|  | // SPDX-License-Identifier: GPL-2.0-or-later | 
|  | /* | 
|  | * | 
|  | * Copyright (C) 2007 Alan Stern | 
|  | * Copyright (C) 2009 IBM Corporation | 
|  | * Copyright (C) 2009 Frederic Weisbecker <fweisbec@gmail.com> | 
|  | * | 
|  | * Authors: Alan Stern <stern@rowland.harvard.edu> | 
|  | *          K.Prasad <prasad@linux.vnet.ibm.com> | 
|  | *          Frederic Weisbecker <fweisbec@gmail.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility, | 
|  | * using the CPU's debug registers. | 
|  | */ | 
|  |  | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/hw_breakpoint.h> | 
|  | #include <linux/irqflags.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/smp.h> | 
|  |  | 
|  | #include <asm/hw_breakpoint.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/user.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | /* Per cpu debug control register value */ | 
|  | DEFINE_PER_CPU(unsigned long, cpu_dr7); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_dr7); | 
|  |  | 
|  | /* Per cpu debug address registers values */ | 
|  | static DEFINE_PER_CPU(unsigned long, cpu_debugreg[HBP_NUM]); | 
|  |  | 
|  | /* | 
|  | * Stores the breakpoints currently in use on each breakpoint address | 
|  | * register for each cpus | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM]); | 
|  |  | 
|  |  | 
|  | static inline unsigned long | 
|  | __encode_dr7(int drnum, unsigned int len, unsigned int type) | 
|  | { | 
|  | unsigned long bp_info; | 
|  |  | 
|  | bp_info = (len | type) & 0xf; | 
|  | bp_info <<= (DR_CONTROL_SHIFT + drnum * DR_CONTROL_SIZE); | 
|  | bp_info |= (DR_GLOBAL_ENABLE << (drnum * DR_ENABLE_SIZE)); | 
|  |  | 
|  | return bp_info; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Encode the length, type, Exact, and Enable bits for a particular breakpoint | 
|  | * as stored in debug register 7. | 
|  | */ | 
|  | unsigned long encode_dr7(int drnum, unsigned int len, unsigned int type) | 
|  | { | 
|  | return __encode_dr7(drnum, len, type) | DR_GLOBAL_SLOWDOWN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decode the length and type bits for a particular breakpoint as | 
|  | * stored in debug register 7.  Return the "enabled" status. | 
|  | */ | 
|  | int decode_dr7(unsigned long dr7, int bpnum, unsigned *len, unsigned *type) | 
|  | { | 
|  | int bp_info = dr7 >> (DR_CONTROL_SHIFT + bpnum * DR_CONTROL_SIZE); | 
|  |  | 
|  | *len = (bp_info & 0xc) | 0x40; | 
|  | *type = (bp_info & 0x3) | 0x80; | 
|  |  | 
|  | return (dr7 >> (bpnum * DR_ENABLE_SIZE)) & 0x3; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Install a perf counter breakpoint. | 
|  | * | 
|  | * We seek a free debug address register and use it for this | 
|  | * breakpoint. Eventually we enable it in the debug control register. | 
|  | * | 
|  | * Atomic: we hold the counter->ctx->lock and we only handle variables | 
|  | * and registers local to this cpu. | 
|  | */ | 
|  | int arch_install_hw_breakpoint(struct perf_event *bp) | 
|  | { | 
|  | struct arch_hw_breakpoint *info = counter_arch_bp(bp); | 
|  | unsigned long *dr7; | 
|  | int i; | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | for (i = 0; i < HBP_NUM; i++) { | 
|  | struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); | 
|  |  | 
|  | if (!*slot) { | 
|  | *slot = bp; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) | 
|  | return -EBUSY; | 
|  |  | 
|  | set_debugreg(info->address, i); | 
|  | __this_cpu_write(cpu_debugreg[i], info->address); | 
|  |  | 
|  | dr7 = this_cpu_ptr(&cpu_dr7); | 
|  | *dr7 |= encode_dr7(i, info->len, info->type); | 
|  |  | 
|  | /* | 
|  | * Ensure we first write cpu_dr7 before we set the DR7 register. | 
|  | * This ensures an NMI never see cpu_dr7 0 when DR7 is not. | 
|  | */ | 
|  | barrier(); | 
|  |  | 
|  | set_debugreg(*dr7, 7); | 
|  | if (info->mask) | 
|  | set_dr_addr_mask(info->mask, i); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Uninstall the breakpoint contained in the given counter. | 
|  | * | 
|  | * First we search the debug address register it uses and then we disable | 
|  | * it. | 
|  | * | 
|  | * Atomic: we hold the counter->ctx->lock and we only handle variables | 
|  | * and registers local to this cpu. | 
|  | */ | 
|  | void arch_uninstall_hw_breakpoint(struct perf_event *bp) | 
|  | { | 
|  | struct arch_hw_breakpoint *info = counter_arch_bp(bp); | 
|  | unsigned long dr7; | 
|  | int i; | 
|  |  | 
|  | lockdep_assert_irqs_disabled(); | 
|  |  | 
|  | for (i = 0; i < HBP_NUM; i++) { | 
|  | struct perf_event **slot = this_cpu_ptr(&bp_per_reg[i]); | 
|  |  | 
|  | if (*slot == bp) { | 
|  | *slot = NULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (WARN_ONCE(i == HBP_NUM, "Can't find any breakpoint slot")) | 
|  | return; | 
|  |  | 
|  | dr7 = this_cpu_read(cpu_dr7); | 
|  | dr7 &= ~__encode_dr7(i, info->len, info->type); | 
|  |  | 
|  | set_debugreg(dr7, 7); | 
|  | if (info->mask) | 
|  | set_dr_addr_mask(0, i); | 
|  |  | 
|  | /* | 
|  | * Ensure the write to cpu_dr7 is after we've set the DR7 register. | 
|  | * This ensures an NMI never see cpu_dr7 0 when DR7 is not. | 
|  | */ | 
|  | barrier(); | 
|  |  | 
|  | this_cpu_write(cpu_dr7, dr7); | 
|  | } | 
|  |  | 
|  | static int arch_bp_generic_len(int x86_len) | 
|  | { | 
|  | switch (x86_len) { | 
|  | case X86_BREAKPOINT_LEN_1: | 
|  | return HW_BREAKPOINT_LEN_1; | 
|  | case X86_BREAKPOINT_LEN_2: | 
|  | return HW_BREAKPOINT_LEN_2; | 
|  | case X86_BREAKPOINT_LEN_4: | 
|  | return HW_BREAKPOINT_LEN_4; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case X86_BREAKPOINT_LEN_8: | 
|  | return HW_BREAKPOINT_LEN_8; | 
|  | #endif | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | int arch_bp_generic_fields(int x86_len, int x86_type, | 
|  | int *gen_len, int *gen_type) | 
|  | { | 
|  | int len; | 
|  |  | 
|  | /* Type */ | 
|  | switch (x86_type) { | 
|  | case X86_BREAKPOINT_EXECUTE: | 
|  | if (x86_len != X86_BREAKPOINT_LEN_X) | 
|  | return -EINVAL; | 
|  |  | 
|  | *gen_type = HW_BREAKPOINT_X; | 
|  | *gen_len = sizeof(long); | 
|  | return 0; | 
|  | case X86_BREAKPOINT_WRITE: | 
|  | *gen_type = HW_BREAKPOINT_W; | 
|  | break; | 
|  | case X86_BREAKPOINT_RW: | 
|  | *gen_type = HW_BREAKPOINT_W | HW_BREAKPOINT_R; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Len */ | 
|  | len = arch_bp_generic_len(x86_len); | 
|  | if (len < 0) | 
|  | return -EINVAL; | 
|  | *gen_len = len; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for virtual address in kernel space. | 
|  | */ | 
|  | int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | unsigned long va; | 
|  | int len; | 
|  |  | 
|  | va = hw->address; | 
|  | len = arch_bp_generic_len(hw->len); | 
|  | WARN_ON_ONCE(len < 0); | 
|  |  | 
|  | /* | 
|  | * We don't need to worry about va + len - 1 overflowing: | 
|  | * we already require that va is aligned to a multiple of len. | 
|  | */ | 
|  | return (va >= TASK_SIZE_MAX) || ((va + len - 1) >= TASK_SIZE_MAX); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks whether the range [addr, end], overlaps the area [base, base + size). | 
|  | */ | 
|  | static inline bool within_area(unsigned long addr, unsigned long end, | 
|  | unsigned long base, unsigned long size) | 
|  | { | 
|  | return end >= base && addr < (base + size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks whether the range from addr to end, inclusive, overlaps the fixed | 
|  | * mapped CPU entry area range or other ranges used for CPU entry. | 
|  | */ | 
|  | static inline bool within_cpu_entry(unsigned long addr, unsigned long end) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* CPU entry erea is always used for CPU entry */ | 
|  | if (within_area(addr, end, CPU_ENTRY_AREA_BASE, | 
|  | CPU_ENTRY_AREA_TOTAL_SIZE)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * When FSGSBASE is enabled, paranoid_entry() fetches the per-CPU | 
|  | * GSBASE value via __per_cpu_offset or pcpu_unit_offsets. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | if (within_area(addr, end, (unsigned long)__per_cpu_offset, | 
|  | sizeof(unsigned long) * nr_cpu_ids)) | 
|  | return true; | 
|  | #else | 
|  | if (within_area(addr, end, (unsigned long)&pcpu_unit_offsets, | 
|  | sizeof(pcpu_unit_offsets))) | 
|  | return true; | 
|  | #endif | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | /* The original rw GDT is being used after load_direct_gdt() */ | 
|  | if (within_area(addr, end, (unsigned long)get_cpu_gdt_rw(cpu), | 
|  | GDT_SIZE)) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * cpu_tss_rw is not directly referenced by hardware, but | 
|  | * cpu_tss_rw is also used in CPU entry code, | 
|  | */ | 
|  | if (within_area(addr, end, | 
|  | (unsigned long)&per_cpu(cpu_tss_rw, cpu), | 
|  | sizeof(struct tss_struct))) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * cpu_tlbstate.user_pcid_flush_mask is used for CPU entry. | 
|  | * If a data breakpoint on it, it will cause an unwanted #DB. | 
|  | * Protect the full cpu_tlbstate structure to be sure. | 
|  | */ | 
|  | if (within_area(addr, end, | 
|  | (unsigned long)&per_cpu(cpu_tlbstate, cpu), | 
|  | sizeof(struct tlb_state))) | 
|  | return true; | 
|  |  | 
|  | /* | 
|  | * When in guest (X86_FEATURE_HYPERVISOR), local_db_save() | 
|  | * will read per-cpu cpu_dr7 before clear dr7 register. | 
|  | */ | 
|  | if (within_area(addr, end, (unsigned long)&per_cpu(cpu_dr7, cpu), | 
|  | sizeof(cpu_dr7))) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static int arch_build_bp_info(struct perf_event *bp, | 
|  | const struct perf_event_attr *attr, | 
|  | struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | unsigned long bp_end; | 
|  |  | 
|  | bp_end = attr->bp_addr + attr->bp_len - 1; | 
|  | if (bp_end < attr->bp_addr) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Prevent any breakpoint of any type that overlaps the CPU | 
|  | * entry area and data.  This protects the IST stacks and also | 
|  | * reduces the chance that we ever find out what happens if | 
|  | * there's a data breakpoint on the GDT, IDT, or TSS. | 
|  | */ | 
|  | if (within_cpu_entry(attr->bp_addr, bp_end)) | 
|  | return -EINVAL; | 
|  |  | 
|  | hw->address = attr->bp_addr; | 
|  | hw->mask = 0; | 
|  |  | 
|  | /* Type */ | 
|  | switch (attr->bp_type) { | 
|  | case HW_BREAKPOINT_W: | 
|  | hw->type = X86_BREAKPOINT_WRITE; | 
|  | break; | 
|  | case HW_BREAKPOINT_W | HW_BREAKPOINT_R: | 
|  | hw->type = X86_BREAKPOINT_RW; | 
|  | break; | 
|  | case HW_BREAKPOINT_X: | 
|  | /* | 
|  | * We don't allow kernel breakpoints in places that are not | 
|  | * acceptable for kprobes.  On non-kprobes kernels, we don't | 
|  | * allow kernel breakpoints at all. | 
|  | */ | 
|  | if (attr->bp_addr >= TASK_SIZE_MAX) { | 
|  | if (within_kprobe_blacklist(attr->bp_addr)) | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | hw->type = X86_BREAKPOINT_EXECUTE; | 
|  | /* | 
|  | * x86 inst breakpoints need to have a specific undefined len. | 
|  | * But we still need to check userspace is not trying to setup | 
|  | * an unsupported length, to get a range breakpoint for example. | 
|  | */ | 
|  | if (attr->bp_len == sizeof(long)) { | 
|  | hw->len = X86_BREAKPOINT_LEN_X; | 
|  | return 0; | 
|  | } | 
|  | fallthrough; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Len */ | 
|  | switch (attr->bp_len) { | 
|  | case HW_BREAKPOINT_LEN_1: | 
|  | hw->len = X86_BREAKPOINT_LEN_1; | 
|  | break; | 
|  | case HW_BREAKPOINT_LEN_2: | 
|  | hw->len = X86_BREAKPOINT_LEN_2; | 
|  | break; | 
|  | case HW_BREAKPOINT_LEN_4: | 
|  | hw->len = X86_BREAKPOINT_LEN_4; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case HW_BREAKPOINT_LEN_8: | 
|  | hw->len = X86_BREAKPOINT_LEN_8; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | /* AMD range breakpoint */ | 
|  | if (!is_power_of_2(attr->bp_len)) | 
|  | return -EINVAL; | 
|  | if (attr->bp_addr & (attr->bp_len - 1)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_BPEXT)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* | 
|  | * It's impossible to use a range breakpoint to fake out | 
|  | * user vs kernel detection because bp_len - 1 can't | 
|  | * have the high bit set.  If we ever allow range instruction | 
|  | * breakpoints, then we'll have to check for kprobe-blacklisted | 
|  | * addresses anywhere in the range. | 
|  | */ | 
|  | hw->mask = attr->bp_len - 1; | 
|  | hw->len = X86_BREAKPOINT_LEN_1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Validate the arch-specific HW Breakpoint register settings | 
|  | */ | 
|  | int hw_breakpoint_arch_parse(struct perf_event *bp, | 
|  | const struct perf_event_attr *attr, | 
|  | struct arch_hw_breakpoint *hw) | 
|  | { | 
|  | unsigned int align; | 
|  | int ret; | 
|  |  | 
|  |  | 
|  | ret = arch_build_bp_info(bp, attr, hw); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | switch (hw->len) { | 
|  | case X86_BREAKPOINT_LEN_1: | 
|  | align = 0; | 
|  | if (hw->mask) | 
|  | align = hw->mask; | 
|  | break; | 
|  | case X86_BREAKPOINT_LEN_2: | 
|  | align = 1; | 
|  | break; | 
|  | case X86_BREAKPOINT_LEN_4: | 
|  | align = 3; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case X86_BREAKPOINT_LEN_8: | 
|  | align = 7; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | WARN_ON_ONCE(1); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check that the low-order bits of the address are appropriate | 
|  | * for the alignment implied by len. | 
|  | */ | 
|  | if (hw->address & align) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the user breakpoints used by ptrace | 
|  | */ | 
|  | void flush_ptrace_hw_breakpoint(struct task_struct *tsk) | 
|  | { | 
|  | int i; | 
|  | struct thread_struct *t = &tsk->thread; | 
|  |  | 
|  | for (i = 0; i < HBP_NUM; i++) { | 
|  | unregister_hw_breakpoint(t->ptrace_bps[i]); | 
|  | t->ptrace_bps[i] = NULL; | 
|  | } | 
|  |  | 
|  | t->virtual_dr6 = 0; | 
|  | t->ptrace_dr7 = 0; | 
|  | } | 
|  |  | 
|  | void hw_breakpoint_restore(void) | 
|  | { | 
|  | set_debugreg(__this_cpu_read(cpu_debugreg[0]), 0); | 
|  | set_debugreg(__this_cpu_read(cpu_debugreg[1]), 1); | 
|  | set_debugreg(__this_cpu_read(cpu_debugreg[2]), 2); | 
|  | set_debugreg(__this_cpu_read(cpu_debugreg[3]), 3); | 
|  | set_debugreg(DR6_RESERVED, 6); | 
|  | set_debugreg(__this_cpu_read(cpu_dr7), 7); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(hw_breakpoint_restore); | 
|  |  | 
|  | /* | 
|  | * Handle debug exception notifications. | 
|  | * | 
|  | * Return value is either NOTIFY_STOP or NOTIFY_DONE as explained below. | 
|  | * | 
|  | * NOTIFY_DONE returned if one of the following conditions is true. | 
|  | * i) When the causative address is from user-space and the exception | 
|  | * is a valid one, i.e. not triggered as a result of lazy debug register | 
|  | * switching | 
|  | * ii) When there are more bits than trap<n> set in DR6 register (such | 
|  | * as BD, BS or BT) indicating that more than one debug condition is | 
|  | * met and requires some more action in do_debug(). | 
|  | * | 
|  | * NOTIFY_STOP returned for all other cases | 
|  | * | 
|  | */ | 
|  | static int hw_breakpoint_handler(struct die_args *args) | 
|  | { | 
|  | int i, rc = NOTIFY_STOP; | 
|  | struct perf_event *bp; | 
|  | unsigned long *dr6_p; | 
|  | unsigned long dr6; | 
|  | bool bpx; | 
|  |  | 
|  | /* The DR6 value is pointed by args->err */ | 
|  | dr6_p = (unsigned long *)ERR_PTR(args->err); | 
|  | dr6 = *dr6_p; | 
|  |  | 
|  | /* Do an early return if no trap bits are set in DR6 */ | 
|  | if ((dr6 & DR_TRAP_BITS) == 0) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | /* Handle all the breakpoints that were triggered */ | 
|  | for (i = 0; i < HBP_NUM; ++i) { | 
|  | if (likely(!(dr6 & (DR_TRAP0 << i)))) | 
|  | continue; | 
|  |  | 
|  | bp = this_cpu_read(bp_per_reg[i]); | 
|  | if (!bp) | 
|  | continue; | 
|  |  | 
|  | bpx = bp->hw.info.type == X86_BREAKPOINT_EXECUTE; | 
|  |  | 
|  | /* | 
|  | * TF and data breakpoints are traps and can be merged, however | 
|  | * instruction breakpoints are faults and will be raised | 
|  | * separately. | 
|  | * | 
|  | * However DR6 can indicate both TF and instruction | 
|  | * breakpoints. In that case take TF as that has precedence and | 
|  | * delay the instruction breakpoint for the next exception. | 
|  | */ | 
|  | if (bpx && (dr6 & DR_STEP)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Reset the 'i'th TRAP bit in dr6 to denote completion of | 
|  | * exception handling | 
|  | */ | 
|  | (*dr6_p) &= ~(DR_TRAP0 << i); | 
|  |  | 
|  | perf_bp_event(bp, args->regs); | 
|  |  | 
|  | /* | 
|  | * Set up resume flag to avoid breakpoint recursion when | 
|  | * returning back to origin. | 
|  | */ | 
|  | if (bpx) | 
|  | args->regs->flags |= X86_EFLAGS_RF; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Further processing in do_debug() is needed for a) user-space | 
|  | * breakpoints (to generate signals) and b) when the system has | 
|  | * taken exception due to multiple causes | 
|  | */ | 
|  | if ((current->thread.virtual_dr6 & DR_TRAP_BITS) || | 
|  | (dr6 & (~DR_TRAP_BITS))) | 
|  | rc = NOTIFY_DONE; | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle debug exception notifications. | 
|  | */ | 
|  | int hw_breakpoint_exceptions_notify( | 
|  | struct notifier_block *unused, unsigned long val, void *data) | 
|  | { | 
|  | if (val != DIE_DEBUG) | 
|  | return NOTIFY_DONE; | 
|  |  | 
|  | return hw_breakpoint_handler(data); | 
|  | } | 
|  |  | 
|  | void hw_breakpoint_pmu_read(struct perf_event *bp) | 
|  | { | 
|  | /* TODO */ | 
|  | } |