_DATA0_4K: | 
|  | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_DATA_4M: | 
|  | case TLB_DATA0_4M: | 
|  | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_DATA_2M_4M: | 
|  | case TLB_DATA0_2M_4M: | 
|  | if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_DATA_4K_4M: | 
|  | if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries; | 
|  | if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | case TLB_DATA_1G: | 
|  | if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries) | 
|  | tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void intel_detect_tlb(struct cpuinfo_x86 *c) | 
|  | { | 
|  | int i, j, n; | 
|  | unsigned int regs[4]; | 
|  | unsigned char *desc = (unsigned char *)regs; | 
|  |  | 
|  | if (c->cpuid_level < 2) | 
|  | return; | 
|  |  | 
|  | /* Number of times to iterate */ | 
|  | n = cpuid_eax(2) & 0xFF; | 
|  |  | 
|  | for (i = 0 ; i < n ; i++) { | 
|  | cpuid(2, ®s[0], ®s[1], ®s[2], ®s[3]); | 
|  |  | 
|  | /* If bit 31 is set, this is an unknown format */ | 
|  | for (j = 0 ; j < 3 ; j++) | 
|  | if (regs[j] & (1 << 31)) | 
|  | regs[j] = 0; | 
|  |  | 
|  | /* Byte 0 is level count, not a descriptor */ | 
|  | for (j = 1 ; j < 16 ; j++) | 
|  | intel_tlb_lookup(desc[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct cpu_dev intel_cpu_dev = { | 
|  | .c_vendor	= "Intel", | 
|  | .c_ident	= { "GenuineIntel" }, | 
|  | #ifdef CONFIG_X86_32 | 
|  | .legacy_models = { | 
|  | { .family = 4, .model_names = | 
|  | { | 
|  | [0] = "486 DX-25/33", | 
|  | [1] = "486 DX-50", | 
|  | [2] = "486 SX", | 
|  | [3] = "486 DX/2", | 
|  | [4] = "486 SL", | 
|  | [5] = "486 SX/2", | 
|  | [7] = "486 DX/2-WB", | 
|  | [8] = "486 DX/4", | 
|  | [9] = "486 DX/4-WB" | 
|  | } | 
|  | }, | 
|  | { .family = 5, .model_names = | 
|  | { | 
|  | [0] = "Pentium 60/66 A-step", | 
|  | [1] = "Pentium 60/66", | 
|  | [2] = "Pentium 75 - 200", | 
|  | [3] = "OverDrive PODP5V83", | 
|  | [4] = "Pentium MMX", | 
|  | [7] = "Mobile Pentium 75 - 200", | 
|  | [8] = "Mobile Pentium MMX", | 
|  | [9] = "Quark SoC X1000", | 
|  | } | 
|  | }, | 
|  | { .family = 6, .model_names = | 
|  | { | 
|  | [0] = "Pentium Pro A-step", | 
|  | [1] = "Pentium Pro", | 
|  | [3] = "Pentium II (Klamath)", | 
|  | [4] = "Pentium II (Deschutes)", | 
|  | [5] = "Pentium II (Deschutes)", | 
|  | [6] = "Mobile Pentium II", | 
|  | [7] = "Pentium III (Katmai)", | 
|  | [8] = "Pentium III (Coppermine)", | 
|  | [10] = "Pentium III (Cascades)", | 
|  | [11] = "Pentium III (Tualatin)", | 
|  | } | 
|  | }, | 
|  | { .family = 15, .model_names = | 
|  | { | 
|  | [0] = "Pentium 4 (Unknown)", | 
|  | [1] = "Pentium 4 (Willamette)", | 
|  | [2] = "Pentium 4 (Northwood)", | 
|  | [4] = "Pentium 4 (Foster)", | 
|  | [5] = "Pentium 4 (Foster)", | 
|  | } | 
|  | }, | 
|  | }, | 
|  | .legacy_cache_size = intel_size_cache, | 
|  | #endif | 
|  | .c_detect_tlb	= intel_detect_tlb, | 
|  | .c_early_init   = early_init_intel, | 
|  | .c_bsp_init	= bsp_init_intel, | 
|  | .c_init		= init_intel, | 
|  | .c_x86_vendor	= X86_VENDOR_INTEL, | 
|  | }; | 
|  |  | 
|  | cpu_dev_register(intel_cpu_dev); | 
|  |  | 
|  | #undef pr_fmt | 
|  | #define pr_fmt(fmt) "x86/split lock detection: " fmt | 
|  |  | 
|  | static const struct { | 
|  | const char			*option; | 
|  | enum split_lock_detect_state	state; | 
|  | } sld_options[] __initconst = { | 
|  | { "off",	sld_off   }, | 
|  | { "warn",	sld_warn  }, | 
|  | { "fatal",	sld_fatal }, | 
|  | { "ratelimit:", sld_ratelimit }, | 
|  | }; | 
|  |  | 
|  | static struct ratelimit_state bld_ratelimit; | 
|  |  | 
|  | static inline bool match_option(const char *arg, int arglen, const char *opt) | 
|  | { | 
|  | int len = strlen(opt), ratelimit; | 
|  |  | 
|  | if (strncmp(arg, opt, len)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * Min ratelimit is 1 bus lock/sec. | 
|  | * Max ratelimit is 1000 bus locks/sec. | 
|  | */ | 
|  | if (sscanf(arg, "ratelimit:%d", &ratelimit) == 1 && | 
|  | ratelimit > 0 && ratelimit <= 1000) { | 
|  | ratelimit_state_init(&bld_ratelimit, HZ, ratelimit); | 
|  | ratelimit_set_flags(&bld_ratelimit, RATELIMIT_MSG_ON_RELEASE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return len == arglen; | 
|  | } | 
|  |  | 
|  | static bool split_lock_verify_msr(bool on) | 
|  | { | 
|  | u64 ctrl, tmp; | 
|  |  | 
|  | if (rdmsrl_safe(MSR_TEST_CTRL, &ctrl)) | 
|  | return false; | 
|  | if (on) | 
|  | ctrl |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; | 
|  | else | 
|  | ctrl &= ~MSR_TEST_CTRL_SPLIT_LOCK_DETECT; | 
|  | if (wrmsrl_safe(MSR_TEST_CTRL, ctrl)) | 
|  | return false; | 
|  | rdmsrl(MSR_TEST_CTRL, tmp); | 
|  | return ctrl == tmp; | 
|  | } | 
|  |  | 
|  | static void __init sld_state_setup(void) | 
|  | { | 
|  | enum split_lock_detect_state state = sld_warn; | 
|  | char arg[20]; | 
|  | int i, ret; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && | 
|  | !boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) | 
|  | return; | 
|  |  | 
|  | ret = cmdline_find_option(boot_command_line, "split_lock_detect", | 
|  | arg, sizeof(arg)); | 
|  | if (ret >= 0) { | 
|  | for (i = 0; i < ARRAY_SIZE(sld_options); i++) { | 
|  | if (match_option(arg, ret, sld_options[i].option)) { | 
|  | state = sld_options[i].state; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | sld_state = state; | 
|  | } | 
|  |  | 
|  | static void __init __split_lock_setup(void) | 
|  | { | 
|  | if (!split_lock_verify_msr(false)) { | 
|  | pr_info("MSR access failed: Disabled\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rdmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); | 
|  |  | 
|  | if (!split_lock_verify_msr(true)) { | 
|  | pr_info("MSR access failed: Disabled\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Restore the MSR to its cached value. */ | 
|  | wrmsrl(MSR_TEST_CTRL, msr_test_ctrl_cache); | 
|  |  | 
|  | setup_force_cpu_cap(X86_FEATURE_SPLIT_LOCK_DETECT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * MSR_TEST_CTRL is per core, but we treat it like a per CPU MSR. Locking | 
|  | * is not implemented as one thread could undo the setting of the other | 
|  | * thread immediately after dropping the lock anyway. | 
|  | */ | 
|  | static void sld_update_msr(bool on) | 
|  | { | 
|  | u64 test_ctrl_val = msr_test_ctrl_cache; | 
|  |  | 
|  | if (on) | 
|  | test_ctrl_val |= MSR_TEST_CTRL_SPLIT_LOCK_DETECT; | 
|  |  | 
|  | wrmsrl(MSR_TEST_CTRL, test_ctrl_val); | 
|  | } | 
|  |  | 
|  | static void split_lock_init(void) | 
|  | { | 
|  | /* | 
|  | * #DB for bus lock handles ratelimit and #AC for split lock is | 
|  | * disabled. | 
|  | */ | 
|  | if (sld_state == sld_ratelimit) { | 
|  | split_lock_verify_msr(false); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cpu_model_supports_sld) | 
|  | split_lock_verify_msr(sld_state != sld_off); | 
|  | } | 
|  |  | 
|  | static void split_lock_warn(unsigned long ip) | 
|  | { | 
|  | pr_warn_ratelimited("#AC: %s/%d took a split_lock trap at address: 0x%lx\n", | 
|  | current->comm, current->pid, ip); | 
|  |  | 
|  | /* | 
|  | * Disable the split lock detection for this task so it can make | 
|  | * progress and set TIF_SLD so the detection is re-enabled via | 
|  | * switch_to_sld() when the task is scheduled out. | 
|  | */ | 
|  | sld_update_msr(false); | 
|  | set_tsk_thread_flag(current, TIF_SLD); | 
|  | } | 
|  |  | 
|  | bool handle_guest_split_lock(unsigned long ip) | 
|  | { | 
|  | if (sld_state == sld_warn) { | 
|  | split_lock_warn(ip); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | pr_warn_once("#AC: %s/%d %s split_lock trap at address: 0x%lx\n", | 
|  | current->comm, current->pid, | 
|  | sld_state == sld_fatal ? "fatal" : "bogus", ip); | 
|  |  | 
|  | current->thread.error_code = 0; | 
|  | current->thread.trap_nr = X86_TRAP_AC; | 
|  | force_sig_fault(SIGBUS, BUS_ADRALN, NULL); | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(handle_guest_split_lock); | 
|  |  | 
|  | static void bus_lock_init(void) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | /* | 
|  | * Warn and fatal are handled by #AC for split lock if #AC for | 
|  | * split lock is supported. | 
|  | */ | 
|  | if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) || | 
|  | (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) && | 
|  | (sld_state == sld_warn || sld_state == sld_fatal)) || | 
|  | sld_state == sld_off) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Enable #DB for bus lock. All bus locks are handled in #DB except | 
|  | * split locks are handled in #AC in the fatal case. | 
|  | */ | 
|  | rdmsrl(MSR_IA32_DEBUGCTLMSR, val); | 
|  | val |= DEBUGCTLMSR_BUS_LOCK_DETECT; | 
|  | wrmsrl(MSR_IA32_DEBUGCTLMSR, val); | 
|  | } | 
|  |  | 
|  | bool handle_user_split_lock(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | if ((regs->flags & X86_EFLAGS_AC) || sld_state == sld_fatal) | 
|  | return false; | 
|  | split_lock_warn(regs->ip); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void handle_bus_lock(struct pt_regs *regs) | 
|  | { | 
|  | switch (sld_state) { | 
|  | case sld_off: | 
|  | break; | 
|  | case sld_ratelimit: | 
|  | /* Enforce no more than bld_ratelimit bus locks/sec. */ | 
|  | while (!__ratelimit(&bld_ratelimit)) | 
|  | msleep(20); | 
|  | /* Warn on the bus lock. */ | 
|  | fallthrough; | 
|  | case sld_warn: | 
|  | pr_warn_ratelimited("#DB: %s/%d took a bus_lock trap at address: 0x%lx\n", | 
|  | current->comm, current->pid, regs->ip); | 
|  | break; | 
|  | case sld_fatal: | 
|  | force_sig_fault(SIGBUS, BUS_ADRALN, NULL); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called only when switching between tasks with | 
|  | * different split-lock detection modes. It sets the MSR for the | 
|  | * mode of the new task. This is right most of the time, but since | 
|  | * the MSR is shared by hyperthreads on a physical core there can | 
|  | * be glitches when the two threads need different modes. | 
|  | */ | 
|  | void switch_to_sld(unsigned long tifn) | 
|  | { | 
|  | sld_update_msr(!(tifn & _TIF_SLD)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bits in the IA32_CORE_CAPABILITIES are not architectural, so they should | 
|  | * only be trusted if it is confirmed that a CPU model implements a | 
|  | * specific feature at a particular bit position. | 
|  | * | 
|  | * The possible driver data field values: | 
|  | * | 
|  | * - 0: CPU models that are known to have the per-core split-lock detection | 
|  | *	feature even though they do not enumerate IA32_CORE_CAPABILITIES. | 
|  | * | 
|  | * - 1: CPU models which may enumerate IA32_CORE_CAPABILITIES and if so use | 
|  | *      bit 5 to enumerate the per-core split-lock detection feature. | 
|  | */ | 
|  | static const struct x86_cpu_id split_lock_cpu_ids[] __initconst = { | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X,		0), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L,		0), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D,		0), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT,	1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D,	1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L,	1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L,		1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE,		1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X,	1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE,		1), | 
|  | X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L,		1), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static void __init split_lock_setup(struct cpuinfo_x86 *c) | 
|  | { | 
|  | const struct x86_cpu_id *m; | 
|  | u64 ia32_core_caps; | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) | 
|  | return; | 
|  |  | 
|  | m = x86_match_cpu(split_lock_cpu_ids); | 
|  | if (!m) | 
|  | return; | 
|  |  | 
|  | switch (m->driver_data) { | 
|  | case 0: | 
|  | break; | 
|  | case 1: | 
|  | if (!cpu_has(c, X86_FEATURE_CORE_CAPABILITIES)) | 
|  | return; | 
|  | rdmsrl(MSR_IA32_CORE_CAPS, ia32_core_caps); | 
|  | if (!(ia32_core_caps & MSR_IA32_CORE_CAPS_SPLIT_LOCK_DETECT)) | 
|  | return; | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | cpu_model_supports_sld = true; | 
|  | __split_lock_setup(); | 
|  | } | 
|  |  | 
|  | static void sld_state_show(void) | 
|  | { | 
|  | if (!boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && | 
|  | !boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) | 
|  | return; | 
|  |  | 
|  | switch (sld_state) { | 
|  | case sld_off: | 
|  | pr_info("disabled\n"); | 
|  | break; | 
|  | case sld_warn: | 
|  | if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) | 
|  | pr_info("#AC: crashing the kernel on kernel split_locks and warning on user-space split_locks\n"); | 
|  | else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) | 
|  | pr_info("#DB: warning on user-space bus_locks\n"); | 
|  | break; | 
|  | case sld_fatal: | 
|  | if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) { | 
|  | pr_info("#AC: crashing the kernel on kernel split_locks and sending SIGBUS on user-space split_locks\n"); | 
|  | } else if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) { | 
|  | pr_info("#DB: sending SIGBUS on user-space bus_locks%s\n", | 
|  | boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT) ? | 
|  | " from non-WB" : ""); | 
|  | } | 
|  | break; | 
|  | case sld_ratelimit: | 
|  | if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT)) | 
|  | pr_info("#DB: setting system wide bus lock rate limit to %u/sec\n", bld_ratelimit.burst); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init sld_setup(struct cpuinfo_x86 *c) | 
|  | { | 
|  | split_lock_setup(c); | 
|  | sld_state_setup(); | 
|  | sld_state_show(); | 
|  | } | 
|  |  | 
|  | #define X86_HYBRID_CPU_TYPE_ID_SHIFT	24 | 
|  |  | 
|  | /** | 
|  | * get_this_hybrid_cpu_type() - Get the type of this hybrid CPU | 
|  | * | 
|  | * Returns the CPU type [31:24] (i.e., Atom or Core) of a CPU in | 
|  | * a hybrid processor. If the processor is not hybrid, returns 0. | 
|  | */ | 
|  | u8 get_this_hybrid_cpu_type(void) | 
|  | { | 
|  | if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) | 
|  | return 0; | 
|  |  | 
|  | return cpuid_eax(0x0000001a) >> X86_HYBRID_CPU_TYPE_ID_SHIFT; | 
|  | } |