|  | // SPDX-License-Identifier: GPL-2.0+ | 
|  | /* | 
|  | * rcar_du_crtc.c  --  R-Car Display Unit CRTCs | 
|  | * | 
|  | * Copyright (C) 2013-2015 Renesas Electronics Corporation | 
|  | * | 
|  | * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/sys_soc.h> | 
|  |  | 
|  | #include <drm/drm_atomic.h> | 
|  | #include <drm/drm_atomic_helper.h> | 
|  | #include <drm/drm_bridge.h> | 
|  | #include <drm/drm_crtc.h> | 
|  | #include <drm/drm_device.h> | 
|  | #include <drm/drm_fb_cma_helper.h> | 
|  | #include <drm/drm_gem_cma_helper.h> | 
|  | #include <drm/drm_plane_helper.h> | 
|  | #include <drm/drm_vblank.h> | 
|  |  | 
|  | #include "rcar_cmm.h" | 
|  | #include "rcar_du_crtc.h" | 
|  | #include "rcar_du_drv.h" | 
|  | #include "rcar_du_encoder.h" | 
|  | #include "rcar_du_kms.h" | 
|  | #include "rcar_du_plane.h" | 
|  | #include "rcar_du_regs.h" | 
|  | #include "rcar_du_vsp.h" | 
|  | #include "rcar_lvds.h" | 
|  |  | 
|  | static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | return rcar_du_read(rcdu, rcrtc->mmio_offset + reg); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | rcar_du_write(rcdu, rcrtc->mmio_offset + reg, | 
|  | rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | rcar_du_write(rcdu, rcrtc->mmio_offset + reg, | 
|  | rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set); | 
|  | } | 
|  |  | 
|  | void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set; | 
|  | rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Hardware Setup | 
|  | */ | 
|  |  | 
|  | struct dpll_info { | 
|  | unsigned int output; | 
|  | unsigned int fdpll; | 
|  | unsigned int n; | 
|  | unsigned int m; | 
|  | }; | 
|  |  | 
|  | static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc, | 
|  | struct dpll_info *dpll, | 
|  | unsigned long input, | 
|  | unsigned long target) | 
|  | { | 
|  | unsigned long best_diff = (unsigned long)-1; | 
|  | unsigned long diff; | 
|  | unsigned int fdpll; | 
|  | unsigned int m; | 
|  | unsigned int n; | 
|  |  | 
|  | /* | 
|  | *   fin                                 fvco        fout       fclkout | 
|  | * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out | 
|  | *              +-> |  |                             | | 
|  | *              |                                    | | 
|  | *              +---------------- [1/N] <------------+ | 
|  | * | 
|  | *	fclkout = fvco / P / FDPLL -- (1) | 
|  | * | 
|  | * fin/M = fvco/P/N | 
|  | * | 
|  | *	fvco = fin * P *  N / M -- (2) | 
|  | * | 
|  | * (1) + (2) indicates | 
|  | * | 
|  | *	fclkout = fin * N / M / FDPLL | 
|  | * | 
|  | * NOTES | 
|  | *	N	: (n + 1) | 
|  | *	M	: (m + 1) | 
|  | *	FDPLL	: (fdpll + 1) | 
|  | *	P	: 2 | 
|  | *	2kHz < fvco < 4096MHz | 
|  | * | 
|  | * To minimize the jitter, | 
|  | * N : as large as possible | 
|  | * M : as small as possible | 
|  | */ | 
|  | for (m = 0; m < 4; m++) { | 
|  | for (n = 119; n > 38; n--) { | 
|  | /* | 
|  | * This code only runs on 64-bit architectures, the | 
|  | * unsigned long type can thus be used for 64-bit | 
|  | * computation. It will still compile without any | 
|  | * warning on 32-bit architectures. | 
|  | * | 
|  | * To optimize calculations, use fout instead of fvco | 
|  | * to verify the VCO frequency constraint. | 
|  | */ | 
|  | unsigned long fout = input * (n + 1) / (m + 1); | 
|  |  | 
|  | if (fout < 1000 || fout > 2048 * 1000 * 1000U) | 
|  | continue; | 
|  |  | 
|  | for (fdpll = 1; fdpll < 32; fdpll++) { | 
|  | unsigned long output; | 
|  |  | 
|  | output = fout / (fdpll + 1); | 
|  | if (output >= 400 * 1000 * 1000) | 
|  | continue; | 
|  |  | 
|  | diff = abs((long)output - (long)target); | 
|  | if (best_diff > diff) { | 
|  | best_diff = diff; | 
|  | dpll->n = n; | 
|  | dpll->m = m; | 
|  | dpll->fdpll = fdpll; | 
|  | dpll->output = output; | 
|  | } | 
|  |  | 
|  | if (diff == 0) | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | done: | 
|  | dev_dbg(rcrtc->dev->dev, | 
|  | "output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n", | 
|  | dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff); | 
|  | } | 
|  |  | 
|  | struct du_clk_params { | 
|  | struct clk *clk; | 
|  | unsigned long rate; | 
|  | unsigned long diff; | 
|  | u32 escr; | 
|  | }; | 
|  |  | 
|  | static void rcar_du_escr_divider(struct clk *clk, unsigned long target, | 
|  | u32 escr, struct du_clk_params *params) | 
|  | { | 
|  | unsigned long rate; | 
|  | unsigned long diff; | 
|  | u32 div; | 
|  |  | 
|  | /* | 
|  | * If the target rate has already been achieved perfectly we can't do | 
|  | * better. | 
|  | */ | 
|  | if (params->diff == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Compute the input clock rate and internal divisor values to obtain | 
|  | * the clock rate closest to the target frequency. | 
|  | */ | 
|  | rate = clk_round_rate(clk, target); | 
|  | div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1; | 
|  | diff = abs(rate / (div + 1) - target); | 
|  |  | 
|  | /* | 
|  | * Store the parameters if the resulting frequency is better than any | 
|  | * previously calculated value. | 
|  | */ | 
|  | if (diff < params->diff) { | 
|  | params->clk = clk; | 
|  | params->rate = rate; | 
|  | params->diff = diff; | 
|  | params->escr = escr | div; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const struct soc_device_attribute rcar_du_r8a7795_es1[] = { | 
|  | { .soc_id = "r8a7795", .revision = "ES1.*" }, | 
|  | { /* sentinel */ } | 
|  | }; | 
|  |  | 
|  | static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode; | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | unsigned long mode_clock = mode->clock * 1000; | 
|  | u32 dsmr; | 
|  | u32 escr; | 
|  |  | 
|  | if (rcdu->info->dpll_mask & (1 << rcrtc->index)) { | 
|  | unsigned long target = mode_clock; | 
|  | struct dpll_info dpll = { 0 }; | 
|  | unsigned long extclk; | 
|  | u32 dpllcr; | 
|  | u32 div = 0; | 
|  |  | 
|  | /* | 
|  | * DU channels that have a display PLL can't use the internal | 
|  | * system clock, and have no internal clock divider. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The H3 ES1.x exhibits dot clock duty cycle stability issues. | 
|  | * We can work around them by configuring the DPLL to twice the | 
|  | * desired frequency, coupled with a /2 post-divider. Restrict | 
|  | * the workaround to H3 ES1.x as ES2.0 and all other SoCs have | 
|  | * no post-divider when a display PLL is present (as shown by | 
|  | * the workaround breaking HDMI output on M3-W during testing). | 
|  | */ | 
|  | if (soc_device_match(rcar_du_r8a7795_es1)) { | 
|  | target *= 2; | 
|  | div = 1; | 
|  | } | 
|  |  | 
|  | extclk = clk_get_rate(rcrtc->extclock); | 
|  | rcar_du_dpll_divider(rcrtc, &dpll, extclk, target); | 
|  |  | 
|  | dpllcr = DPLLCR_CODE | DPLLCR_CLKE | 
|  | | DPLLCR_FDPLL(dpll.fdpll) | 
|  | | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m) | 
|  | | DPLLCR_STBY; | 
|  |  | 
|  | if (rcrtc->index == 1) | 
|  | dpllcr |= DPLLCR_PLCS1 | 
|  | |  DPLLCR_INCS_DOTCLKIN1; | 
|  | else | 
|  | dpllcr |= DPLLCR_PLCS0 | 
|  | |  DPLLCR_INCS_DOTCLKIN0; | 
|  |  | 
|  | rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr); | 
|  |  | 
|  | escr = ESCR_DCLKSEL_DCLKIN | div; | 
|  | } else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) { | 
|  | /* | 
|  | * Use the LVDS PLL output as the dot clock when outputting to | 
|  | * the LVDS encoder on an SoC that supports this clock routing | 
|  | * option. We use the clock directly in that case, without any | 
|  | * additional divider. | 
|  | */ | 
|  | escr = ESCR_DCLKSEL_DCLKIN; | 
|  | } else { | 
|  | struct du_clk_params params = { .diff = (unsigned long)-1 }; | 
|  |  | 
|  | rcar_du_escr_divider(rcrtc->clock, mode_clock, | 
|  | ESCR_DCLKSEL_CLKS, ¶ms); | 
|  | if (rcrtc->extclock) | 
|  | rcar_du_escr_divider(rcrtc->extclock, mode_clock, | 
|  | ESCR_DCLKSEL_DCLKIN, ¶ms); | 
|  |  | 
|  | dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n", | 
|  | mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext", | 
|  | params.rate); | 
|  |  | 
|  | clk_set_rate(params.clk, params.rate); | 
|  | escr = params.escr; | 
|  | } | 
|  |  | 
|  | dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr); | 
|  |  | 
|  | rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr); | 
|  | rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0); | 
|  |  | 
|  | /* Signal polarities */ | 
|  | dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0) | 
|  | | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0) | 
|  | | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0) | 
|  | | DSMR_DIPM_DISP | DSMR_CSPM; | 
|  | rcar_du_crtc_write(rcrtc, DSMR, dsmr); | 
|  |  | 
|  | /* Display timings */ | 
|  | rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19); | 
|  | rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start + | 
|  | mode->hdisplay - 19); | 
|  | rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end - | 
|  | mode->hsync_start - 1); | 
|  | rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1); | 
|  |  | 
|  | rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal - | 
|  | mode->crtc_vsync_end - 2); | 
|  | rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal - | 
|  | mode->crtc_vsync_end + | 
|  | mode->crtc_vdisplay - 2); | 
|  | rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal - | 
|  | mode->crtc_vsync_end + | 
|  | mode->crtc_vsync_start - 1); | 
|  | rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1); | 
|  |  | 
|  | rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1); | 
|  | rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay); | 
|  | } | 
|  |  | 
|  | static unsigned int plane_zpos(struct rcar_du_plane *plane) | 
|  | { | 
|  | return plane->plane.state->normalized_zpos; | 
|  | } | 
|  |  | 
|  | static const struct rcar_du_format_info * | 
|  | plane_format(struct rcar_du_plane *plane) | 
|  | { | 
|  | return to_rcar_plane_state(plane->plane.state)->format; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES]; | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | unsigned int num_planes = 0; | 
|  | unsigned int dptsr_planes; | 
|  | unsigned int hwplanes = 0; | 
|  | unsigned int prio = 0; | 
|  | unsigned int i; | 
|  | u32 dspr = 0; | 
|  |  | 
|  | for (i = 0; i < rcrtc->group->num_planes; ++i) { | 
|  | struct rcar_du_plane *plane = &rcrtc->group->planes[i]; | 
|  | unsigned int j; | 
|  |  | 
|  | if (plane->plane.state->crtc != &rcrtc->crtc || | 
|  | !plane->plane.state->visible) | 
|  | continue; | 
|  |  | 
|  | /* Insert the plane in the sorted planes array. */ | 
|  | for (j = num_planes++; j > 0; --j) { | 
|  | if (plane_zpos(planes[j-1]) <= plane_zpos(plane)) | 
|  | break; | 
|  | planes[j] = planes[j-1]; | 
|  | } | 
|  |  | 
|  | planes[j] = plane; | 
|  | prio += plane_format(plane)->planes * 4; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_planes; ++i) { | 
|  | struct rcar_du_plane *plane = planes[i]; | 
|  | struct drm_plane_state *state = plane->plane.state; | 
|  | unsigned int index = to_rcar_plane_state(state)->hwindex; | 
|  |  | 
|  | prio -= 4; | 
|  | dspr |= (index + 1) << prio; | 
|  | hwplanes |= 1 << index; | 
|  |  | 
|  | if (plane_format(plane)->planes == 2) { | 
|  | index = (index + 1) % 8; | 
|  |  | 
|  | prio -= 4; | 
|  | dspr |= (index + 1) << prio; | 
|  | hwplanes |= 1 << index; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If VSP+DU integration is enabled the plane assignment is fixed. */ | 
|  | if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) { | 
|  | if (rcdu->info->gen < 3) { | 
|  | dspr = (rcrtc->index % 2) + 1; | 
|  | hwplanes = 1 << (rcrtc->index % 2); | 
|  | } else { | 
|  | dspr = (rcrtc->index % 2) ? 3 : 1; | 
|  | hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the planes to display timing and dot clock generator | 
|  | * associations. | 
|  | * | 
|  | * Updating the DPTSR register requires restarting the CRTC group, | 
|  | * resulting in visible flicker. To mitigate the issue only update the | 
|  | * association if needed by enabled planes. Planes being disabled will | 
|  | * keep their current association. | 
|  | */ | 
|  | mutex_lock(&rcrtc->group->lock); | 
|  |  | 
|  | dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes | 
|  | : rcrtc->group->dptsr_planes & ~hwplanes; | 
|  |  | 
|  | if (dptsr_planes != rcrtc->group->dptsr_planes) { | 
|  | rcar_du_group_write(rcrtc->group, DPTSR, | 
|  | (dptsr_planes << 16) | dptsr_planes); | 
|  | rcrtc->group->dptsr_planes = dptsr_planes; | 
|  |  | 
|  | if (rcrtc->group->used_crtcs) | 
|  | rcar_du_group_restart(rcrtc->group); | 
|  | } | 
|  |  | 
|  | /* Restart the group if plane sources have changed. */ | 
|  | if (rcrtc->group->need_restart) | 
|  | rcar_du_group_restart(rcrtc->group); | 
|  |  | 
|  | mutex_unlock(&rcrtc->group->lock); | 
|  |  | 
|  | rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, | 
|  | dspr); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Page Flip | 
|  | */ | 
|  |  | 
|  | void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct drm_pending_vblank_event *event; | 
|  | struct drm_device *dev = rcrtc->crtc.dev; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | event = rcrtc->event; | 
|  | rcrtc->event = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | if (event == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | drm_crtc_send_vblank_event(&rcrtc->crtc, event); | 
|  | wake_up(&rcrtc->flip_wait); | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | drm_crtc_vblank_put(&rcrtc->crtc); | 
|  | } | 
|  |  | 
|  | static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct drm_device *dev = rcrtc->crtc.dev; | 
|  | unsigned long flags; | 
|  | bool pending; | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | pending = rcrtc->event != NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  |  | 
|  | return pending; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | if (wait_event_timeout(rcrtc->flip_wait, | 
|  | !rcar_du_crtc_page_flip_pending(rcrtc), | 
|  | msecs_to_jiffies(50))) | 
|  | return; | 
|  |  | 
|  | dev_warn(rcdu->dev, "page flip timeout\n"); | 
|  |  | 
|  | rcar_du_crtc_finish_page_flip(rcrtc); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Color Management Module (CMM) | 
|  | */ | 
|  |  | 
|  | static int rcar_du_cmm_check(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *state) | 
|  | { | 
|  | struct drm_property_blob *drm_lut = state->gamma_lut; | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct device *dev = rcrtc->dev->dev; | 
|  |  | 
|  | if (!drm_lut) | 
|  | return 0; | 
|  |  | 
|  | /* We only accept fully populated LUT tables. */ | 
|  | if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) { | 
|  | dev_err(dev, "invalid gamma lut size: %zu bytes\n", | 
|  | drm_lut->length); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcar_du_cmm_setup(struct drm_crtc *crtc) | 
|  | { | 
|  | struct drm_property_blob *drm_lut = crtc->state->gamma_lut; | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct rcar_cmm_config cmm_config = {}; | 
|  |  | 
|  | if (!rcrtc->cmm) | 
|  | return; | 
|  |  | 
|  | if (drm_lut) | 
|  | cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data; | 
|  |  | 
|  | rcar_cmm_setup(rcrtc->cmm, &cmm_config); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Start/Stop and Suspend/Resume | 
|  | */ | 
|  |  | 
|  | static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | /* Set display off and background to black */ | 
|  | rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0)); | 
|  | rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0)); | 
|  |  | 
|  | /* Configure display timings and output routing */ | 
|  | rcar_du_crtc_set_display_timing(rcrtc); | 
|  | rcar_du_group_set_routing(rcrtc->group); | 
|  |  | 
|  | /* Start with all planes disabled. */ | 
|  | rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); | 
|  |  | 
|  | /* Enable the VSP compositor. */ | 
|  | if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) | 
|  | rcar_du_vsp_enable(rcrtc); | 
|  |  | 
|  | /* Turn vertical blanking interrupt reporting on. */ | 
|  | drm_crtc_vblank_on(&rcrtc->crtc); | 
|  | } | 
|  |  | 
|  | static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Guard against double-get, as the function is called from both the | 
|  | * .atomic_enable() and .atomic_begin() handlers. | 
|  | */ | 
|  | if (rcrtc->initialized) | 
|  | return 0; | 
|  |  | 
|  | ret = clk_prepare_enable(rcrtc->clock); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = clk_prepare_enable(rcrtc->extclock); | 
|  | if (ret < 0) | 
|  | goto error_clock; | 
|  |  | 
|  | ret = rcar_du_group_get(rcrtc->group); | 
|  | if (ret < 0) | 
|  | goto error_group; | 
|  |  | 
|  | rcar_du_crtc_setup(rcrtc); | 
|  | rcrtc->initialized = true; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_group: | 
|  | clk_disable_unprepare(rcrtc->extclock); | 
|  | error_clock: | 
|  | clk_disable_unprepare(rcrtc->clock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | rcar_du_group_put(rcrtc->group); | 
|  |  | 
|  | clk_disable_unprepare(rcrtc->extclock); | 
|  | clk_disable_unprepare(rcrtc->clock); | 
|  |  | 
|  | rcrtc->initialized = false; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | bool interlaced; | 
|  |  | 
|  | /* | 
|  | * Select master sync mode. This enables display operation in master | 
|  | * sync mode (with the HSYNC and VSYNC signals configured as outputs and | 
|  | * actively driven). | 
|  | */ | 
|  | interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE; | 
|  | rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK, | 
|  | (interlaced ? DSYSR_SCM_INT_VIDEO : 0) | | 
|  | DSYSR_TVM_MASTER); | 
|  |  | 
|  | rcar_du_group_start_stop(rcrtc->group, true); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | struct drm_crtc *crtc = &rcrtc->crtc; | 
|  | u32 status; | 
|  |  | 
|  | /* Make sure vblank interrupts are enabled. */ | 
|  | drm_crtc_vblank_get(crtc); | 
|  |  | 
|  | /* | 
|  | * Disable planes and calculate how many vertical blanking interrupts we | 
|  | * have to wait for. If a vertical blanking interrupt has been triggered | 
|  | * but not processed yet, we don't know whether it occurred before or | 
|  | * after the planes got disabled. We thus have to wait for two vblank | 
|  | * interrupts in that case. | 
|  | */ | 
|  | spin_lock_irq(&rcrtc->vblank_lock); | 
|  | rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0); | 
|  | status = rcar_du_crtc_read(rcrtc, DSSR); | 
|  | rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1; | 
|  | spin_unlock_irq(&rcrtc->vblank_lock); | 
|  |  | 
|  | if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0, | 
|  | msecs_to_jiffies(100))) | 
|  | dev_warn(rcdu->dev, "vertical blanking timeout\n"); | 
|  |  | 
|  | drm_crtc_vblank_put(crtc); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct drm_crtc *crtc = &rcrtc->crtc; | 
|  |  | 
|  | /* | 
|  | * Disable all planes and wait for the change to take effect. This is | 
|  | * required as the plane enable registers are updated on vblank, and no | 
|  | * vblank will occur once the CRTC is stopped. Disabling planes when | 
|  | * starting the CRTC thus wouldn't be enough as it would start scanning | 
|  | * out immediately from old frame buffers until the next vblank. | 
|  | * | 
|  | * This increases the CRTC stop delay, especially when multiple CRTCs | 
|  | * are stopped in one operation as we now wait for one vblank per CRTC. | 
|  | * Whether this can be improved needs to be researched. | 
|  | */ | 
|  | rcar_du_crtc_disable_planes(rcrtc); | 
|  |  | 
|  | /* | 
|  | * Disable vertical blanking interrupt reporting. We first need to wait | 
|  | * for page flip completion before stopping the CRTC as userspace | 
|  | * expects page flips to eventually complete. | 
|  | */ | 
|  | rcar_du_crtc_wait_page_flip(rcrtc); | 
|  | drm_crtc_vblank_off(crtc); | 
|  |  | 
|  | /* Disable the VSP compositor. */ | 
|  | if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) | 
|  | rcar_du_vsp_disable(rcrtc); | 
|  |  | 
|  | if (rcrtc->cmm) | 
|  | rcar_cmm_disable(rcrtc->cmm); | 
|  |  | 
|  | /* | 
|  | * Select switch sync mode. This stops display operation and configures | 
|  | * the HSYNC and VSYNC signals as inputs. | 
|  | * | 
|  | * TODO: Find another way to stop the display for DUs that don't support | 
|  | * TVM sync. | 
|  | */ | 
|  | if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC)) | 
|  | rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK, | 
|  | DSYSR_TVM_SWITCH); | 
|  |  | 
|  | rcar_du_group_start_stop(rcrtc->group, false); | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * CRTC Functions | 
|  | */ | 
|  |  | 
|  | static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc, | 
|  | struct drm_atomic_state *state) | 
|  | { | 
|  | struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, | 
|  | crtc); | 
|  | struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state); | 
|  | struct drm_encoder *encoder; | 
|  | int ret; | 
|  |  | 
|  | ret = rcar_du_cmm_check(crtc, crtc_state); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Store the routes from the CRTC output to the DU outputs. */ | 
|  | rstate->outputs = 0; | 
|  |  | 
|  | drm_for_each_encoder_mask(encoder, crtc->dev, | 
|  | crtc_state->encoder_mask) { | 
|  | struct rcar_du_encoder *renc; | 
|  |  | 
|  | /* Skip the writeback encoder. */ | 
|  | if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL) | 
|  | continue; | 
|  |  | 
|  | renc = to_rcar_encoder(encoder); | 
|  | rstate->outputs |= BIT(renc->output); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc, | 
|  | struct drm_atomic_state *state) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state); | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | if (rcrtc->cmm) | 
|  | rcar_cmm_enable(rcrtc->cmm); | 
|  | rcar_du_crtc_get(rcrtc); | 
|  |  | 
|  | /* | 
|  | * On D3/E3 the dot clock is provided by the LVDS encoder attached to | 
|  | * the DU channel. We need to enable its clock output explicitly if | 
|  | * the LVDS output is disabled. | 
|  | */ | 
|  | if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && | 
|  | rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { | 
|  | struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; | 
|  | const struct drm_display_mode *mode = | 
|  | &crtc->state->adjusted_mode; | 
|  |  | 
|  | rcar_lvds_clk_enable(bridge, mode->clock * 1000); | 
|  | } | 
|  |  | 
|  | rcar_du_crtc_start(rcrtc); | 
|  |  | 
|  | /* | 
|  | * TODO: The chip manual indicates that CMM tables should be written | 
|  | * after the DU channel has been activated. Investigate the impact | 
|  | * of this restriction on the first displayed frame. | 
|  | */ | 
|  | rcar_du_cmm_setup(crtc); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc, | 
|  | struct drm_atomic_state *state) | 
|  | { | 
|  | struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, | 
|  | crtc); | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state); | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  |  | 
|  | rcar_du_crtc_stop(rcrtc); | 
|  | rcar_du_crtc_put(rcrtc); | 
|  |  | 
|  | if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) && | 
|  | rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) { | 
|  | struct drm_bridge *bridge = rcdu->lvds[rcrtc->index]; | 
|  |  | 
|  | /* | 
|  | * Disable the LVDS clock output, see | 
|  | * rcar_du_crtc_atomic_enable(). | 
|  | */ | 
|  | rcar_lvds_clk_disable(bridge); | 
|  | } | 
|  |  | 
|  | spin_lock_irq(&crtc->dev->event_lock); | 
|  | if (crtc->state->event) { | 
|  | drm_crtc_send_vblank_event(crtc, crtc->state->event); | 
|  | crtc->state->event = NULL; | 
|  | } | 
|  | spin_unlock_irq(&crtc->dev->event_lock); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc, | 
|  | struct drm_atomic_state *state) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  |  | 
|  | WARN_ON(!crtc->state->enable); | 
|  |  | 
|  | /* | 
|  | * If a mode set is in progress we can be called with the CRTC disabled. | 
|  | * We thus need to first get and setup the CRTC in order to configure | 
|  | * planes. We must *not* put the CRTC in .atomic_flush(), as it must be | 
|  | * kept awake until the .atomic_enable() call that will follow. The get | 
|  | * operation in .atomic_enable() will in that case be a no-op, and the | 
|  | * CRTC will be put later in .atomic_disable(). | 
|  | * | 
|  | * If a mode set is not in progress the CRTC is enabled, and the | 
|  | * following get call will be a no-op. There is thus no need to balance | 
|  | * it in .atomic_flush() either. | 
|  | */ | 
|  | rcar_du_crtc_get(rcrtc); | 
|  |  | 
|  | /* If the active state changed, we let .atomic_enable handle CMM. */ | 
|  | if (crtc->state->color_mgmt_changed && !crtc->state->active_changed) | 
|  | rcar_du_cmm_setup(crtc); | 
|  |  | 
|  | if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) | 
|  | rcar_du_vsp_atomic_begin(rcrtc); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc, | 
|  | struct drm_atomic_state *state) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct drm_device *dev = rcrtc->crtc.dev; | 
|  | unsigned long flags; | 
|  |  | 
|  | rcar_du_crtc_update_planes(rcrtc); | 
|  |  | 
|  | if (crtc->state->event) { | 
|  | WARN_ON(drm_crtc_vblank_get(crtc) != 0); | 
|  |  | 
|  | spin_lock_irqsave(&dev->event_lock, flags); | 
|  | rcrtc->event = crtc->state->event; | 
|  | crtc->state->event = NULL; | 
|  | spin_unlock_irqrestore(&dev->event_lock, flags); | 
|  | } | 
|  |  | 
|  | if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE)) | 
|  | rcar_du_vsp_atomic_flush(rcrtc); | 
|  | } | 
|  |  | 
|  | static enum drm_mode_status | 
|  | rcar_du_crtc_mode_valid(struct drm_crtc *crtc, | 
|  | const struct drm_display_mode *mode) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; | 
|  | unsigned int vbp; | 
|  |  | 
|  | if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED)) | 
|  | return MODE_NO_INTERLACE; | 
|  |  | 
|  | /* | 
|  | * The hardware requires a minimum combined horizontal sync and back | 
|  | * porch of 20 pixels and a minimum vertical back porch of 3 lines. | 
|  | */ | 
|  | if (mode->htotal - mode->hsync_start < 20) | 
|  | return MODE_HBLANK_NARROW; | 
|  |  | 
|  | vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1); | 
|  | if (vbp < 3) | 
|  | return MODE_VBLANK_NARROW; | 
|  |  | 
|  | return MODE_OK; | 
|  | } | 
|  |  | 
|  | static const struct drm_crtc_helper_funcs crtc_helper_funcs = { | 
|  | .atomic_check = rcar_du_crtc_atomic_check, | 
|  | .atomic_begin = rcar_du_crtc_atomic_begin, | 
|  | .atomic_flush = rcar_du_crtc_atomic_flush, | 
|  | .atomic_enable = rcar_du_crtc_atomic_enable, | 
|  | .atomic_disable = rcar_du_crtc_atomic_disable, | 
|  | .mode_valid = rcar_du_crtc_mode_valid, | 
|  | }; | 
|  |  | 
|  | static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | const char **sources; | 
|  | unsigned int count; | 
|  | int i = -1; | 
|  |  | 
|  | /* CRC available only on Gen3 HW. */ | 
|  | if (rcdu->info->gen < 3) | 
|  | return; | 
|  |  | 
|  | /* Reserve 1 for "auto" source. */ | 
|  | count = rcrtc->vsp->num_planes + 1; | 
|  |  | 
|  | sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL); | 
|  | if (!sources) | 
|  | return; | 
|  |  | 
|  | sources[0] = kstrdup("auto", GFP_KERNEL); | 
|  | if (!sources[0]) | 
|  | goto error; | 
|  |  | 
|  | for (i = 0; i < rcrtc->vsp->num_planes; ++i) { | 
|  | struct drm_plane *plane = &rcrtc->vsp->planes[i].plane; | 
|  | char name[16]; | 
|  |  | 
|  | sprintf(name, "plane%u", plane->base.id); | 
|  | sources[i + 1] = kstrdup(name, GFP_KERNEL); | 
|  | if (!sources[i + 1]) | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | rcrtc->sources = sources; | 
|  | rcrtc->sources_count = count; | 
|  | return; | 
|  |  | 
|  | error: | 
|  | while (i >= 0) { | 
|  | kfree(sources[i]); | 
|  | i--; | 
|  | } | 
|  | kfree(sources); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (!rcrtc->sources) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < rcrtc->sources_count; i++) | 
|  | kfree(rcrtc->sources[i]); | 
|  | kfree(rcrtc->sources); | 
|  |  | 
|  | rcrtc->sources = NULL; | 
|  | rcrtc->sources_count = 0; | 
|  | } | 
|  |  | 
|  | static struct drm_crtc_state * | 
|  | rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc) | 
|  | { | 
|  | struct rcar_du_crtc_state *state; | 
|  | struct rcar_du_crtc_state *copy; | 
|  |  | 
|  | if (WARN_ON(!crtc->state)) | 
|  | return NULL; | 
|  |  | 
|  | state = to_rcar_crtc_state(crtc->state); | 
|  | copy = kmemdup(state, sizeof(*state), GFP_KERNEL); | 
|  | if (copy == NULL) | 
|  | return NULL; | 
|  |  | 
|  | __drm_atomic_helper_crtc_duplicate_state(crtc, ©->state); | 
|  |  | 
|  | return ©->state; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc, | 
|  | struct drm_crtc_state *state) | 
|  | { | 
|  | __drm_atomic_helper_crtc_destroy_state(state); | 
|  | kfree(to_rcar_crtc_state(state)); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_cleanup(struct drm_crtc *crtc) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  |  | 
|  | rcar_du_crtc_crc_cleanup(rcrtc); | 
|  |  | 
|  | return drm_crtc_cleanup(crtc); | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_reset(struct drm_crtc *crtc) | 
|  | { | 
|  | struct rcar_du_crtc_state *state; | 
|  |  | 
|  | if (crtc->state) { | 
|  | rcar_du_crtc_atomic_destroy_state(crtc, crtc->state); | 
|  | crtc->state = NULL; | 
|  | } | 
|  |  | 
|  | state = kzalloc(sizeof(*state), GFP_KERNEL); | 
|  | if (state == NULL) | 
|  | return; | 
|  |  | 
|  | state->crc.source = VSP1_DU_CRC_NONE; | 
|  | state->crc.index = 0; | 
|  |  | 
|  | __drm_atomic_helper_crtc_reset(crtc, &state->state); | 
|  | } | 
|  |  | 
|  | static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  |  | 
|  | rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL); | 
|  | rcar_du_crtc_set(rcrtc, DIER, DIER_VBE); | 
|  | rcrtc->vblank_enable = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  |  | 
|  | rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE); | 
|  | rcrtc->vblank_enable = false; | 
|  | } | 
|  |  | 
|  | static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc, | 
|  | const char *source_name, | 
|  | enum vsp1_du_crc_source *source) | 
|  | { | 
|  | unsigned int index; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * Parse the source name. Supported values are "plane%u" to compute the | 
|  | * CRC on an input plane (%u is the plane ID), and "auto" to compute the | 
|  | * CRC on the composer (VSP) output. | 
|  | */ | 
|  |  | 
|  | if (!source_name) { | 
|  | *source = VSP1_DU_CRC_NONE; | 
|  | return 0; | 
|  | } else if (!strcmp(source_name, "auto")) { | 
|  | *source = VSP1_DU_CRC_OUTPUT; | 
|  | return 0; | 
|  | } else if (strstarts(source_name, "plane")) { | 
|  | unsigned int i; | 
|  |  | 
|  | *source = VSP1_DU_CRC_PLANE; | 
|  |  | 
|  | ret = kstrtouint(source_name + strlen("plane"), 10, &index); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | for (i = 0; i < rcrtc->vsp->num_planes; ++i) { | 
|  | if (index == rcrtc->vsp->planes[i].plane.base.id) | 
|  | return i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc, | 
|  | const char *source_name, | 
|  | size_t *values_cnt) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | enum vsp1_du_crc_source source; | 
|  |  | 
|  | if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) { | 
|  | DRM_DEBUG_DRIVER("unknown source %s\n", source_name); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *values_cnt = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const char *const * | 
|  | rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  |  | 
|  | *count = rcrtc->sources_count; | 
|  | return rcrtc->sources; | 
|  | } | 
|  |  | 
|  | static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc, | 
|  | const char *source_name) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc); | 
|  | struct drm_modeset_acquire_ctx ctx; | 
|  | struct drm_crtc_state *crtc_state; | 
|  | struct drm_atomic_state *state; | 
|  | enum vsp1_du_crc_source source; | 
|  | unsigned int index; | 
|  | int ret; | 
|  |  | 
|  | ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | index = ret; | 
|  |  | 
|  | /* Perform an atomic commit to set the CRC source. */ | 
|  | drm_modeset_acquire_init(&ctx, 0); | 
|  |  | 
|  | state = drm_atomic_state_alloc(crtc->dev); | 
|  | if (!state) { | 
|  | ret = -ENOMEM; | 
|  | goto unlock; | 
|  | } | 
|  |  | 
|  | state->acquire_ctx = &ctx; | 
|  |  | 
|  | retry: | 
|  | crtc_state = drm_atomic_get_crtc_state(state, crtc); | 
|  | if (!IS_ERR(crtc_state)) { | 
|  | struct rcar_du_crtc_state *rcrtc_state; | 
|  |  | 
|  | rcrtc_state = to_rcar_crtc_state(crtc_state); | 
|  | rcrtc_state->crc.source = source; | 
|  | rcrtc_state->crc.index = index; | 
|  |  | 
|  | ret = drm_atomic_commit(state); | 
|  | } else { | 
|  | ret = PTR_ERR(crtc_state); | 
|  | } | 
|  |  | 
|  | if (ret == -EDEADLK) { | 
|  | drm_atomic_state_clear(state); | 
|  | drm_modeset_backoff(&ctx); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | drm_atomic_state_put(state); | 
|  |  | 
|  | unlock: | 
|  | drm_modeset_drop_locks(&ctx); | 
|  | drm_modeset_acquire_fini(&ctx); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static const struct drm_crtc_funcs crtc_funcs_gen2 = { | 
|  | .reset = rcar_du_crtc_reset, | 
|  | .destroy = drm_crtc_cleanup, | 
|  | .set_config = drm_atomic_helper_set_config, | 
|  | .page_flip = drm_atomic_helper_page_flip, | 
|  | .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, | 
|  | .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, | 
|  | .enable_vblank = rcar_du_crtc_enable_vblank, | 
|  | .disable_vblank = rcar_du_crtc_disable_vblank, | 
|  | }; | 
|  |  | 
|  | static const struct drm_crtc_funcs crtc_funcs_gen3 = { | 
|  | .reset = rcar_du_crtc_reset, | 
|  | .destroy = rcar_du_crtc_cleanup, | 
|  | .set_config = drm_atomic_helper_set_config, | 
|  | .page_flip = drm_atomic_helper_page_flip, | 
|  | .atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state, | 
|  | .atomic_destroy_state = rcar_du_crtc_atomic_destroy_state, | 
|  | .enable_vblank = rcar_du_crtc_enable_vblank, | 
|  | .disable_vblank = rcar_du_crtc_disable_vblank, | 
|  | .set_crc_source = rcar_du_crtc_set_crc_source, | 
|  | .verify_crc_source = rcar_du_crtc_verify_crc_source, | 
|  | .get_crc_sources = rcar_du_crtc_get_crc_sources, | 
|  | }; | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Interrupt Handling | 
|  | */ | 
|  |  | 
|  | static irqreturn_t rcar_du_crtc_irq(int irq, void *arg) | 
|  | { | 
|  | struct rcar_du_crtc *rcrtc = arg; | 
|  | struct rcar_du_device *rcdu = rcrtc->dev; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  | u32 status; | 
|  |  | 
|  | spin_lock(&rcrtc->vblank_lock); | 
|  |  | 
|  | status = rcar_du_crtc_read(rcrtc, DSSR); | 
|  | rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK); | 
|  |  | 
|  | if (status & DSSR_VBK) { | 
|  | /* | 
|  | * Wake up the vblank wait if the counter reaches 0. This must | 
|  | * be protected by the vblank_lock to avoid races in | 
|  | * rcar_du_crtc_disable_planes(). | 
|  | */ | 
|  | if (rcrtc->vblank_count) { | 
|  | if (--rcrtc->vblank_count == 0) | 
|  | wake_up(&rcrtc->vblank_wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_unlock(&rcrtc->vblank_lock); | 
|  |  | 
|  | if (status & DSSR_VBK) { | 
|  | if (rcdu->info->gen < 3) { | 
|  | drm_crtc_handle_vblank(&rcrtc->crtc); | 
|  | rcar_du_crtc_finish_page_flip(rcrtc); | 
|  | } | 
|  |  | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* ----------------------------------------------------------------------------- | 
|  | * Initialization | 
|  | */ | 
|  |  | 
|  | int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex, | 
|  | unsigned int hwindex) | 
|  | { | 
|  | static const unsigned int mmio_offsets[] = { | 
|  | DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET | 
|  | }; | 
|  |  | 
|  | struct rcar_du_device *rcdu = rgrp->dev; | 
|  | struct platform_device *pdev = to_platform_device(rcdu->dev); | 
|  | struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex]; | 
|  | struct drm_crtc *crtc = &rcrtc->crtc; | 
|  | struct drm_plane *primary; | 
|  | unsigned int irqflags; | 
|  | struct clk *clk; | 
|  | char clk_name[9]; | 
|  | char *name; | 
|  | int irq; | 
|  | int ret; | 
|  |  | 
|  | /* Get the CRTC clock and the optional external clock. */ | 
|  | if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) { | 
|  | sprintf(clk_name, "du.%u", hwindex); | 
|  | name = clk_name; | 
|  | } else { | 
|  | name = NULL; | 
|  | } | 
|  |  | 
|  | rcrtc->clock = devm_clk_get(rcdu->dev, name); | 
|  | if (IS_ERR(rcrtc->clock)) { | 
|  | dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex); | 
|  | return PTR_ERR(rcrtc->clock); | 
|  | } | 
|  |  | 
|  | sprintf(clk_name, "dclkin.%u", hwindex); | 
|  | clk = devm_clk_get(rcdu->dev, clk_name); | 
|  | if (!IS_ERR(clk)) { | 
|  | rcrtc->extclock = clk; | 
|  | } else if (PTR_ERR(clk) == -EPROBE_DEFER) { | 
|  | return -EPROBE_DEFER; | 
|  | } else if (rcdu->info->dpll_mask & BIT(hwindex)) { | 
|  | /* | 
|  | * DU channels that have a display PLL can't use the internal | 
|  | * system clock and thus require an external clock. | 
|  | */ | 
|  | ret = PTR_ERR(clk); | 
|  | dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | init_waitqueue_head(&rcrtc->flip_wait); | 
|  | init_waitqueue_head(&rcrtc->vblank_wait); | 
|  | spin_lock_init(&rcrtc->vblank_lock); | 
|  |  | 
|  | rcrtc->dev = rcdu; | 
|  | rcrtc->group = rgrp; | 
|  | rcrtc->mmio_offset = mmio_offsets[hwindex]; | 
|  | rcrtc->index = hwindex; | 
|  | rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES; | 
|  |  | 
|  | if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC)) | 
|  | rcrtc->dsysr |= DSYSR_TVM_TVSYNC; | 
|  |  | 
|  | if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) | 
|  | primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane; | 
|  | else | 
|  | primary = &rgrp->planes[swindex % 2].plane; | 
|  |  | 
|  | ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL, | 
|  | rcdu->info->gen <= 2 ? | 
|  | &crtc_funcs_gen2 : &crtc_funcs_gen3, | 
|  | NULL); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* CMM might be disabled for this CRTC. */ | 
|  | if (rcdu->cmms[swindex]) { | 
|  | rcrtc->cmm = rcdu->cmms[swindex]; | 
|  | rgrp->cmms_mask |= BIT(hwindex % 2); | 
|  |  | 
|  | drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE); | 
|  | drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE); | 
|  | } | 
|  |  | 
|  | drm_crtc_helper_add(crtc, &crtc_helper_funcs); | 
|  |  | 
|  | /* Register the interrupt handler. */ | 
|  | if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) { | 
|  | /* The IRQ's are associated with the CRTC (sw)index. */ | 
|  | irq = platform_get_irq(pdev, swindex); | 
|  | irqflags = 0; | 
|  | } else { | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | irqflags = IRQF_SHARED; | 
|  | } | 
|  |  | 
|  | if (irq < 0) { | 
|  | dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex); | 
|  | return irq; | 
|  | } | 
|  |  | 
|  | ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags, | 
|  | dev_name(rcdu->dev), rcrtc); | 
|  | if (ret < 0) { | 
|  | dev_err(rcdu->dev, | 
|  | "failed to register IRQ for CRTC %u\n", swindex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | rcar_du_crtc_crc_init(rcrtc); | 
|  |  | 
|  | return 0; | 
|  | } |