| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/sched/mm.h> |
| #include <linux/slab.h> |
| #include <linux/ratelimit.h> |
| #include <linux/kthread.h> |
| #include <linux/semaphore.h> |
| #include <linux/uuid.h> |
| #include <linux/list_sort.h> |
| #include <linux/namei.h> |
| #include "misc.h" |
| #include "ctree.h" |
| #include "extent_map.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "print-tree.h" |
| #include "volumes.h" |
| #include "raid56.h" |
| #include "rcu-string.h" |
| #include "dev-replace.h" |
| #include "sysfs.h" |
| #include "tree-checker.h" |
| #include "space-info.h" |
| #include "block-group.h" |
| #include "discard.h" |
| #include "zoned.h" |
| #include "fs.h" |
| #include "accessors.h" |
| #include "uuid-tree.h" |
| #include "ioctl.h" |
| #include "relocation.h" |
| #include "scrub.h" |
| #include "super.h" |
| |
| #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ |
| BTRFS_BLOCK_GROUP_RAID10 | \ |
| BTRFS_BLOCK_GROUP_RAID56_MASK) |
| |
| const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { |
| [BTRFS_RAID_RAID10] = { |
| .sub_stripes = 2, |
| .dev_stripes = 1, |
| .devs_max = 0, /* 0 == as many as possible */ |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .nparity = 0, |
| .raid_name = "raid10", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID10, |
| .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID1] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 2, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 2, |
| .ncopies = 2, |
| .nparity = 0, |
| .raid_name = "raid1", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID1, |
| .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID1C3] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 3, |
| .devs_min = 3, |
| .tolerated_failures = 2, |
| .devs_increment = 3, |
| .ncopies = 3, |
| .nparity = 0, |
| .raid_name = "raid1c3", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, |
| .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID1C4] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 4, |
| .devs_min = 4, |
| .tolerated_failures = 3, |
| .devs_increment = 4, |
| .ncopies = 4, |
| .nparity = 0, |
| .raid_name = "raid1c4", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, |
| .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_DUP] = { |
| .sub_stripes = 1, |
| .dev_stripes = 2, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 2, |
| .nparity = 0, |
| .raid_name = "dup", |
| .bg_flag = BTRFS_BLOCK_GROUP_DUP, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID0] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .nparity = 0, |
| .raid_name = "raid0", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_SINGLE] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 1, |
| .devs_min = 1, |
| .tolerated_failures = 0, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .nparity = 0, |
| .raid_name = "single", |
| .bg_flag = 0, |
| .mindev_error = 0, |
| }, |
| [BTRFS_RAID_RAID5] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 2, |
| .tolerated_failures = 1, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .nparity = 1, |
| .raid_name = "raid5", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID5, |
| .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, |
| }, |
| [BTRFS_RAID_RAID6] = { |
| .sub_stripes = 1, |
| .dev_stripes = 1, |
| .devs_max = 0, |
| .devs_min = 3, |
| .tolerated_failures = 2, |
| .devs_increment = 1, |
| .ncopies = 1, |
| .nparity = 2, |
| .raid_name = "raid6", |
| .bg_flag = BTRFS_BLOCK_GROUP_RAID6, |
| .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, |
| }, |
| }; |
| |
| /* |
| * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which |
| * can be used as index to access btrfs_raid_array[]. |
| */ |
| enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) |
| { |
| const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| |
| if (!profile) |
| return BTRFS_RAID_SINGLE; |
| |
| return BTRFS_BG_FLAG_TO_INDEX(profile); |
| } |
| |
| const char *btrfs_bg_type_to_raid_name(u64 flags) |
| { |
| const int index = btrfs_bg_flags_to_raid_index(flags); |
| |
| if (index >= BTRFS_NR_RAID_TYPES) |
| return NULL; |
| |
| return btrfs_raid_array[index].raid_name; |
| } |
| |
| int btrfs_nr_parity_stripes(u64 type) |
| { |
| enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); |
| |
| return btrfs_raid_array[index].nparity; |
| } |
| |
| /* |
| * Fill @buf with textual description of @bg_flags, no more than @size_buf |
| * bytes including terminating null byte. |
| */ |
| void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) |
| { |
| int i; |
| int ret; |
| char *bp = buf; |
| u64 flags = bg_flags; |
| u32 size_bp = size_buf; |
| |
| if (!flags) { |
| strcpy(bp, "NONE"); |
| return; |
| } |
| |
| #define DESCRIBE_FLAG(flag, desc) \ |
| do { \ |
| if (flags & (flag)) { \ |
| ret = snprintf(bp, size_bp, "%s|", (desc)); \ |
| if (ret < 0 || ret >= size_bp) \ |
| goto out_overflow; \ |
| size_bp -= ret; \ |
| bp += ret; \ |
| flags &= ~(flag); \ |
| } \ |
| } while (0) |
| |
| DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); |
| DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); |
| DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); |
| |
| DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) |
| DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, |
| btrfs_raid_array[i].raid_name); |
| #undef DESCRIBE_FLAG |
| |
| if (flags) { |
| ret = snprintf(bp, size_bp, "0x%llx|", flags); |
| size_bp -= ret; |
| } |
| |
| if (size_bp < size_buf) |
| buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ |
| |
| /* |
| * The text is trimmed, it's up to the caller to provide sufficiently |
| * large buffer |
| */ |
| out_overflow:; |
| } |
| |
| static int init_first_rw_device(struct btrfs_trans_handle *trans); |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); |
| |
| /* |
| * Device locking |
| * ============== |
| * |
| * There are several mutexes that protect manipulation of devices and low-level |
| * structures like chunks but not block groups, extents or files |
| * |
| * uuid_mutex (global lock) |
| * ------------------------ |
| * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from |
| * the SCAN_DEV ioctl registration or from mount either implicitly (the first |
| * device) or requested by the device= mount option |
| * |
| * the mutex can be very coarse and can cover long-running operations |
| * |
| * protects: updates to fs_devices counters like missing devices, rw devices, |
| * seeding, structure cloning, opening/closing devices at mount/umount time |
| * |
| * global::fs_devs - add, remove, updates to the global list |
| * |
| * does not protect: manipulation of the fs_devices::devices list in general |
| * but in mount context it could be used to exclude list modifications by eg. |
| * scan ioctl |
| * |
| * btrfs_device::name - renames (write side), read is RCU |
| * |
| * fs_devices::device_list_mutex (per-fs, with RCU) |
| * ------------------------------------------------ |
| * protects updates to fs_devices::devices, ie. adding and deleting |
| * |
| * simple list traversal with read-only actions can be done with RCU protection |
| * |
| * may be used to exclude some operations from running concurrently without any |
| * modifications to the list (see write_all_supers) |
| * |
| * Is not required at mount and close times, because our device list is |
| * protected by the uuid_mutex at that point. |
| * |
| * balance_mutex |
| * ------------- |
| * protects balance structures (status, state) and context accessed from |
| * several places (internally, ioctl) |
| * |
| * chunk_mutex |
| * ----------- |
| * protects chunks, adding or removing during allocation, trim or when a new |
| * device is added/removed. Additionally it also protects post_commit_list of |
| * individual devices, since they can be added to the transaction's |
| * post_commit_list only with chunk_mutex held. |
| * |
| * cleaner_mutex |
| * ------------- |
| * a big lock that is held by the cleaner thread and prevents running subvolume |
| * cleaning together with relocation or delayed iputs |
| * |
| * |
| * Lock nesting |
| * ============ |
| * |
| * uuid_mutex |
| * device_list_mutex |
| * chunk_mutex |
| * balance_mutex |
| * |
| * |
| * Exclusive operations |
| * ==================== |
| * |
| * Maintains the exclusivity of the following operations that apply to the |
| * whole filesystem and cannot run in parallel. |
| * |
| * - Balance (*) |
| * - Device add |
| * - Device remove |
| * - Device replace (*) |
| * - Resize |
| * |
| * The device operations (as above) can be in one of the following states: |
| * |
| * - Running state |
| * - Paused state |
| * - Completed state |
| * |
| * Only device operations marked with (*) can go into the Paused state for the |
| * following reasons: |
| * |
| * - ioctl (only Balance can be Paused through ioctl) |
| * - filesystem remounted as read-only |
| * - filesystem unmounted and mounted as read-only |
| * - system power-cycle and filesystem mounted as read-only |
| * - filesystem or device errors leading to forced read-only |
| * |
| * The status of exclusive operation is set and cleared atomically. |
| * During the course of Paused state, fs_info::exclusive_operation remains set. |
| * A device operation in Paused or Running state can be canceled or resumed |
| * either by ioctl (Balance only) or when remounted as read-write. |
| * The exclusive status is cleared when the device operation is canceled or |
| * completed. |
| */ |
| |
| DEFINE_MUTEX(uuid_mutex); |
| static LIST_HEAD(fs_uuids); |
| struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) |
| { |
| return &fs_uuids; |
| } |
| |
| /* |
| * alloc_fs_devices - allocate struct btrfs_fs_devices |
| * @fsid: if not NULL, copy the UUID to fs_devices::fsid |
| * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid |
| * |
| * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). |
| * The returned struct is not linked onto any lists and can be destroyed with |
| * kfree() right away. |
| */ |
| static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, |
| const u8 *metadata_fsid) |
| { |
| struct btrfs_fs_devices *fs_devs; |
| |
| ASSERT(fsid || !metadata_fsid); |
| |
| fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); |
| if (!fs_devs) |
| return ERR_PTR(-ENOMEM); |
| |
| mutex_init(&fs_devs->device_list_mutex); |
| |
| INIT_LIST_HEAD(&fs_devs->devices); |
| INIT_LIST_HEAD(&fs_devs->alloc_list); |
| INIT_LIST_HEAD(&fs_devs->fs_list); |
| INIT_LIST_HEAD(&fs_devs->seed_list); |
| |
| if (fsid) { |
| memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); |
| memcpy(fs_devs->metadata_uuid, |
| metadata_fsid ?: fsid, BTRFS_FSID_SIZE); |
| } |
| |
| return fs_devs; |
| } |
| |
| static void btrfs_free_device(struct btrfs_device *device) |
| { |
| WARN_ON(!list_empty(&device->post_commit_list)); |
| rcu_string_free(device->name); |
| extent_io_tree_release(&device->alloc_state); |
| btrfs_destroy_dev_zone_info(device); |
| kfree(device); |
| } |
| |
| static void free_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device; |
| |
| WARN_ON(fs_devices->opened); |
| while (!list_empty(&fs_devices->devices)) { |
| device = list_entry(fs_devices->devices.next, |
| struct btrfs_device, dev_list); |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| } |
| kfree(fs_devices); |
| } |
| |
| void __exit btrfs_cleanup_fs_uuids(void) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| while (!list_empty(&fs_uuids)) { |
| fs_devices = list_entry(fs_uuids.next, |
| struct btrfs_fs_devices, fs_list); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| static bool match_fsid_fs_devices(const struct btrfs_fs_devices *fs_devices, |
| const u8 *fsid, const u8 *metadata_fsid) |
| { |
| if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) != 0) |
| return false; |
| |
| if (!metadata_fsid) |
| return true; |
| |
| if (memcmp(metadata_fsid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE) != 0) |
| return false; |
| |
| return true; |
| } |
| |
| static noinline struct btrfs_fs_devices *find_fsid( |
| const u8 *fsid, const u8 *metadata_fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| ASSERT(fsid); |
| |
| /* Handle non-split brain cases */ |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (match_fsid_fs_devices(fs_devices, fsid, metadata_fsid)) |
| return fs_devices; |
| } |
| return NULL; |
| } |
| |
| /* |
| * First check if the metadata_uuid is different from the fsid in the given |
| * fs_devices. Then check if the given fsid is the same as the metadata_uuid |
| * in the fs_devices. If it is, return true; otherwise, return false. |
| */ |
| static inline bool check_fsid_changed(const struct btrfs_fs_devices *fs_devices, |
| const u8 *fsid) |
| { |
| return memcmp(fs_devices->fsid, fs_devices->metadata_uuid, |
| BTRFS_FSID_SIZE) != 0 && |
| memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE) == 0; |
| } |
| |
| static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( |
| struct btrfs_super_block *disk_super) |
| { |
| |
| struct btrfs_fs_devices *fs_devices; |
| |
| /* |
| * Handle scanned device having completed its fsid change but |
| * belonging to a fs_devices that was created by first scanning |
| * a device which didn't have its fsid/metadata_uuid changed |
| * at all and the CHANGING_FSID_V2 flag set. |
| */ |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (!fs_devices->fsid_change) |
| continue; |
| |
| if (match_fsid_fs_devices(fs_devices, disk_super->metadata_uuid, |
| fs_devices->fsid)) |
| return fs_devices; |
| } |
| |
| /* |
| * Handle scanned device having completed its fsid change but |
| * belonging to a fs_devices that was created by a device that |
| * has an outdated pair of fsid/metadata_uuid and |
| * CHANGING_FSID_V2 flag set. |
| */ |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (!fs_devices->fsid_change) |
| continue; |
| |
| if (check_fsid_changed(fs_devices, disk_super->metadata_uuid)) |
| return fs_devices; |
| } |
| |
| return find_fsid(disk_super->fsid, disk_super->metadata_uuid); |
| } |
| |
| |
| static int |
| btrfs_get_bdev_and_sb(const char *device_path, blk_mode_t flags, void *holder, |
| int flush, struct block_device **bdev, |
| struct btrfs_super_block **disk_super) |
| { |
| int ret; |
| |
| *bdev = blkdev_get_by_path(device_path, flags, holder, NULL); |
| |
| if (IS_ERR(*bdev)) { |
| ret = PTR_ERR(*bdev); |
| goto error; |
| } |
| |
| if (flush) |
| sync_blockdev(*bdev); |
| ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); |
| if (ret) { |
| blkdev_put(*bdev, holder); |
| goto error; |
| } |
| invalidate_bdev(*bdev); |
| *disk_super = btrfs_read_dev_super(*bdev); |
| if (IS_ERR(*disk_super)) { |
| ret = PTR_ERR(*disk_super); |
| blkdev_put(*bdev, holder); |
| goto error; |
| } |
| |
| return 0; |
| |
| error: |
| *bdev = NULL; |
| return ret; |
| } |
| |
| /* |
| * Search and remove all stale devices (which are not mounted). When both |
| * inputs are NULL, it will search and release all stale devices. |
| * |
| * @devt: Optional. When provided will it release all unmounted devices |
| * matching this devt only. |
| * @skip_device: Optional. Will skip this device when searching for the stale |
| * devices. |
| * |
| * Return: 0 for success or if @devt is 0. |
| * -EBUSY if @devt is a mounted device. |
| * -ENOENT if @devt does not match any device in the list. |
| */ |
| static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) |
| { |
| struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; |
| struct btrfs_device *device, *tmp_device; |
| int ret = 0; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| if (devt) |
| ret = -ENOENT; |
| |
| list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry_safe(device, tmp_device, |
| &fs_devices->devices, dev_list) { |
| if (skip_device && skip_device == device) |
| continue; |
| if (devt && devt != device->devt) |
| continue; |
| if (fs_devices->opened) { |
| /* for an already deleted device return 0 */ |
| if (devt && ret != 0) |
| ret = -EBUSY; |
| break; |
| } |
| |
| /* delete the stale device */ |
| fs_devices->num_devices--; |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| |
| ret = 0; |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (fs_devices->num_devices == 0) { |
| btrfs_sysfs_remove_fsid(fs_devices); |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * This is only used on mount, and we are protected from competing things |
| * messing with our fs_devices by the uuid_mutex, thus we do not need the |
| * fs_devices->device_list_mutex here. |
| */ |
| static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, |
| struct btrfs_device *device, blk_mode_t flags, |
| void *holder) |
| { |
| struct block_device *bdev; |
| struct btrfs_super_block *disk_super; |
| u64 devid; |
| int ret; |
| |
| if (device->bdev) |
| return -EINVAL; |
| if (!device->name) |
| return -EINVAL; |
| |
| ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, |
| &bdev, &disk_super); |
| if (ret) |
| return ret; |
| |
| devid = btrfs_stack_device_id(&disk_super->dev_item); |
| if (devid != device->devid) |
| goto error_free_page; |
| |
| if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) |
| goto error_free_page; |
| |
| device->generation = btrfs_super_generation(disk_super); |
| |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { |
| if (btrfs_super_incompat_flags(disk_super) & |
| BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { |
| pr_err( |
| "BTRFS: Invalid seeding and uuid-changed device detected\n"); |
| goto error_free_page; |
| } |
| |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| fs_devices->seeding = true; |
| } else { |
| if (bdev_read_only(bdev)) |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| else |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| } |
| |
| if (!bdev_nonrot(bdev)) |
| fs_devices->rotating = true; |
| |
| if (bdev_max_discard_sectors(bdev)) |
| fs_devices->discardable = true; |
| |
| device->bdev = bdev; |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| device->holder = holder; |
| |
| fs_devices->open_devices++; |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| fs_devices->rw_devices++; |
| list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); |
| } |
| btrfs_release_disk_super(disk_super); |
| |
| return 0; |
| |
| error_free_page: |
| btrfs_release_disk_super(disk_super); |
| blkdev_put(bdev, holder); |
| |
| return -EINVAL; |
| } |
| |
| u8 *btrfs_sb_fsid_ptr(struct btrfs_super_block *sb) |
| { |
| bool has_metadata_uuid = (btrfs_super_incompat_flags(sb) & |
| BTRFS_FEATURE_INCOMPAT_METADATA_UUID); |
| |
| return has_metadata_uuid ? sb->metadata_uuid : sb->fsid; |
| } |
| |
| /* |
| * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices |
| * being created with a disk that has already completed its fsid change. Such |
| * disk can belong to an fs which has its FSID changed or to one which doesn't. |
| * Handle both cases here. |
| */ |
| static struct btrfs_fs_devices *find_fsid_inprogress( |
| struct btrfs_super_block *disk_super) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (fs_devices->fsid_change) |
| continue; |
| |
| if (check_fsid_changed(fs_devices, disk_super->fsid)) |
| return fs_devices; |
| } |
| |
| return find_fsid(disk_super->fsid, NULL); |
| } |
| |
| static struct btrfs_fs_devices *find_fsid_changed( |
| struct btrfs_super_block *disk_super) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| /* |
| * Handles the case where scanned device is part of an fs that had |
| * multiple successful changes of FSID but currently device didn't |
| * observe it. Meaning our fsid will be different than theirs. We need |
| * to handle two subcases : |
| * 1 - The fs still continues to have different METADATA/FSID uuids. |
| * 2 - The fs is switched back to its original FSID (METADATA/FSID |
| * are equal). |
| */ |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| /* Changed UUIDs */ |
| if (check_fsid_changed(fs_devices, disk_super->metadata_uuid) && |
| memcmp(fs_devices->fsid, disk_super->fsid, |
| BTRFS_FSID_SIZE) != 0) |
| return fs_devices; |
| |
| /* Unchanged UUIDs */ |
| if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, |
| BTRFS_FSID_SIZE) == 0 && |
| memcmp(fs_devices->fsid, disk_super->metadata_uuid, |
| BTRFS_FSID_SIZE) == 0) |
| return fs_devices; |
| } |
| |
| return NULL; |
| } |
| |
| static struct btrfs_fs_devices *find_fsid_reverted_metadata( |
| struct btrfs_super_block *disk_super) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| /* |
| * Handle the case where the scanned device is part of an fs whose last |
| * metadata UUID change reverted it to the original FSID. At the same |
| * time fs_devices was first created by another constituent device |
| * which didn't fully observe the operation. This results in an |
| * btrfs_fs_devices created with metadata/fsid different AND |
| * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the |
| * fs_devices equal to the FSID of the disk. |
| */ |
| list_for_each_entry(fs_devices, &fs_uuids, fs_list) { |
| if (!fs_devices->fsid_change) |
| continue; |
| |
| if (check_fsid_changed(fs_devices, disk_super->fsid)) |
| return fs_devices; |
| } |
| |
| return NULL; |
| } |
| /* |
| * Add new device to list of registered devices |
| * |
| * Returns: |
| * device pointer which was just added or updated when successful |
| * error pointer when failed |
| */ |
| static noinline struct btrfs_device *device_list_add(const char *path, |
| struct btrfs_super_block *disk_super, |
| bool *new_device_added) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *fs_devices = NULL; |
| struct rcu_string *name; |
| u64 found_transid = btrfs_super_generation(disk_super); |
| u64 devid = btrfs_stack_device_id(&disk_super->dev_item); |
| dev_t path_devt; |
| int error; |
| bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & |
| BTRFS_FEATURE_INCOMPAT_METADATA_UUID); |
| bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & |
| BTRFS_SUPER_FLAG_CHANGING_FSID_V2); |
| |
| error = lookup_bdev(path, &path_devt); |
| if (error) { |
| btrfs_err(NULL, "failed to lookup block device for path %s: %d", |
| path, error); |
| return ERR_PTR(error); |
| } |
| |
| if (fsid_change_in_progress) { |
| if (!has_metadata_uuid) |
| fs_devices = find_fsid_inprogress(disk_super); |
| else |
| fs_devices = find_fsid_changed(disk_super); |
| } else if (has_metadata_uuid) { |
| fs_devices = find_fsid_with_metadata_uuid(disk_super); |
| } else { |
| fs_devices = find_fsid_reverted_metadata(disk_super); |
| if (!fs_devices) |
| fs_devices = find_fsid(disk_super->fsid, NULL); |
| } |
| |
| |
| if (!fs_devices) { |
| fs_devices = alloc_fs_devices(disk_super->fsid, |
| has_metadata_uuid ? disk_super->metadata_uuid : NULL); |
| if (IS_ERR(fs_devices)) |
| return ERR_CAST(fs_devices); |
| |
| fs_devices->fsid_change = fsid_change_in_progress; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_add(&fs_devices->fs_list, &fs_uuids); |
| |
| device = NULL; |
| } else { |
| struct btrfs_dev_lookup_args args = { |
| .devid = devid, |
| .uuid = disk_super->dev_item.uuid, |
| }; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| device = btrfs_find_device(fs_devices, &args); |
| |
| /* |
| * If this disk has been pulled into an fs devices created by |
| * a device which had the CHANGING_FSID_V2 flag then replace the |
| * metadata_uuid/fsid values of the fs_devices. |
| */ |
| if (fs_devices->fsid_change && |
| found_transid > fs_devices->latest_generation) { |
| memcpy(fs_devices->fsid, disk_super->fsid, |
| BTRFS_FSID_SIZE); |
| memcpy(fs_devices->metadata_uuid, |
| btrfs_sb_fsid_ptr(disk_super), BTRFS_FSID_SIZE); |
| fs_devices->fsid_change = false; |
| } |
| } |
| |
| if (!device) { |
| unsigned int nofs_flag; |
| |
| if (fs_devices->opened) { |
| btrfs_err(NULL, |
| "device %s belongs to fsid %pU, and the fs is already mounted, scanned by %s (%d)", |
| path, fs_devices->fsid, current->comm, |
| task_pid_nr(current)); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-EBUSY); |
| } |
| |
| nofs_flag = memalloc_nofs_save(); |
| device = btrfs_alloc_device(NULL, &devid, |
| disk_super->dev_item.uuid, path); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(device)) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| /* we can safely leave the fs_devices entry around */ |
| return device; |
| } |
| |
| device->devt = path_devt; |
| |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| fs_devices->num_devices++; |
| |
| device->fs_devices = fs_devices; |
| *new_device_added = true; |
| |
| if (disk_super->label[0]) |
| pr_info( |
| "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", |
| disk_super->label, devid, found_transid, path, |
| current->comm, task_pid_nr(current)); |
| else |
| pr_info( |
| "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", |
| disk_super->fsid, devid, found_transid, path, |
| current->comm, task_pid_nr(current)); |
| |
| } else if (!device->name || strcmp(device->name->str, path)) { |
| /* |
| * When FS is already mounted. |
| * 1. If you are here and if the device->name is NULL that |
| * means this device was missing at time of FS mount. |
| * 2. If you are here and if the device->name is different |
| * from 'path' that means either |
| * a. The same device disappeared and reappeared with |
| * different name. or |
| * b. The missing-disk-which-was-replaced, has |
| * reappeared now. |
| * |
| * We must allow 1 and 2a above. But 2b would be a spurious |
| * and unintentional. |
| * |
| * Further in case of 1 and 2a above, the disk at 'path' |
| * would have missed some transaction when it was away and |
| * in case of 2a the stale bdev has to be updated as well. |
| * 2b must not be allowed at all time. |
| */ |
| |
| /* |
| * For now, we do allow update to btrfs_fs_device through the |
| * btrfs dev scan cli after FS has been mounted. We're still |
| * tracking a problem where systems fail mount by subvolume id |
| * when we reject replacement on a mounted FS. |
| */ |
| if (!fs_devices->opened && found_transid < device->generation) { |
| /* |
| * That is if the FS is _not_ mounted and if you |
| * are here, that means there is more than one |
| * disk with same uuid and devid.We keep the one |
| * with larger generation number or the last-in if |
| * generation are equal. |
| */ |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_err(NULL, |
| "device %s already registered with a higher generation, found %llu expect %llu", |
| path, found_transid, device->generation); |
| return ERR_PTR(-EEXIST); |
| } |
| |
| /* |
| * We are going to replace the device path for a given devid, |
| * make sure it's the same device if the device is mounted |
| * |
| * NOTE: the device->fs_info may not be reliable here so pass |
| * in a NULL to message helpers instead. This avoids a possible |
| * use-after-free when the fs_info and fs_info->sb are already |
| * torn down. |
| */ |
| if (device->bdev) { |
| if (device->devt != path_devt) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_warn_in_rcu(NULL, |
| "duplicate device %s devid %llu generation %llu scanned by %s (%d)", |
| path, devid, found_transid, |
| current->comm, |
| task_pid_nr(current)); |
| return ERR_PTR(-EEXIST); |
| } |
| btrfs_info_in_rcu(NULL, |
| "devid %llu device path %s changed to %s scanned by %s (%d)", |
| devid, btrfs_dev_name(device), |
| path, current->comm, |
| task_pid_nr(current)); |
| } |
| |
| name = rcu_string_strdup(path, GFP_NOFS); |
| if (!name) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_string_free(device->name); |
| rcu_assign_pointer(device->name, name); |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| fs_devices->missing_devices--; |
| clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| } |
| device->devt = path_devt; |
| } |
| |
| /* |
| * Unmount does not free the btrfs_device struct but would zero |
| * generation along with most of the other members. So just update |
| * it back. We need it to pick the disk with largest generation |
| * (as above). |
| */ |
| if (!fs_devices->opened) { |
| device->generation = found_transid; |
| fs_devices->latest_generation = max_t(u64, found_transid, |
| fs_devices->latest_generation); |
| } |
| |
| fs_devices->total_devices = btrfs_super_num_devices(disk_super); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| return device; |
| } |
| |
| static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| struct btrfs_device *device; |
| struct btrfs_device *orig_dev; |
| int ret = 0; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| fs_devices = alloc_fs_devices(orig->fsid, NULL); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| fs_devices->total_devices = orig->total_devices; |
| |
| list_for_each_entry(orig_dev, &orig->devices, dev_list) { |
| const char *dev_path = NULL; |
| |
| /* |
| * This is ok to do without RCU read locked because we hold the |
| * uuid mutex so nothing we touch in here is going to disappear. |
| */ |
| if (orig_dev->name) |
| dev_path = orig_dev->name->str; |
| |
| device = btrfs_alloc_device(NULL, &orig_dev->devid, |
| orig_dev->uuid, dev_path); |
| if (IS_ERR(device)) { |
| ret = PTR_ERR(device); |
| goto error; |
| } |
| |
| if (orig_dev->zone_info) { |
| struct btrfs_zoned_device_info *zone_info; |
| |
| zone_info = btrfs_clone_dev_zone_info(orig_dev); |
| if (!zone_info) { |
| btrfs_free_device(device); |
| ret = -ENOMEM; |
| goto error; |
| } |
| device->zone_info = zone_info; |
| } |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| } |
| return fs_devices; |
| error: |
| free_fs_devices(fs_devices); |
| return ERR_PTR(ret); |
| } |
| |
| static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, |
| struct btrfs_device **latest_dev) |
| { |
| struct btrfs_device *device, *next; |
| |
| /* This is the initialized path, it is safe to release the devices. */ |
| list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { |
| if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, |
| &device->dev_state) && |
| !test_bit(BTRFS_DEV_STATE_MISSING, |
| &device->dev_state) && |
| (!*latest_dev || |
| device->generation > (*latest_dev)->generation)) { |
| *latest_dev = device; |
| } |
| continue; |
| } |
| |
| /* |
| * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, |
| * in btrfs_init_dev_replace() so just continue. |
| */ |
| if (device->devid == BTRFS_DEV_REPLACE_DEVID) |
| continue; |
| |
| if (device->bdev) { |
| blkdev_put(device->bdev, device->holder); |
| device->bdev = NULL; |
| fs_devices->open_devices--; |
| } |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| list_del_init(&device->dev_alloc_list); |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| fs_devices->rw_devices--; |
| } |
| list_del_init(&device->dev_list); |
| fs_devices->num_devices--; |
| btrfs_free_device(device); |
| } |
| |
| } |
| |
| /* |
| * After we have read the system tree and know devids belonging to this |
| * filesystem, remove the device which does not belong there. |
| */ |
| void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *latest_dev = NULL; |
| struct btrfs_fs_devices *seed_dev; |
| |
| mutex_lock(&uuid_mutex); |
| __btrfs_free_extra_devids(fs_devices, &latest_dev); |
| |
| list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) |
| __btrfs_free_extra_devids(seed_dev, &latest_dev); |
| |
| fs_devices->latest_dev = latest_dev; |
| |
| mutex_unlock(&uuid_mutex); |
| } |
| |
| static void btrfs_close_bdev(struct btrfs_device *device) |
| { |
| if (!device->bdev) |
| return; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| sync_blockdev(device->bdev); |
| invalidate_bdev(device->bdev); |
| } |
| |
| blkdev_put(device->bdev, device->holder); |
| } |
| |
| static void btrfs_close_one_device(struct btrfs_device *device) |
| { |
| struct btrfs_fs_devices *fs_devices = device->fs_devices; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| device->devid != BTRFS_DEV_REPLACE_DEVID) { |
| list_del_init(&device->dev_alloc_list); |
| fs_devices->rw_devices--; |
| } |
| |
| if (device->devid == BTRFS_DEV_REPLACE_DEVID) |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| fs_devices->missing_devices--; |
| } |
| |
| btrfs_close_bdev(device); |
| if (device->bdev) { |
| fs_devices->open_devices--; |
| device->bdev = NULL; |
| } |
| clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| btrfs_destroy_dev_zone_info(device); |
| |
| device->fs_info = NULL; |
| atomic_set(&device->dev_stats_ccnt, 0); |
| extent_io_tree_release(&device->alloc_state); |
| |
| /* |
| * Reset the flush error record. We might have a transient flush error |
| * in this mount, and if so we aborted the current transaction and set |
| * the fs to an error state, guaranteeing no super blocks can be further |
| * committed. However that error might be transient and if we unmount the |
| * filesystem and mount it again, we should allow the mount to succeed |
| * (btrfs_check_rw_degradable() should not fail) - if after mounting the |
| * filesystem again we still get flush errors, then we will again abort |
| * any transaction and set the error state, guaranteeing no commits of |
| * unsafe super blocks. |
| */ |
| device->last_flush_error = 0; |
| |
| /* Verify the device is back in a pristine state */ |
| WARN_ON(test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); |
| WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); |
| WARN_ON(!list_empty(&device->dev_alloc_list)); |
| WARN_ON(!list_empty(&device->post_commit_list)); |
| } |
| |
| static void close_fs_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| struct btrfs_device *device, *tmp; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| if (--fs_devices->opened > 0) |
| return; |
| |
| list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) |
| btrfs_close_one_device(device); |
| |
| WARN_ON(fs_devices->open_devices); |
| WARN_ON(fs_devices->rw_devices); |
| fs_devices->opened = 0; |
| fs_devices->seeding = false; |
| fs_devices->fs_info = NULL; |
| } |
| |
| void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) |
| { |
| LIST_HEAD(list); |
| struct btrfs_fs_devices *tmp; |
| |
| mutex_lock(&uuid_mutex); |
| close_fs_devices(fs_devices); |
| if (!fs_devices->opened) { |
| list_splice_init(&fs_devices->seed_list, &list); |
| |
| /* |
| * If the struct btrfs_fs_devices is not assembled with any |
| * other device, it can be re-initialized during the next mount |
| * without the needing device-scan step. Therefore, it can be |
| * fully freed. |
| */ |
| if (fs_devices->num_devices == 1) { |
| list_del(&fs_devices->fs_list); |
| free_fs_devices(fs_devices); |
| } |
| } |
| |
| |
| list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { |
| close_fs_devices(fs_devices); |
| list_del(&fs_devices->seed_list); |
| free_fs_devices(fs_devices); |
| } |
| mutex_unlock(&uuid_mutex); |
| } |
| |
| static int open_fs_devices(struct btrfs_fs_devices *fs_devices, |
| blk_mode_t flags, void *holder) |
| { |
| struct btrfs_device *device; |
| struct btrfs_device *latest_dev = NULL; |
| struct btrfs_device *tmp_device; |
| |
| list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, |
| dev_list) { |
| int ret; |
| |
| ret = btrfs_open_one_device(fs_devices, device, flags, holder); |
| if (ret == 0 && |
| (!latest_dev || device->generation > latest_dev->generation)) { |
| latest_dev = device; |
| } else if (ret == -ENODATA) { |
| fs_devices->num_devices--; |
| list_del(&device->dev_list); |
| btrfs_free_device(device); |
| } |
| } |
| if (fs_devices->open_devices == 0) |
| return -EINVAL; |
| |
| fs_devices->opened = 1; |
| fs_devices->latest_dev = latest_dev; |
| fs_devices->total_rw_bytes = 0; |
| fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; |
| fs_devices->read_policy = BTRFS_READ_POLICY_PID; |
| |
| return 0; |
| } |
| |
| static int devid_cmp(void *priv, const struct list_head *a, |
| const struct list_head *b) |
| { |
| const struct btrfs_device *dev1, *dev2; |
| |
| dev1 = list_entry(a, struct btrfs_device, dev_list); |
| dev2 = list_entry(b, struct btrfs_device, dev_list); |
| |
| if (dev1->devid < dev2->devid) |
| return -1; |
| else if (dev1->devid > dev2->devid) |
| return 1; |
| return 0; |
| } |
| |
| int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, |
| blk_mode_t flags, void *holder) |
| { |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| /* |
| * The device_list_mutex cannot be taken here in case opening the |
| * underlying device takes further locks like open_mutex. |
| * |
| * We also don't need the lock here as this is called during mount and |
| * exclusion is provided by uuid_mutex |
| */ |
| |
| if (fs_devices->opened) { |
| fs_devices->opened++; |
| ret = 0; |
| } else { |
| list_sort(NULL, &fs_devices->devices, devid_cmp); |
| ret = open_fs_devices(fs_devices, flags, holder); |
| } |
| |
| return ret; |
| } |
| |
| void btrfs_release_disk_super(struct btrfs_super_block *super) |
| { |
| struct page *page = virt_to_page(super); |
| |
| put_page(page); |
| } |
| |
| static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, |
| u64 bytenr, u64 bytenr_orig) |
| { |
| struct btrfs_super_block *disk_super; |
| struct page *page; |
| void *p; |
| pgoff_t index; |
| |
| /* make sure our super fits in the device */ |
| if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) |
| return ERR_PTR(-EINVAL); |
| |
| /* make sure our super fits in the page */ |
| if (sizeof(*disk_super) > PAGE_SIZE) |
| return ERR_PTR(-EINVAL); |
| |
| /* make sure our super doesn't straddle pages on disk */ |
| index = bytenr >> PAGE_SHIFT; |
| if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) |
| return ERR_PTR(-EINVAL); |
| |
| /* pull in the page with our super */ |
| page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); |
| |
| if (IS_ERR(page)) |
| return ERR_CAST(page); |
| |
| p = page_address(page); |
| |
| /* align our pointer to the offset of the super block */ |
| disk_super = p + offset_in_page(bytenr); |
| |
| if (btrfs_super_bytenr(disk_super) != bytenr_orig || |
| btrfs_super_magic(disk_super) != BTRFS_MAGIC) { |
| btrfs_release_disk_super(p); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) |
| disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; |
| |
| return disk_super; |
| } |
| |
| int btrfs_forget_devices(dev_t devt) |
| { |
| int ret; |
| |
| mutex_lock(&uuid_mutex); |
| ret = btrfs_free_stale_devices(devt, NULL); |
| mutex_unlock(&uuid_mutex); |
| |
| return ret; |
| } |
| |
| /* |
| * Look for a btrfs signature on a device. This may be called out of the mount path |
| * and we are not allowed to call set_blocksize during the scan. The superblock |
| * is read via pagecache |
| */ |
| struct btrfs_device *btrfs_scan_one_device(const char *path, blk_mode_t flags) |
| { |
| struct btrfs_super_block *disk_super; |
| bool new_device_added = false; |
| struct btrfs_device *device = NULL; |
| struct block_device *bdev; |
| u64 bytenr, bytenr_orig; |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| |
| /* |
| * we would like to check all the supers, but that would make |
| * a btrfs mount succeed after a mkfs from a different FS. |
| * So, we need to add a special mount option to scan for |
| * later supers, using BTRFS_SUPER_MIRROR_MAX instead |
| */ |
| |
| /* |
| * Avoid an exclusive open here, as the systemd-udev may initiate the |
| * device scan which may race with the user's mount or mkfs command, |
| * resulting in failure. |
| * Since the device scan is solely for reading purposes, there is no |
| * need for an exclusive open. Additionally, the devices are read again |
| * during the mount process. It is ok to get some inconsistent |
| * values temporarily, as the device paths of the fsid are the only |
| * required information for assembling the volume. |
| */ |
| bdev = blkdev_get_by_path(path, flags, NULL, NULL); |
| if (IS_ERR(bdev)) |
| return ERR_CAST(bdev); |
| |
| bytenr_orig = btrfs_sb_offset(0); |
| ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); |
| if (ret) { |
| device = ERR_PTR(ret); |
| goto error_bdev_put; |
| } |
| |
| disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); |
| if (IS_ERR(disk_super)) { |
| device = ERR_CAST(disk_super); |
| goto error_bdev_put; |
| } |
| |
| device = device_list_add(path, disk_super, &new_device_added); |
| if (!IS_ERR(device) && new_device_added) |
| btrfs_free_stale_devices(device->devt, device); |
| |
| btrfs_release_disk_super(disk_super); |
| |
| error_bdev_put: |
| blkdev_put(bdev, NULL); |
| |
| return device; |
| } |
| |
| /* |
| * Try to find a chunk that intersects [start, start + len] range and when one |
| * such is found, record the end of it in *start |
| */ |
| static bool contains_pending_extent(struct btrfs_device *device, u64 *start, |
| u64 len) |
| { |
| u64 physical_start, physical_end; |
| |
| lockdep_assert_held(&device->fs_info->chunk_mutex); |
| |
| if (find_first_extent_bit(&device->alloc_state, *start, |
| &physical_start, &physical_end, |
| CHUNK_ALLOCATED, NULL)) { |
| |
| if (in_range(physical_start, *start, len) || |
| in_range(*start, physical_start, |
| physical_end - physical_start)) { |
| *start = physical_end + 1; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static u64 dev_extent_search_start(struct btrfs_device *device) |
| { |
| switch (device->fs_devices->chunk_alloc_policy) { |
| case BTRFS_CHUNK_ALLOC_REGULAR: |
| return BTRFS_DEVICE_RANGE_RESERVED; |
| case BTRFS_CHUNK_ALLOC_ZONED: |
| /* |
| * We don't care about the starting region like regular |
| * allocator, because we anyway use/reserve the first two zones |
| * for superblock logging. |
| */ |
| return 0; |
| default: |
| BUG(); |
| } |
| } |
| |
| static bool dev_extent_hole_check_zoned(struct btrfs_device *device, |
| u64 *hole_start, u64 *hole_size, |
| u64 num_bytes) |
| { |
| u64 zone_size = device->zone_info->zone_size; |
| u64 pos; |
| int ret; |
| bool changed = false; |
| |
| ASSERT(IS_ALIGNED(*hole_start, zone_size)); |
| |
| while (*hole_size > 0) { |
| pos = btrfs_find_allocatable_zones(device, *hole_start, |
| *hole_start + *hole_size, |
| num_bytes); |
| if (pos != *hole_start) { |
| *hole_size = *hole_start + *hole_size - pos; |
| *hole_start = pos; |
| changed = true; |
| if (*hole_size < num_bytes) |
| break; |
| } |
| |
| ret = btrfs_ensure_empty_zones(device, pos, num_bytes); |
| |
| /* Range is ensured to be empty */ |
| if (!ret) |
| return changed; |
| |
| /* Given hole range was invalid (outside of device) */ |
| if (ret == -ERANGE) { |
| *hole_start += *hole_size; |
| *hole_size = 0; |
| return true; |
| } |
| |
| *hole_start += zone_size; |
| *hole_size -= zone_size; |
| changed = true; |
| } |
| |
| return changed; |
| } |
| |
| /* |
| * Check if specified hole is suitable for allocation. |
| * |
| * @device: the device which we have the hole |
| * @hole_start: starting position of the hole |
| * @hole_size: the size of the hole |
| * @num_bytes: the size of the free space that we need |
| * |
| * This function may modify @hole_start and @hole_size to reflect the suitable |
| * position for allocation. Returns 1 if hole position is updated, 0 otherwise. |
| */ |
| static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, |
| u64 *hole_size, u64 num_bytes) |
| { |
| bool changed = false; |
| u64 hole_end = *hole_start + *hole_size; |
| |
| for (;;) { |
| /* |
| * Check before we set max_hole_start, otherwise we could end up |
| * sending back this offset anyway. |
| */ |
| if (contains_pending_extent(device, hole_start, *hole_size)) { |
| if (hole_end >= *hole_start) |
| *hole_size = hole_end - *hole_start; |
| else |
| *hole_size = 0; |
| changed = true; |
| } |
| |
| switch (device->fs_devices->chunk_alloc_policy) { |
| case BTRFS_CHUNK_ALLOC_REGULAR: |
| /* No extra check */ |
| break; |
| case BTRFS_CHUNK_ALLOC_ZONED: |
| if (dev_extent_hole_check_zoned(device, hole_start, |
| hole_size, num_bytes)) { |
| changed = true; |
| /* |
| * The changed hole can contain pending extent. |
| * Loop again to check that. |
| */ |
| continue; |
| } |
| break; |
| default: |
| BUG(); |
| } |
| |
| break; |
| } |
| |
| return changed; |
| } |
| |
| /* |
| * Find free space in the specified device. |
| * |
| * @device: the device which we search the free space in |
| * @num_bytes: the size of the free space that we need |
| * @search_start: the position from which to begin the search |
| * @start: store the start of the free space. |
| * @len: the size of the free space. that we find, or the size |
| * of the max free space if we don't find suitable free space |
| * |
| * This does a pretty simple search, the expectation is that it is called very |
| * infrequently and that a given device has a small number of extents. |
| * |
| * @start is used to store the start of the free space if we find. But if we |
| * don't find suitable free space, it will be used to store the start position |
| * of the max free space. |
| * |
| * @len is used to store the size of the free space that we find. |
| * But if we don't find suitable free space, it is used to store the size of |
| * the max free space. |
| * |
| * NOTE: This function will search *commit* root of device tree, and does extra |
| * check to ensure dev extents are not double allocated. |
| * This makes the function safe to allocate dev extents but may not report |
| * correct usable device space, as device extent freed in current transaction |
| * is not reported as available. |
| */ |
| static int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, |
| u64 *start, u64 *len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_key key; |
| struct btrfs_dev_extent *dev_extent; |
| struct btrfs_path *path; |
| u64 search_start; |
| u64 hole_size; |
| u64 max_hole_start; |
| u64 max_hole_size = 0; |
| u64 extent_end; |
| u64 search_end = device->total_bytes; |
| int ret; |
| int slot; |
| struct extent_buffer *l; |
| |
| search_start = dev_extent_search_start(device); |
| max_hole_start = search_start; |
| |
| WARN_ON(device->zone_info && |
| !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| again: |
| if (search_start >= search_end || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| ret = -ENOSPC; |
| goto out; |
| } |
| |
| path->reada = READA_FORWARD; |
| path->search_commit_root = 1; |
| path->skip_locking = 1; |
| |
| key.objectid = device->devid; |
| key.offset = search_start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| ret = btrfs_search_backwards(root, &key, path); |
| if (ret < 0) |
| goto out; |
| |
| while (search_start < search_end) { |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| if (slot >= btrfs_header_nritems(l)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret == 0) |
| continue; |
| if (ret < 0) |
| goto out; |
| |
| break; |
| } |
| btrfs_item_key_to_cpu(l, &key, slot); |
| |
| if (key.objectid < device->devid) |
| goto next; |
| |
| if (key.objectid > device->devid) |
| break; |
| |
| if (key.type != BTRFS_DEV_EXTENT_KEY) |
| goto next; |
| |
| if (key.offset > search_end) |
| break; |
| |
| if (key.offset > search_start) { |
| hole_size = key.offset - search_start; |
| dev_extent_hole_check(device, &search_start, &hole_size, |
| num_bytes); |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| |
| /* |
| * If this free space is greater than which we need, |
| * it must be the max free space that we have found |
| * until now, so max_hole_start must point to the start |
| * of this free space and the length of this free space |
| * is stored in max_hole_size. Thus, we return |
| * max_hole_start and max_hole_size and go back to the |
| * caller. |
| */ |
| if (hole_size >= num_bytes) { |
| ret = 0; |
| goto out; |
| } |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| extent_end = key.offset + btrfs_dev_extent_length(l, |
| dev_extent); |
| if (extent_end > search_start) |
| search_start = extent_end; |
| next: |
| path->slots[0]++; |
| cond_resched(); |
| } |
| |
| /* |
| * At this point, search_start should be the end of |
| * allocated dev extents, and when shrinking the device, |
| * search_end may be smaller than search_start. |
| */ |
| if (search_end > search_start) { |
| hole_size = search_end - search_start; |
| if (dev_extent_hole_check(device, &search_start, &hole_size, |
| num_bytes)) { |
| btrfs_release_path(path); |
| goto again; |
| } |
| |
| if (hole_size > max_hole_size) { |
| max_hole_start = search_start; |
| max_hole_size = hole_size; |
| } |
| } |
| |
| /* See above. */ |
| if (max_hole_size < num_bytes) |
| ret = -ENOSPC; |
| else |
| ret = 0; |
| |
| ASSERT(max_hole_start + max_hole_size <= search_end); |
| out: |
| btrfs_free_path(path); |
| *start = max_hole_start; |
| if (len) |
| *len = max_hole_size; |
| return ret; |
| } |
| |
| static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, |
| u64 start, u64 *dev_extent_len) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf = NULL; |
| struct btrfs_dev_extent *extent = NULL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = device->devid; |
| key.offset = start; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| again: |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret > 0) { |
| ret = btrfs_previous_item(root, path, key.objectid, |
| BTRFS_DEV_EXTENT_KEY); |
| if (ret) |
| goto out; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| BUG_ON(found_key.offset > start || found_key.offset + |
| btrfs_dev_extent_length(leaf, extent) < start); |
| key = found_key; |
| btrfs_release_path(path); |
| goto again; |
| } else if (ret == 0) { |
| leaf = path->nodes[0]; |
| extent = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_extent); |
| } else { |
| goto out; |
| } |
| |
| *dev_extent_len = btrfs_dev_extent_length(leaf, extent); |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret == 0) |
| set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static u64 find_next_chunk(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| struct rb_node *n; |
| u64 ret = 0; |
| |
| em_tree = &fs_info->mapping_tree; |
| read_lock(&em_tree->lock); |
| n = rb_last(&em_tree->map.rb_root); |
| if (n) { |
| em = rb_entry(n, struct extent_map, rb_node); |
| ret = em->start + em->len; |
| } |
| read_unlock(&em_tree->lock); |
| |
| return ret; |
| } |
| |
| static noinline int find_next_devid(struct btrfs_fs_info *fs_info, |
| u64 *devid_ret) |
| { |
| int ret; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct btrfs_path *path; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto error; |
| |
| if (ret == 0) { |
| /* Corruption */ |
| btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); |
| ret = -EUCLEAN; |
| goto error; |
| } |
| |
| ret = btrfs_previous_item(fs_info->chunk_root, path, |
| BTRFS_DEV_ITEMS_OBJECTID, |
| BTRFS_DEV_ITEM_KEY); |
| if (ret) { |
| *devid_ret = 1; |
| } else { |
| btrfs_item_key_to_cpu(path->nodes[0], &found_key, |
| path->slots[0]); |
| *devid_ret = found_key.offset + 1; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * the device information is stored in the chunk root |
| * the btrfs_device struct should be fully filled in |
| */ |
| static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| unsigned long ptr; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| btrfs_reserve_chunk_metadata(trans, true); |
| ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, |
| &key, sizeof(*dev_item)); |
| btrfs_trans_release_chunk_metadata(trans); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_generation(leaf, dev_item, 0); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_set_device_group(leaf, dev_item, 0); |
| btrfs_set_device_seek_speed(leaf, dev_item, 0); |
| btrfs_set_device_bandwidth(leaf, dev_item, 0); |
| btrfs_set_device_start_offset(leaf, dev_item, 0); |
| |
| ptr = btrfs_device_uuid(dev_item); |
| write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| ptr = btrfs_device_fsid(dev_item); |
| write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, |
| ptr, BTRFS_FSID_SIZE); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| ret = 0; |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Function to update ctime/mtime for a given device path. |
| * Mainly used for ctime/mtime based probe like libblkid. |
| * |
| * We don't care about errors here, this is just to be kind to userspace. |
| */ |
| static void update_dev_time(const char *device_path) |
| { |
| struct path path; |
| int ret; |
| |
| ret = kern_path(device_path, LOOKUP_FOLLOW, &path); |
| if (ret) |
| return; |
| |
| inode_update_time(d_inode(path.dentry), S_MTIME | S_CTIME | S_VERSION); |
| path_put(&path); |
| } |
| |
| static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| struct btrfs_root *root = device->fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| btrfs_reserve_chunk_metadata(trans, false); |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| btrfs_trans_release_chunk_metadata(trans); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Verify that @num_devices satisfies the RAID profile constraints in the whole |
| * filesystem. It's up to the caller to adjust that number regarding eg. device |
| * replace. |
| */ |
| static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, |
| u64 num_devices) |
| { |
| u64 all_avail; |
| unsigned seq; |
| int i; |
| |
| do { |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| all_avail = fs_info->avail_data_alloc_bits | |
| fs_info->avail_system_alloc_bits | |
| fs_info->avail_metadata_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { |
| if (!(all_avail & btrfs_raid_array[i].bg_flag)) |
| continue; |
| |
| if (num_devices < btrfs_raid_array[i].devs_min) |
| return btrfs_raid_array[i].mindev_error; |
| } |
| |
| return 0; |
| } |
| |
| static struct btrfs_device * btrfs_find_next_active_device( |
| struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) |
| { |
| struct btrfs_device *next_device; |
| |
| list_for_each_entry(next_device, &fs_devs->devices, dev_list) { |
| if (next_device != device && |
| !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) |
| && next_device->bdev) |
| return next_device; |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * Helper function to check if the given device is part of s_bdev / latest_dev |
| * and replace it with the provided or the next active device, in the context |
| * where this function called, there should be always be another device (or |
| * this_dev) which is active. |
| */ |
| void __cold btrfs_assign_next_active_device(struct btrfs_device *device, |
| struct btrfs_device *next_device) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| |
| if (!next_device) |
| next_device = btrfs_find_next_active_device(fs_info->fs_devices, |
| device); |
| ASSERT(next_device); |
| |
| if (fs_info->sb->s_bdev && |
| (fs_info->sb->s_bdev == device->bdev)) |
| fs_info->sb->s_bdev = next_device->bdev; |
| |
| if (fs_info->fs_devices->latest_dev->bdev == device->bdev) |
| fs_info->fs_devices->latest_dev = next_device; |
| } |
| |
| /* |
| * Return btrfs_fs_devices::num_devices excluding the device that's being |
| * currently replaced. |
| */ |
| static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) |
| { |
| u64 num_devices = fs_info->fs_devices->num_devices; |
| |
| down_read(&fs_info->dev_replace.rwsem); |
| if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { |
| ASSERT(num_devices > 1); |
| num_devices--; |
| } |
| up_read(&fs_info->dev_replace.rwsem); |
| |
| return num_devices; |
| } |
| |
| static void btrfs_scratch_superblock(struct btrfs_fs_info *fs_info, |
| struct block_device *bdev, int copy_num) |
| { |
| struct btrfs_super_block *disk_super; |
| const size_t len = sizeof(disk_super->magic); |
| const u64 bytenr = btrfs_sb_offset(copy_num); |
| int ret; |
| |
| disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr); |
| if (IS_ERR(disk_super)) |
| return; |
| |
| memset(&disk_super->magic, 0, len); |
| folio_mark_dirty(virt_to_folio(disk_super)); |
| btrfs_release_disk_super(disk_super); |
| |
| ret = sync_blockdev_range(bdev, bytenr, bytenr + len - 1); |
| if (ret) |
| btrfs_warn(fs_info, "error clearing superblock number %d (%d)", |
| copy_num, ret); |
| } |
| |
| void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, |
| struct block_device *bdev, |
| const char *device_path) |
| { |
| int copy_num; |
| |
| if (!bdev) |
| return; |
| |
| for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { |
| if (bdev_is_zoned(bdev)) |
| btrfs_reset_sb_log_zones(bdev, copy_num); |
| else |
| btrfs_scratch_superblock(fs_info, bdev, copy_num); |
| } |
| |
| /* Notify udev that device has changed */ |
| btrfs_kobject_uevent(bdev, KOBJ_CHANGE); |
| |
| /* Update ctime/mtime for device path for libblkid */ |
| update_dev_time(device_path); |
| } |
| |
| int btrfs_rm_device(struct btrfs_fs_info *fs_info, |
| struct btrfs_dev_lookup_args *args, |
| struct block_device **bdev, void **holder) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *cur_devices; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u64 num_devices; |
| int ret = 0; |
| |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); |
| return -EINVAL; |
| } |
| |
| /* |
| * The device list in fs_devices is accessed without locks (neither |
| * uuid_mutex nor device_list_mutex) as it won't change on a mounted |
| * filesystem and another device rm cannot run. |
| */ |
| num_devices = btrfs_num_devices(fs_info); |
| |
| ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); |
| if (ret) |
| return ret; |
| |
| device = btrfs_find_device(fs_info->fs_devices, args); |
| if (!device) { |
| if (args->missing) |
| ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; |
| else |
| ret = -ENOENT; |
| return ret; |
| } |
| |
| if (btrfs_pinned_by_swapfile(fs_info, device)) { |
| btrfs_warn_in_rcu(fs_info, |
| "cannot remove device %s (devid %llu) due to active swapfile", |
| btrfs_dev_name(device), device->devid); |
| return -ETXTBSY; |
| } |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| return BTRFS_ERROR_DEV_TGT_REPLACE; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| fs_info->fs_devices->rw_devices == 1) |
| return BTRFS_ERROR_DEV_ONLY_WRITABLE; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_init(&device->dev_alloc_list); |
| device->fs_devices->rw_devices--; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| |
| ret = btrfs_shrink_device(device, 0); |
| if (ret) |
| goto error_undo; |
| |
| trans = btrfs_start_transaction(fs_info->chunk_root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error_undo; |
| } |
| |
| ret = btrfs_rm_dev_item(trans, device); |
| if (ret) { |
| /* Any error in dev item removal is critical */ |
| btrfs_crit(fs_info, |
| "failed to remove device item for devid %llu: %d", |
| device->devid, ret); |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| btrfs_scrub_cancel_dev(device); |
| |
| /* |
| * the device list mutex makes sure that we don't change |
| * the device list while someone else is writing out all |
| * the device supers. Whoever is writing all supers, should |
| * lock the device list mutex before getting the number of |
| * devices in the super block (super_copy). Conversely, |
| * whoever updates the number of devices in the super block |
| * (super_copy) should hold the device list mutex. |
| */ |
| |
| /* |
| * In normal cases the cur_devices == fs_devices. But in case |
| * of deleting a seed device, the cur_devices should point to |
| * its own fs_devices listed under the fs_devices->seed_list. |
| */ |
| cur_devices = device->fs_devices; |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_del_rcu(&device->dev_list); |
| |
| cur_devices->num_devices--; |
| cur_devices->total_devices--; |
| /* Update total_devices of the parent fs_devices if it's seed */ |
| if (cur_devices != fs_devices) |
| fs_devices->total_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) |
| cur_devices->missing_devices--; |
| |
| btrfs_assign_next_active_device(device, NULL); |
| |
| if (device->bdev) { |
| cur_devices->open_devices--; |
| /* remove sysfs entry */ |
| btrfs_sysfs_remove_device(device); |
| } |
| |
| num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; |
| btrfs_set_super_num_devices(fs_info->super_copy, num_devices); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * At this point, the device is zero sized and detached from the |
| * devices list. All that's left is to zero out the old supers and |
| * free the device. |
| * |
| * We cannot call btrfs_close_bdev() here because we're holding the sb |
| * write lock, and blkdev_put() will pull in the ->open_mutex on the |
| * block device and it's dependencies. Instead just flush the device |
| * and let the caller do the final blkdev_put. |
| */ |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| btrfs_scratch_superblocks(fs_info, device->bdev, |
| device->name->str); |
| if (device->bdev) { |
| sync_blockdev(device->bdev); |
| invalidate_bdev(device->bdev); |
| } |
| } |
| |
| *bdev = device->bdev; |
| *holder = device->holder; |
| synchronize_rcu(); |
| btrfs_free_device(device); |
| |
| /* |
| * This can happen if cur_devices is the private seed devices list. We |
| * cannot call close_fs_devices() here because it expects the uuid_mutex |
| * to be held, but in fact we don't need that for the private |
| * seed_devices, we can simply decrement cur_devices->opened and then |
| * remove it from our list and free the fs_devices. |
| */ |
| if (cur_devices->num_devices == 0) { |
| list_del_init(&cur_devices->seed_list); |
| ASSERT(cur_devices->opened == 1); |
| cur_devices->opened--; |
| free_fs_devices(cur_devices); |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| return ret; |
| |
| error_undo: |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add(&device->dev_alloc_list, |
| &fs_devices->alloc_list); |
| device->fs_devices->rw_devices++; |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| return ret; |
| } |
| |
| void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| |
| lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); |
| |
| /* |
| * in case of fs with no seed, srcdev->fs_devices will point |
| * to fs_devices of fs_info. However when the dev being replaced is |
| * a seed dev it will point to the seed's local fs_devices. In short |
| * srcdev will have its correct fs_devices in both the cases. |
| */ |
| fs_devices = srcdev->fs_devices; |
| |
| list_del_rcu(&srcdev->dev_list); |
| list_del(&srcdev->dev_alloc_list); |
| fs_devices->num_devices--; |
| if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) |
| fs_devices->missing_devices--; |
| |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) |
| fs_devices->rw_devices--; |
| |
| if (srcdev->bdev) |
| fs_devices->open_devices--; |
| } |
| |
| void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) |
| { |
| struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; |
| |
| mutex_lock(&uuid_mutex); |
| |
| btrfs_close_bdev(srcdev); |
| synchronize_rcu(); |
| btrfs_free_device(srcdev); |
| |
| /* if this is no devs we rather delete the fs_devices */ |
| if (!fs_devices->num_devices) { |
| /* |
| * On a mounted FS, num_devices can't be zero unless it's a |
| * seed. In case of a seed device being replaced, the replace |
| * target added to the sprout FS, so there will be no more |
| * device left under the seed FS. |
| */ |
| ASSERT(fs_devices->seeding); |
| |
| list_del_init(&fs_devices->seed_list); |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| } |
| mutex_unlock(&uuid_mutex); |
| } |
| |
| void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) |
| { |
| struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| |
| btrfs_sysfs_remove_device(tgtdev); |
| |
| if (tgtdev->bdev) |
| fs_devices->open_devices--; |
| |
| fs_devices->num_devices--; |
| |
| btrfs_assign_next_active_device(tgtdev, NULL); |
| |
| list_del_rcu(&tgtdev->dev_list); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, |
| tgtdev->name->str); |
| |
| btrfs_close_bdev(tgtdev); |
| synchronize_rcu(); |
| btrfs_free_device(tgtdev); |
| } |
| |
| /* |
| * Populate args from device at path. |
| * |
| * @fs_info: the filesystem |
| * @args: the args to populate |
| * @path: the path to the device |
| * |
| * This will read the super block of the device at @path and populate @args with |
| * the devid, fsid, and uuid. This is meant to be used for ioctls that need to |
| * lookup a device to operate on, but need to do it before we take any locks. |
| * This properly handles the special case of "missing" that a user may pass in, |
| * and does some basic sanity checks. The caller must make sure that @path is |
| * properly NUL terminated before calling in, and must call |
| * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and |
| * uuid buffers. |
| * |
| * Return: 0 for success, -errno for failure |
| */ |
| int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, |
| struct btrfs_dev_lookup_args *args, |
| const char *path) |
| { |
| struct btrfs_super_block *disk_super; |
| struct block_device *bdev; |
| int ret; |
| |
| if (!path || !path[0]) |
| return -EINVAL; |
| if (!strcmp(path, "missing")) { |
| args->missing = true; |
| return 0; |
| } |
| |
| args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); |
| args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); |
| if (!args->uuid || !args->fsid) { |
| btrfs_put_dev_args_from_path(args); |
| return -ENOMEM; |
| } |
| |
| ret = btrfs_get_bdev_and_sb(path, BLK_OPEN_READ, NULL, 0, |
| &bdev, &disk_super); |
| if (ret) { |
| btrfs_put_dev_args_from_path(args); |
| return ret; |
| } |
| |
| args->devid = btrfs_stack_device_id(&disk_super->dev_item); |
| memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); |
| if (btrfs_fs_incompat(fs_info, METADATA_UUID)) |
| memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); |
| else |
| memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); |
| btrfs_release_disk_super(disk_super); |
| blkdev_put(bdev, NULL); |
| return 0; |
| } |
| |
| /* |
| * Only use this jointly with btrfs_get_dev_args_from_path() because we will |
| * allocate our ->uuid and ->fsid pointers, everybody else uses local variables |
| * that don't need to be freed. |
| */ |
| void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) |
| { |
| kfree(args->uuid); |
| kfree(args->fsid); |
| args->uuid = NULL; |
| args->fsid = NULL; |
| } |
| |
| struct btrfs_device *btrfs_find_device_by_devspec( |
| struct btrfs_fs_info *fs_info, u64 devid, |
| const char *device_path) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_device *device; |
| int ret; |
| |
| if (devid) { |
| args.devid = devid; |
| device = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!device) |
| return ERR_PTR(-ENOENT); |
| return device; |
| } |
| |
| ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); |
| if (ret) |
| return ERR_PTR(ret); |
| device = btrfs_find_device(fs_info->fs_devices, &args); |
| btrfs_put_dev_args_from_path(&args); |
| if (!device) |
| return ERR_PTR(-ENOENT); |
| return device; |
| } |
| |
| static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_fs_devices *old_devices; |
| struct btrfs_fs_devices *seed_devices; |
| |
| lockdep_assert_held(&uuid_mutex); |
| if (!fs_devices->seeding) |
| return ERR_PTR(-EINVAL); |
| |
| /* |
| * Private copy of the seed devices, anchored at |
| * fs_info->fs_devices->seed_list |
| */ |
| seed_devices = alloc_fs_devices(NULL, NULL); |
| if (IS_ERR(seed_devices)) |
| return seed_devices; |
| |
| /* |
| * It's necessary to retain a copy of the original seed fs_devices in |
| * fs_uuids so that filesystems which have been seeded can successfully |
| * reference the seed device from open_seed_devices. This also supports |
| * multiple fs seed. |
| */ |
| old_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(old_devices)) { |
| kfree(seed_devices); |
| return old_devices; |
| } |
| |
| list_add(&old_devices->fs_list, &fs_uuids); |
| |
| memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); |
| seed_devices->opened = 1; |
| INIT_LIST_HEAD(&seed_devices->devices); |
| INIT_LIST_HEAD(&seed_devices->alloc_list); |
| mutex_init(&seed_devices->device_list_mutex); |
| |
| return seed_devices; |
| } |
| |
| /* |
| * Splice seed devices into the sprout fs_devices. |
| * Generate a new fsid for the sprouted read-write filesystem. |
| */ |
| static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, |
| struct btrfs_fs_devices *seed_devices) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_super_block *disk_super = fs_info->super_copy; |
| struct btrfs_device *device; |
| u64 super_flags; |
| |
| /* |
| * We are updating the fsid, the thread leading to device_list_add() |
| * could race, so uuid_mutex is needed. |
| */ |
| lockdep_assert_held(&uuid_mutex); |
| |
| /* |
| * The threads listed below may traverse dev_list but can do that without |
| * device_list_mutex: |
| * - All device ops and balance - as we are in btrfs_exclop_start. |
| * - Various dev_list readers - are using RCU. |
| * - btrfs_ioctl_fitrim() - is using RCU. |
| * |
| * For-read threads as below are using device_list_mutex: |
| * - Readonly scrub btrfs_scrub_dev() |
| * - Readonly scrub btrfs_scrub_progress() |
| * - btrfs_get_dev_stats() |
| */ |
| lockdep_assert_held(&fs_devices->device_list_mutex); |
| |
| list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, |
| synchronize_rcu); |
| list_for_each_entry(device, &seed_devices->devices, dev_list) |
| device->fs_devices = seed_devices; |
| |
| fs_devices->seeding = false; |
| fs_devices->num_devices = 0; |
| fs_devices->open_devices = 0; |
| fs_devices->missing_devices = 0; |
| fs_devices->rotating = false; |
| list_add(&seed_devices->seed_list, &fs_devices->seed_list); |
| |
| generate_random_uuid(fs_devices->fsid); |
| memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); |
| |
| super_flags = btrfs_super_flags(disk_super) & |
| ~BTRFS_SUPER_FLAG_SEEDING; |
| btrfs_set_super_flags(disk_super, super_flags); |
| } |
| |
| /* |
| * Store the expected generation for seed devices in device items. |
| */ |
| static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_dev_item *dev_item; |
| struct btrfs_device *device; |
| struct btrfs_key key; |
| u8 fs_uuid[BTRFS_FSID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| |
| while (1) { |
| btrfs_reserve_chunk_metadata(trans, false); |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| btrfs_trans_release_chunk_metadata(trans); |
| if (ret < 0) |
| goto error; |
| |
| leaf = path->nodes[0]; |
| next_slot: |
| if (path->slots[0] >= btrfs_header_nritems(leaf)) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret > 0) |
| break; |
| if (ret < 0) |
| goto error; |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| btrfs_release_path(path); |
| continue; |
| } |
| |
| btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); |
| if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || |
| key.type != BTRFS_DEV_ITEM_KEY) |
| break; |
| |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_dev_item); |
| args.devid = btrfs_device_id(leaf, dev_item); |
| read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), |
| BTRFS_FSID_SIZE); |
| args.uuid = dev_uuid; |
| args.fsid = fs_uuid; |
| device = btrfs_find_device(fs_info->fs_devices, &args); |
| BUG_ON(!device); /* Logic error */ |
| |
| if (device->fs_devices->seeding) { |
| btrfs_set_device_generation(leaf, dev_item, |
| device->generation); |
| btrfs_mark_buffer_dirty(leaf); |
| } |
| |
| path->slots[0]++; |
| goto next_slot; |
| } |
| ret = 0; |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) |
| { |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_device *device; |
| struct block_device *bdev; |
| struct super_block *sb = fs_info->sb; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_fs_devices *seed_devices = NULL; |
| u64 orig_super_total_bytes; |
| u64 orig_super_num_devices; |
| int ret = 0; |
| bool seeding_dev = false; |
| bool locked = false; |
| |
| if (sb_rdonly(sb) && !fs_devices->seeding) |
| return -EROFS; |
| |
| bdev = blkdev_get_by_path(device_path, BLK_OPEN_WRITE, |
| fs_info->bdev_holder, NULL); |
| if (IS_ERR(bdev)) |
| return PTR_ERR(bdev); |
| |
| if (!btrfs_check_device_zone_type(fs_info, bdev)) { |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| if (fs_devices->seeding) { |
| seeding_dev = true; |
| down_write(&sb->s_umount); |
| mutex_lock(&uuid_mutex); |
| locked = true; |
| } |
| |
| sync_blockdev(bdev); |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { |
| if (device->bdev == bdev) { |
| ret = -EEXIST; |
| rcu_read_unlock(); |
| goto error; |
| } |
| } |
| rcu_read_unlock(); |
| |
| device = btrfs_alloc_device(fs_info, NULL, NULL, device_path); |
| if (IS_ERR(device)) { |
| /* we can safely leave the fs_devices entry around */ |
| ret = PTR_ERR(device); |
| goto error; |
| } |
| |
| device->fs_info = fs_info; |
| device->bdev = bdev; |
| ret = lookup_bdev(device_path, &device->devt); |
| if (ret) |
| goto error_free_device; |
| |
| ret = btrfs_get_dev_zone_info(device, false); |
| if (ret) |
| goto error_free_device; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto error_free_zone; |
| } |
| |
| set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); |
| device->generation = trans->transid; |
| device->io_width = fs_info->sectorsize; |
| device->io_align = fs_info->sectorsize; |
| device->sector_size = fs_info->sectorsize; |
| device->total_bytes = |
| round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); |
| device->disk_total_bytes = device->total_bytes; |
| device->commit_total_bytes = device->total_bytes; |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| device->holder = fs_info->bdev_holder; |
| device->dev_stats_valid = 1; |
| set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); |
| |
| if (seeding_dev) { |
| btrfs_clear_sb_rdonly(sb); |
| |
| /* GFP_KERNEL allocation must not be under device_list_mutex */ |
| seed_devices = btrfs_init_sprout(fs_info); |
| if (IS_ERR(seed_devices)) { |
| ret = PTR_ERR(seed_devices); |
| btrfs_abort_transaction(trans, ret); |
| goto error_trans; |
| } |
| } |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| if (seeding_dev) { |
| btrfs_setup_sprout(fs_info, seed_devices); |
| btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, |
| device); |
| } |
| |
| device->fs_devices = fs_devices; |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| list_add_rcu(&device->dev_list, &fs_devices->devices); |
| list_add(&device->dev_alloc_list, &fs_devices->alloc_list); |
| fs_devices->num_devices++; |
| fs_devices->open_devices++; |
| fs_devices->rw_devices++; |
| fs_devices->total_devices++; |
| fs_devices->total_rw_bytes += device->total_bytes; |
| |
| atomic64_add(device->total_bytes, &fs_info->free_chunk_space); |
| |
| if (!bdev_nonrot(bdev)) |
| fs_devices->rotating = true; |
| |
| orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| round_down(orig_super_total_bytes + device->total_bytes, |
| fs_info->sectorsize)); |
| |
| orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices + 1); |
| |
| /* |
| * we've got more storage, clear any full flags on the space |
| * infos |
| */ |
| btrfs_clear_space_info_full(fs_info); |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| /* Add sysfs device entry */ |
| btrfs_sysfs_add_device(device); |
| |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (seeding_dev) { |
| mutex_lock(&fs_info->chunk_mutex); |
| ret = init_first_rw_device(trans); |
| mutex_unlock(&fs_info->chunk_mutex); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| } |
| |
| ret = btrfs_add_dev_item(trans, device); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| if (seeding_dev) { |
| ret = btrfs_finish_sprout(trans); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto error_sysfs; |
| } |
| |
| /* |
| * fs_devices now represents the newly sprouted filesystem and |
| * its fsid has been changed by btrfs_sprout_splice(). |
| */ |
| btrfs_sysfs_update_sprout_fsid(fs_devices); |
| } |
| |
| ret = btrfs_commit_transaction(trans); |
| |
| if (seeding_dev) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| locked = false; |
| |
| if (ret) /* transaction commit */ |
| return ret; |
| |
| ret = btrfs_relocate_sys_chunks(fs_info); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) == -ENOENT) |
| return 0; |
| ret = PTR_ERR(trans); |
| trans = NULL; |
| goto error_sysfs; |
| } |
| ret = btrfs_commit_transaction(trans); |
| } |
| |
| /* |
| * Now that we have written a new super block to this device, check all |
| * other fs_devices list if device_path alienates any other scanned |
| * device. |
| * We can ignore the return value as it typically returns -EINVAL and |
| * only succeeds if the device was an alien. |
| */ |
| btrfs_forget_devices(device->devt); |
| |
| /* Update ctime/mtime for blkid or udev */ |
| update_dev_time(device_path); |
| |
| return ret; |
| |
| error_sysfs: |
| btrfs_sysfs_remove_device(device); |
| mutex_lock(&fs_info->fs_devices->device_list_mutex); |
| mutex_lock(&fs_info->chunk_mutex); |
| list_del_rcu(&device->dev_list); |
| list_del(&device->dev_alloc_list); |
| fs_info->fs_devices->num_devices--; |
| fs_info->fs_devices->open_devices--; |
| fs_info->fs_devices->rw_devices--; |
| fs_info->fs_devices->total_devices--; |
| fs_info->fs_devices->total_rw_bytes -= device->total_bytes; |
| atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); |
| btrfs_set_super_total_bytes(fs_info->super_copy, |
| orig_super_total_bytes); |
| btrfs_set_super_num_devices(fs_info->super_copy, |
| orig_super_num_devices); |
| mutex_unlock(&fs_info->chunk_mutex); |
| mutex_unlock(&fs_info->fs_devices->device_list_mutex); |
| error_trans: |
| if (seeding_dev) |
| btrfs_set_sb_rdonly(sb); |
| if (trans) |
| btrfs_end_transaction(trans); |
| error_free_zone: |
| btrfs_destroy_dev_zone_info(device); |
| error_free_device: |
| btrfs_free_device(device); |
| error: |
| blkdev_put(bdev, fs_info->bdev_holder); |
| if (locked) { |
| mutex_unlock(&uuid_mutex); |
| up_write(&sb->s_umount); |
| } |
| return ret; |
| } |
| |
| static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_root *root = device->fs_info->chunk_root; |
| struct btrfs_dev_item *dev_item; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.type = BTRFS_DEV_ITEM_KEY; |
| key.offset = device->devid; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, 0, 1); |
| if (ret < 0) |
| goto out; |
| |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); |
| |
| btrfs_set_device_id(leaf, dev_item, device->devid); |
| btrfs_set_device_type(leaf, dev_item, device->type); |
| btrfs_set_device_io_align(leaf, dev_item, device->io_align); |
| btrfs_set_device_io_width(leaf, dev_item, device->io_width); |
| btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); |
| btrfs_set_device_total_bytes(leaf, dev_item, |
| btrfs_device_get_disk_total_bytes(device)); |
| btrfs_set_device_bytes_used(leaf, dev_item, |
| btrfs_device_get_bytes_used(device)); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_grow_device(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| u64 old_total; |
| u64 diff; |
| int ret; |
| |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| return -EACCES; |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| old_total = btrfs_super_total_bytes(super_copy); |
| diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); |
| |
| if (new_size <= device->total_bytes || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| return -EINVAL; |
| } |
| |
| btrfs_set_super_total_bytes(super_copy, |
| round_down(old_total + diff, fs_info->sectorsize)); |
| device->fs_devices->total_rw_bytes += diff; |
| |
| btrfs_device_set_total_bytes(device, new_size); |
| btrfs_device_set_disk_total_bytes(device, new_size); |
| btrfs_clear_space_info_full(device->fs_info); |
| if (list_empty(&device->post_commit_list)) |
| list_add_tail(&device->post_commit_list, |
| &trans->transaction->dev_update_list); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| btrfs_reserve_chunk_metadata(trans, false); |
| ret = btrfs_update_device(trans, device); |
| btrfs_trans_release_chunk_metadata(trans); |
| |
| return ret; |
| } |
| |
| static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *root = fs_info->chunk_root; |
| int ret; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = chunk_offset; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| else if (ret > 0) { /* Logic error or corruption */ |
| btrfs_handle_fs_error(fs_info, -ENOENT, |
| "Failed lookup while freeing chunk."); |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| if (ret < 0) |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to delete chunk item."); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *ptr; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur; |
| struct btrfs_key key; |
| |
| lockdep_assert_held(&fs_info->chunk_mutex); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| ptr = super_copy->sys_chunk_array; |
| cur = 0; |
| |
| while (cur < array_size) { |
| disk_key = (struct btrfs_disk_key *)ptr; |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| len = sizeof(*disk_key); |
| |
| if (key.type == BTRFS_CHUNK_ITEM_KEY) { |
| chunk = (struct btrfs_chunk *)(ptr + len); |
| num_stripes = btrfs_stack_chunk_num_stripes(chunk); |
| len += btrfs_chunk_item_size(num_stripes); |
| } else { |
| ret = -EIO; |
| break; |
| } |
| if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && |
| key.offset == chunk_offset) { |
| memmove(ptr, ptr + len, array_size - (cur + len)); |
| array_size -= len; |
| btrfs_set_super_sys_array_size(super_copy, array_size); |
| } else { |
| ptr += len; |
| cur += len; |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. |
| * @logical: Logical block offset in bytes. |
| * @length: Length of extent in bytes. |
| * |
| * Return: Chunk mapping or ERR_PTR. |
| */ |
| struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length) |
| { |
| struct extent_map_tree *em_tree; |
| struct extent_map *em; |
| |
| em_tree = &fs_info->mapping_tree; |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, logical, length); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| btrfs_crit(fs_info, "unable to find logical %llu length %llu", |
| logical, length); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (em->start > logical || em->start + em->len < logical) { |
| btrfs_crit(fs_info, |
| "found a bad mapping, wanted %llu-%llu, found %llu-%llu", |
| logical, length, em->start, em->start + em->len); |
| free_extent_map(em); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| /* callers are responsible for dropping em's ref. */ |
| return em; |
| } |
| |
| static int remove_chunk_item(struct btrfs_trans_handle *trans, |
| struct map_lookup *map, u64 chunk_offset) |
| { |
| int i; |
| |
| /* |
| * Removing chunk items and updating the device items in the chunks btree |
| * requires holding the chunk_mutex. |
| * See the comment at btrfs_chunk_alloc() for the details. |
| */ |
| lockdep_assert_held(&trans->fs_info->chunk_mutex); |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| int ret; |
| |
| ret = btrfs_update_device(trans, map->stripes[i].dev); |
| if (ret) |
| return ret; |
| } |
| |
| return btrfs_free_chunk(trans, chunk_offset); |
| } |
| |
| int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 dev_extent_len = 0; |
| int i, ret = 0; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| |
| em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); |
| if (IS_ERR(em)) { |
| /* |
| * This is a logic error, but we don't want to just rely on the |
| * user having built with ASSERT enabled, so if ASSERT doesn't |
| * do anything we still error out. |
| */ |
| ASSERT(0); |
| return PTR_ERR(em); |
| } |
| map = em->map_lookup; |
| |
| /* |
| * First delete the device extent items from the devices btree. |
| * We take the device_list_mutex to avoid racing with the finishing phase |
| * of a device replace operation. See the comment below before acquiring |
| * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex |
| * because that can result in a deadlock when deleting the device extent |
| * items from the devices btree - COWing an extent buffer from the btree |
| * may result in allocating a new metadata chunk, which would attempt to |
| * lock again fs_info->chunk_mutex. |
| */ |
| mutex_lock(&fs_devices->device_list_mutex); |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *device = map->stripes[i].dev; |
| ret = btrfs_free_dev_extent(trans, device, |
| map->stripes[i].physical, |
| &dev_extent_len); |
| if (ret) { |
| mutex_unlock(&fs_devices->device_list_mutex); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| if (device->bytes_used > 0) { |
| mutex_lock(&fs_info->chunk_mutex); |
| btrfs_device_set_bytes_used(device, |
| device->bytes_used - dev_extent_len); |
| atomic64_add(dev_extent_len, &fs_info->free_chunk_space); |
| btrfs_clear_space_info_full(fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| /* |
| * We acquire fs_info->chunk_mutex for 2 reasons: |
| * |
| * 1) Just like with the first phase of the chunk allocation, we must |
| * reserve system space, do all chunk btree updates and deletions, and |
| * update the system chunk array in the superblock while holding this |
| * mutex. This is for similar reasons as explained on the comment at |
| * the top of btrfs_chunk_alloc(); |
| * |
| * 2) Prevent races with the final phase of a device replace operation |
| * that replaces the device object associated with the map's stripes, |
| * because the device object's id can change at any time during that |
| * final phase of the device replace operation |
| * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the |
| * replaced device and then see it with an ID of |
| * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating |
| * the device item, which does not exists on the chunk btree. |
| * The finishing phase of device replace acquires both the |
| * device_list_mutex and the chunk_mutex, in that order, so we are |
| * safe by just acquiring the chunk_mutex. |
| */ |
| trans->removing_chunk = true; |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| check_system_chunk(trans, map->type); |
| |
| ret = remove_chunk_item(trans, map, chunk_offset); |
| /* |
| * Normally we should not get -ENOSPC since we reserved space before |
| * through the call to check_system_chunk(). |
| * |
| * Despite our system space_info having enough free space, we may not |
| * be able to allocate extents from its block groups, because all have |
| * an incompatible profile, which will force us to allocate a new system |
| * block group with the right profile, or right after we called |
| * check_system_space() above, a scrub turned the only system block group |
| * with enough free space into RO mode. |
| * This is explained with more detail at do_chunk_alloc(). |
| * |
| * So if we get -ENOSPC, allocate a new system chunk and retry once. |
| */ |
| if (ret == -ENOSPC) { |
| const u64 sys_flags = btrfs_system_alloc_profile(fs_info); |
| struct btrfs_block_group *sys_bg; |
| |
| sys_bg = btrfs_create_chunk(trans, sys_flags); |
| if (IS_ERR(sys_bg)) { |
| ret = PTR_ERR(sys_bg); |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| ret = remove_chunk_item(trans, map, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } else if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_del_sys_chunk(fs_info, chunk_offset); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| } |
| |
| mutex_unlock(&fs_info->chunk_mutex); |
| trans->removing_chunk = false; |
| |
| /* |
| * We are done with chunk btree updates and deletions, so release the |
| * system space we previously reserved (with check_system_chunk()). |
| */ |
| btrfs_trans_release_chunk_metadata(trans); |
| |
| ret = btrfs_remove_block_group(trans, chunk_offset, em); |
| if (ret) { |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| out: |
| if (trans->removing_chunk) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| trans->removing_chunk = false; |
| } |
| /* once for us */ |
| free_extent_map(em); |
| return ret; |
| } |
| |
| int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_block_group *block_group; |
| u64 length; |
| int ret; |
| |
| if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { |
| btrfs_err(fs_info, |
| "relocate: not supported on extent tree v2 yet"); |
| return -EINVAL; |
| } |
| |
| /* |
| * Prevent races with automatic removal of unused block groups. |
| * After we relocate and before we remove the chunk with offset |
| * chunk_offset, automatic removal of the block group can kick in, |
| * resulting in a failure when calling btrfs_remove_chunk() below. |
| * |
| * Make sure to acquire this mutex before doing a tree search (dev |
| * or chunk trees) to find chunks. Otherwise the cleaner kthread might |
| * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after |
| * we release the path used to search the chunk/dev tree and before |
| * the current task acquires this mutex and calls us. |
| */ |
| lockdep_assert_held(&fs_info->reclaim_bgs_lock); |
| |
| /* step one, relocate all the extents inside this chunk */ |
| btrfs_scrub_pause(fs_info); |
| ret = btrfs_relocate_block_group(fs_info, chunk_offset); |
| btrfs_scrub_continue(fs_info); |
| if (ret) { |
| /* |
| * If we had a transaction abort, stop all running scrubs. |
| * See transaction.c:cleanup_transaction() why we do it here. |
| */ |
| if (BTRFS_FS_ERROR(fs_info)) |
| btrfs_scrub_cancel(fs_info); |
| return ret; |
| } |
| |
| block_group = btrfs_lookup_block_group(fs_info, chunk_offset); |
| if (!block_group) |
| return -ENOENT; |
| btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); |
| length = block_group->length; |
| btrfs_put_block_group(block_group); |
| |
| /* |
| * On a zoned file system, discard the whole block group, this will |
| * trigger a REQ_OP_ZONE_RESET operation on the device zone. If |
| * resetting the zone fails, don't treat it as a fatal problem from the |
| * filesystem's point of view. |
| */ |
| if (btrfs_is_zoned(fs_info)) { |
| ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); |
| if (ret) |
| btrfs_info(fs_info, |
| "failed to reset zone %llu after relocation", |
| chunk_offset); |
| } |
| |
| trans = btrfs_start_trans_remove_block_group(root->fs_info, |
| chunk_offset); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| btrfs_handle_fs_error(root->fs_info, ret, NULL); |
| return ret; |
| } |
| |
| /* |
| * step two, delete the device extents and the |
| * chunk tree entries |
| */ |
| ret = btrfs_remove_chunk(trans, chunk_offset); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_chunk *chunk; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| u64 chunk_type; |
| bool retried = false; |
| int failed = 0; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| again: |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| mutex_lock(&fs_info->reclaim_bgs_lock); |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto error; |
| } |
| BUG_ON(ret == 0); /* Corruption */ |
| |
| ret = btrfs_previous_item(chunk_root, path, key.objectid, |
| key.type); |
| if (ret) |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| if (ret < 0) |
| goto error; |
| if (ret > 0) |
| break; |
| |
| leaf = path->nodes[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); |
| |
| chunk = btrfs_item_ptr(leaf, path->slots[0], |
| struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| btrfs_release_path(path); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_relocate_chunk(fs_info, found_key.offset); |
| if (ret == -ENOSPC) |
| failed++; |
| else |
| BUG_ON(ret); |
| } |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| ret = 0; |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (WARN_ON(failed && retried)) { |
| ret = -ENOSPC; |
| } |
| error: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * return 1 : allocate a data chunk successfully, |
| * return <0: errors during allocating a data chunk, |
| * return 0 : no need to allocate a data chunk. |
| */ |
| static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset) |
| { |
| struct btrfs_block_group *cache; |
| u64 bytes_used; |
| u64 chunk_type; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| ASSERT(cache); |
| chunk_type = cache->flags; |
| btrfs_put_block_group(cache); |
| |
| if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) |
| return 0; |
| |
| spin_lock(&fs_info->data_sinfo->lock); |
| bytes_used = fs_info->data_sinfo->bytes_used; |
| spin_unlock(&fs_info->data_sinfo->lock); |
| |
| if (!bytes_used) { |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| trans = btrfs_join_transaction(fs_info->tree_root); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); |
| btrfs_end_transaction(trans); |
| if (ret < 0) |
| return ret; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int insert_balance_item(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_balance_item *item; |
| struct btrfs_disk_balance_args disk_bargs; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_insert_empty_item(trans, root, path, &key, |
| sizeof(*item)); |
| if (ret) |
| goto out; |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); |
| |
| memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); |
| |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); |
| btrfs_set_balance_data(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); |
| btrfs_set_balance_meta(leaf, item, &disk_bargs); |
| btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); |
| btrfs_set_balance_sys(leaf, item, &disk_bargs); |
| |
| btrfs_set_balance_flags(leaf, item, bctl->flags); |
| |
| btrfs_mark_buffer_dirty(leaf); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| static int del_balance_item(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret, err; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| trans = btrfs_start_transaction_fallback_global_rsv(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(trans, root, &key, path, -1, 1); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = -ENOENT; |
| goto out; |
| } |
| |
| ret = btrfs_del_item(trans, root, path); |
| out: |
| btrfs_free_path(path); |
| err = btrfs_commit_transaction(trans); |
| if (err && !ret) |
| ret = err; |
| return ret; |
| } |
| |
| /* |
| * This is a heuristic used to reduce the number of chunks balanced on |
| * resume after balance was interrupted. |
| */ |
| static void update_balance_args(struct btrfs_balance_control *bctl) |
| { |
| /* |
| * Turn on soft mode for chunk types that were being converted. |
| */ |
| if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) |
| bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; |
| |
| /* |
| * Turn on usage filter if is not already used. The idea is |
| * that chunks that we have already balanced should be |
| * reasonably full. Don't do it for chunks that are being |
| * converted - that will keep us from relocating unconverted |
| * (albeit full) chunks. |
| */ |
| if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->data.usage = 90; |
| } |
| if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->sys.usage = 90; |
| } |
| if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && |
| !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { |
| bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; |
| bctl->meta.usage = 90; |
| } |
| } |
| |
| /* |
| * Clear the balance status in fs_info and delete the balance item from disk. |
| */ |
| static void reset_balance_state(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| int ret; |
| |
| BUG_ON(!fs_info->balance_ctl); |
| |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = NULL; |
| spin_unlock(&fs_info->balance_lock); |
| |
| kfree(bctl); |
| ret = del_balance_item(fs_info); |
| if (ret) |
| btrfs_handle_fs_error(fs_info, ret, NULL); |
| } |
| |
| /* |
| * Balance filters. Return 1 if chunk should be filtered out |
| * (should not be balanced). |
| */ |
| static int chunk_profiles_filter(u64 chunk_type, |
| struct btrfs_balance_args *bargs) |
| { |
| chunk_type = chunk_to_extended(chunk_type) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| if (bargs->profiles & chunk_type) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_block_group *cache; |
| u64 chunk_used; |
| u64 user_thresh_min; |
| u64 user_thresh_max; |
| int ret = 1; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| chunk_used = cache->used; |
| |
| if (bargs->usage_min == 0) |
| user_thresh_min = 0; |
| else |
| user_thresh_min = mult_perc(cache->length, bargs->usage_min); |
| |
| if (bargs->usage_max == 0) |
| user_thresh_max = 1; |
| else if (bargs->usage_max > 100) |
| user_thresh_max = cache->length; |
| else |
| user_thresh_max = mult_perc(cache->length, bargs->usage_max); |
| |
| if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) |
| ret = 0; |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int chunk_usage_filter(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset, struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_block_group *cache; |
| u64 chunk_used, user_thresh; |
| int ret = 1; |
| |
| cache = btrfs_lookup_block_group(fs_info, chunk_offset); |
| chunk_used = cache->used; |
| |
| if (bargs->usage_min == 0) |
| user_thresh = 1; |
| else if (bargs->usage > 100) |
| user_thresh = cache->length; |
| else |
| user_thresh = mult_perc(cache->length, bargs->usage); |
| |
| if (chunk_used < user_thresh) |
| ret = 0; |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static int chunk_devid_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_stripe *stripe; |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| int i; |
| |
| for (i = 0; i < num_stripes; i++) { |
| stripe = btrfs_stripe_nr(chunk, i); |
| if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static u64 calc_data_stripes(u64 type, int num_stripes) |
| { |
| const int index = btrfs_bg_flags_to_raid_index(type); |
| const int ncopies = btrfs_raid_array[index].ncopies; |
| const int nparity = btrfs_raid_array[index].nparity; |
| |
| return (num_stripes - nparity) / ncopies; |
| } |
| |
| /* [pstart, pend) */ |
| static int chunk_drange_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| struct btrfs_stripe *stripe; |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| u64 stripe_offset; |
| u64 stripe_length; |
| u64 type; |
| int factor; |
| int i; |
| |
| if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) |
| return 0; |
| |
| type = btrfs_chunk_type(leaf, chunk); |
| factor = calc_data_stripes(type, num_stripes); |
| |
| for (i = 0; i < num_stripes; i++) { |
| stripe = btrfs_stripe_nr(chunk, i); |
| if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) |
| continue; |
| |
| stripe_offset = btrfs_stripe_offset(leaf, stripe); |
| stripe_length = btrfs_chunk_length(leaf, chunk); |
| stripe_length = div_u64(stripe_length, factor); |
| |
| if (stripe_offset < bargs->pend && |
| stripe_offset + stripe_length > bargs->pstart) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* [vstart, vend) */ |
| static int chunk_vrange_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| u64 chunk_offset, |
| struct btrfs_balance_args *bargs) |
| { |
| if (chunk_offset < bargs->vend && |
| chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) |
| /* at least part of the chunk is inside this vrange */ |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_stripes_range_filter(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, |
| struct btrfs_balance_args *bargs) |
| { |
| int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| |
| if (bargs->stripes_min <= num_stripes |
| && num_stripes <= bargs->stripes_max) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int chunk_soft_convert_filter(u64 chunk_type, |
| struct btrfs_balance_args *bargs) |
| { |
| if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) |
| return 0; |
| |
| chunk_type = chunk_to_extended(chunk_type) & |
| BTRFS_EXTENDED_PROFILE_MASK; |
| |
| if (bargs->target == chunk_type) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int should_balance_chunk(struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk, u64 chunk_offset) |
| { |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| struct btrfs_balance_args *bargs = NULL; |
| u64 chunk_type = btrfs_chunk_type(leaf, chunk); |
| |
| /* type filter */ |
| if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & |
| (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { |
| return 0; |
| } |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) |
| bargs = &bctl->data; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) |
| bargs = &bctl->sys; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) |
| bargs = &bctl->meta; |
| |
| /* profiles filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && |
| chunk_profiles_filter(chunk_type, bargs)) { |
| return 0; |
| } |
| |
| /* usage filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && |
| chunk_usage_filter(fs_info, chunk_offset, bargs)) { |
| return 0; |
| } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && |
| chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { |
| return 0; |
| } |
| |
| /* devid filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && |
| chunk_devid_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* drange filter, makes sense only with devid filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && |
| chunk_drange_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* vrange filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && |
| chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { |
| return 0; |
| } |
| |
| /* stripes filter */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && |
| chunk_stripes_range_filter(leaf, chunk, bargs)) { |
| return 0; |
| } |
| |
| /* soft profile changing mode */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && |
| chunk_soft_convert_filter(chunk_type, bargs)) { |
| return 0; |
| } |
| |
| /* |
| * limited by count, must be the last filter |
| */ |
| if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { |
| if (bargs->limit == 0) |
| return 0; |
| else |
| bargs->limit--; |
| } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { |
| /* |
| * Same logic as the 'limit' filter; the minimum cannot be |
| * determined here because we do not have the global information |
| * about the count of all chunks that satisfy the filters. |
| */ |
| if (bargs->limit_max == 0) |
| return 0; |
| else |
| bargs->limit_max--; |
| } |
| |
| return 1; |
| } |
| |
| static int __btrfs_balance(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| u64 chunk_type; |
| struct btrfs_chunk *chunk; |
| struct btrfs_path *path = NULL; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| struct extent_buffer *leaf; |
| int slot; |
| int ret; |
| int enospc_errors = 0; |
| bool counting = true; |
| /* The single value limit and min/max limits use the same bytes in the */ |
| u64 limit_data = bctl->data.limit; |
| u64 limit_meta = bctl->meta.limit; |
| u64 limit_sys = bctl->sys.limit; |
| u32 count_data = 0; |
| u32 count_meta = 0; |
| u32 count_sys = 0; |
| int chunk_reserved = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| |
| /* zero out stat counters */ |
| spin_lock(&fs_info->balance_lock); |
| memset(&bctl->stat, 0, sizeof(bctl->stat)); |
| spin_unlock(&fs_info->balance_lock); |
| again: |
| if (!counting) { |
| /* |
| * The single value limit and min/max limits use the same bytes |
| * in the |
| */ |
| bctl->data.limit = limit_data; |
| bctl->meta.limit = limit_meta; |
| bctl->sys.limit = limit_sys; |
| } |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.offset = (u64)-1; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| |
| while (1) { |
| if ((!counting && atomic_read(&fs_info->balance_pause_req)) || |
| atomic_read(&fs_info->balance_cancel_req)) { |
| ret = -ECANCELED; |
| goto error; |
| } |
| |
| mutex_lock(&fs_info->reclaim_bgs_lock); |
| ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto error; |
| } |
| |
| /* |
| * this shouldn't happen, it means the last relocate |
| * failed |
| */ |
| if (ret == 0) |
| BUG(); /* FIXME break ? */ |
| |
| ret = btrfs_previous_item(chunk_root, path, 0, |
| BTRFS_CHUNK_ITEM_KEY); |
| if (ret) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| ret = 0; |
| break; |
| } |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(leaf, &found_key, slot); |
| |
| if (found_key.objectid != key.objectid) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| break; |
| } |
| |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| chunk_type = btrfs_chunk_type(leaf, chunk); |
| |
| if (!counting) { |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.considered++; |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| ret = should_balance_chunk(leaf, chunk, found_key.offset); |
| |
| btrfs_release_path(path); |
| if (!ret) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto loop; |
| } |
| |
| if (counting) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.expected++; |
| spin_unlock(&fs_info->balance_lock); |
| |
| if (chunk_type & BTRFS_BLOCK_GROUP_DATA) |
| count_data++; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) |
| count_sys++; |
| else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) |
| count_meta++; |
| |
| goto loop; |
| } |
| |
| /* |
| * Apply limit_min filter, no need to check if the LIMITS |
| * filter is used, limit_min is 0 by default |
| */ |
| if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && |
| count_data < bctl->data.limit_min) |
| || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && |
| count_meta < bctl->meta.limit_min) |
| || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && |
| count_sys < bctl->sys.limit_min)) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto loop; |
| } |
| |
| if (!chunk_reserved) { |
| /* |
| * We may be relocating the only data chunk we have, |
| * which could potentially end up with losing data's |
| * raid profile, so lets allocate an empty one in |
| * advance. |
| */ |
| ret = btrfs_may_alloc_data_chunk(fs_info, |
| found_key.offset); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto error; |
| } else if (ret == 1) { |
| chunk_reserved = 1; |
| } |
| } |
| |
| ret = btrfs_relocate_chunk(fs_info, found_key.offset); |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| if (ret == -ENOSPC) { |
| enospc_errors++; |
| } else if (ret == -ETXTBSY) { |
| btrfs_info(fs_info, |
| "skipping relocation of block group %llu due to active swapfile", |
| found_key.offset); |
| ret = 0; |
| } else if (ret) { |
| goto error; |
| } else { |
| spin_lock(&fs_info->balance_lock); |
| bctl->stat.completed++; |
| spin_unlock(&fs_info->balance_lock); |
| } |
| loop: |
| if (found_key.offset == 0) |
| break; |
| key.offset = found_key.offset - 1; |
| } |
| |
| if (counting) { |
| btrfs_release_path(path); |
| counting = false; |
| goto again; |
| } |
| error: |
| btrfs_free_path(path); |
| if (enospc_errors) { |
| btrfs_info(fs_info, "%d enospc errors during balance", |
| enospc_errors); |
| if (!ret) |
| ret = -ENOSPC; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * See if a given profile is valid and reduced. |
| * |
| * @flags: profile to validate |
| * @extended: if true @flags is treated as an extended profile |
| */ |
| static int alloc_profile_is_valid(u64 flags, int extended) |
| { |
| u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : |
| BTRFS_BLOCK_GROUP_PROFILE_MASK); |
| |
| flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; |
| |
| /* 1) check that all other bits are zeroed */ |
| if (flags & ~mask) |
| return 0; |
| |
| /* 2) see if profile is reduced */ |
| if (flags == 0) |
| return !extended; /* "0" is valid for usual profiles */ |
| |
| return has_single_bit_set(flags); |
| } |
| |
| /* |
| * Validate target profile against allowed profiles and return true if it's OK. |
| * Otherwise print the error message and return false. |
| */ |
| static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, |
| const struct btrfs_balance_args *bargs, |
| u64 allowed, const char *type) |
| { |
| if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) |
| return true; |
| |
| /* Profile is valid and does not have bits outside of the allowed set */ |
| if (alloc_profile_is_valid(bargs->target, 1) && |
| (bargs->target & ~allowed) == 0) |
| return true; |
| |
| btrfs_err(fs_info, "balance: invalid convert %s profile %s", |
| type, btrfs_bg_type_to_raid_name(bargs->target)); |
| return false; |
| } |
| |
| /* |
| * Fill @buf with textual description of balance filter flags @bargs, up to |
| * @size_buf including the terminating null. The output may be trimmed if it |
| * does not fit into the provided buffer. |
| */ |
| static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, |
| u32 size_buf) |
| { |
| int ret; |
| u32 size_bp = size_buf; |
| char *bp = buf; |
| u64 flags = bargs->flags; |
| char tmp_buf[128] = {'\0'}; |
| |
| if (!flags) |
| return; |
| |
| #define CHECK_APPEND_NOARG(a) \ |
| do { \ |
| ret = snprintf(bp, size_bp, (a)); \ |
| if (ret < 0 || ret >= size_bp) \ |
| goto out_overflow; \ |
| size_bp -= ret; \ |
| bp += ret; \ |
| } while (0) |
| |
| #define CHECK_APPEND_1ARG(a, v1) \ |
| do { \ |
| ret = snprintf(bp, size_bp, (a), (v1)); \ |
| if (ret < 0 || ret >= size_bp) \ |
| goto out_overflow; \ |
| size_bp -= ret; \ |
| bp += ret; \ |
| } while (0) |
| |
| #define CHECK_APPEND_2ARG(a, v1, v2) \ |
| do { \ |
| ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ |
| if (ret < 0 || ret >= size_bp) \ |
| goto out_overflow; \ |
| size_bp -= ret; \ |
| bp += ret; \ |
| } while (0) |
| |
| if (flags & BTRFS_BALANCE_ARGS_CONVERT) |
| CHECK_APPEND_1ARG("convert=%s,", |
| btrfs_bg_type_to_raid_name(bargs->target)); |
| |
| if (flags & BTRFS_BALANCE_ARGS_SOFT) |
| CHECK_APPEND_NOARG("soft,"); |
| |
| if (flags & BTRFS_BALANCE_ARGS_PROFILES) { |
| btrfs_describe_block_groups(bargs->profiles, tmp_buf, |
| sizeof(tmp_buf)); |
| CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); |
| } |
| |
| if (flags & BTRFS_BALANCE_ARGS_USAGE) |
| CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); |
| |
| if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) |
| CHECK_APPEND_2ARG("usage=%u..%u,", |
| bargs->usage_min, bargs->usage_max); |
| |
| if (flags & BTRFS_BALANCE_ARGS_DEVID) |
| CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); |
| |
| if (flags & BTRFS_BALANCE_ARGS_DRANGE) |
| CHECK_APPEND_2ARG("drange=%llu..%llu,", |
| bargs->pstart, bargs->pend); |
| |
| if (flags & BTRFS_BALANCE_ARGS_VRANGE) |
| CHECK_APPEND_2ARG("vrange=%llu..%llu,", |
| bargs->vstart, bargs->vend); |
| |
| if (flags & BTRFS_BALANCE_ARGS_LIMIT) |
| CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); |
| |
| if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) |
| CHECK_APPEND_2ARG("limit=%u..%u,", |
| bargs->limit_min, bargs->limit_max); |
| |
| if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) |
| CHECK_APPEND_2ARG("stripes=%u..%u,", |
| bargs->stripes_min, bargs->stripes_max); |
| |
| #undef CHECK_APPEND_2ARG |
| #undef CHECK_APPEND_1ARG |
| #undef CHECK_APPEND_NOARG |
| |
| out_overflow: |
| |
| if (size_bp < size_buf) |
| buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ |
| else |
| buf[0] = '\0'; |
| } |
| |
| static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) |
| { |
| u32 size_buf = 1024; |
| char tmp_buf[192] = {'\0'}; |
| char *buf; |
| char *bp; |
| u32 size_bp = size_buf; |
| int ret; |
| struct btrfs_balance_control *bctl = fs_info->balance_ctl; |
| |
| buf = kzalloc(size_buf, GFP_KERNEL); |
| if (!buf) |
| return; |
| |
| bp = buf; |
| |
| #define CHECK_APPEND_1ARG(a, v1) \ |
| do { \ |
| ret = snprintf(bp, size_bp, (a), (v1)); \ |
| if (ret < 0 || ret >= size_bp) \ |
| goto out_overflow; \ |
| size_bp -= ret; \ |
| bp += ret; \ |
| } while (0) |
| |
| if (bctl->flags & BTRFS_BALANCE_FORCE) |
| CHECK_APPEND_1ARG("%s", "-f "); |
| |
| if (bctl->flags & BTRFS_BALANCE_DATA) { |
| describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); |
| CHECK_APPEND_1ARG("-d%s ", tmp_buf); |
| } |
| |
| if (bctl->flags & BTRFS_BALANCE_METADATA) { |
| describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); |
| CHECK_APPEND_1ARG("-m%s ", tmp_buf); |
| } |
| |
| if (bctl->flags & BTRFS_BALANCE_SYSTEM) { |
| describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); |
| CHECK_APPEND_1ARG("-s%s ", tmp_buf); |
| } |
| |
| #undef CHECK_APPEND_1ARG |
| |
| out_overflow: |
| |
| if (size_bp < size_buf) |
| buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ |
| btrfs_info(fs_info, "balance: %s %s", |
| (bctl->flags & BTRFS_BALANCE_RESUME) ? |
| "resume" : "start", buf); |
| |
| kfree(buf); |
| } |
| |
| /* |
| * Should be called with balance mutexe held |
| */ |
| int btrfs_balance(struct btrfs_fs_info *fs_info, |
| struct btrfs_balance_control *bctl, |
| struct btrfs_ioctl_balance_args *bargs) |
| { |
| u64 meta_target, data_target; |
| u64 allowed; |
| int mixed = 0; |
| int ret; |
| u64 num_devices; |
| unsigned seq; |
| bool reducing_redundancy; |
| bool paused = false; |
| int i; |
| |
| if (btrfs_fs_closing(fs_info) || |
| atomic_read(&fs_info->balance_pause_req) || |
| btrfs_should_cancel_balance(fs_info)) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| allowed = btrfs_super_incompat_flags(fs_info->super_copy); |
| if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) |
| mixed = 1; |
| |
| /* |
| * In case of mixed groups both data and meta should be picked, |
| * and identical options should be given for both of them. |
| */ |
| allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; |
| if (mixed && (bctl->flags & allowed)) { |
| if (!(bctl->flags & BTRFS_BALANCE_DATA) || |
| !(bctl->flags & BTRFS_BALANCE_METADATA) || |
| memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { |
| btrfs_err(fs_info, |
| "balance: mixed groups data and metadata options must be the same"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| /* |
| * rw_devices will not change at the moment, device add/delete/replace |
| * are exclusive |
| */ |
| num_devices = fs_info->fs_devices->rw_devices; |
| |
| /* |
| * SINGLE profile on-disk has no profile bit, but in-memory we have a |
| * special bit for it, to make it easier to distinguish. Thus we need |
| * to set it manually, or balance would refuse the profile. |
| */ |
| allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; |
| for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) |
| if (num_devices >= btrfs_raid_array[i].devs_min) |
| allowed |= btrfs_raid_array[i].bg_flag; |
| |
| if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || |
| !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || |
| !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Allow to reduce metadata or system integrity only if force set for |
| * profiles with redundancy (copies, parity) |
| */ |
| allowed = 0; |
| for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { |
| if (btrfs_raid_array[i].ncopies >= 2 || |
| btrfs_raid_array[i].tolerated_failures >= 1) |
| allowed |= btrfs_raid_array[i].bg_flag; |
| } |
| do { |
| seq = read_seqbegin(&fs_info->profiles_lock); |
| |
| if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (fs_info->avail_system_alloc_bits & allowed) && |
| !(bctl->sys.target & allowed)) || |
| ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && |
| (fs_info->avail_metadata_alloc_bits & allowed) && |
| !(bctl->meta.target & allowed))) |
| reducing_redundancy = true; |
| else |
| reducing_redundancy = false; |
| |
| /* if we're not converting, the target field is uninitialized */ |
| meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? |
| bctl->meta.target : fs_info->avail_metadata_alloc_bits; |
| data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? |
| bctl->data.target : fs_info->avail_data_alloc_bits; |
| } while (read_seqretry(&fs_info->profiles_lock, seq)); |
| |
| if (reducing_redundancy) { |
| if (bctl->flags & BTRFS_BALANCE_FORCE) { |
| btrfs_info(fs_info, |
| "balance: force reducing metadata redundancy"); |
| } else { |
| btrfs_err(fs_info, |
| "balance: reduces metadata redundancy, use --force if you want this"); |
| ret = -EINVAL; |
| goto out; |
| } |
| } |
| |
| if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < |
| btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { |
| btrfs_warn(fs_info, |
| "balance: metadata profile %s has lower redundancy than data profile %s", |
| btrfs_bg_type_to_raid_name(meta_target), |
| btrfs_bg_type_to_raid_name(data_target)); |
| } |
| |
| ret = insert_balance_item(fs_info, bctl); |
| if (ret && ret != -EEXIST) |
| goto out; |
| |
| if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { |
| BUG_ON(ret == -EEXIST); |
| BUG_ON(fs_info->balance_ctl); |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = bctl; |
| spin_unlock(&fs_info->balance_lock); |
| } else { |
| BUG_ON(ret != -EEXIST); |
| spin_lock(&fs_info->balance_lock); |
| update_balance_args(bctl); |
| spin_unlock(&fs_info->balance_lock); |
| } |
| |
| ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); |
| describe_balance_start_or_resume(fs_info); |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| ret = __btrfs_balance(fs_info); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { |
| btrfs_info(fs_info, "balance: paused"); |
| btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); |
| paused = true; |
| } |
| /* |
| * Balance can be canceled by: |
| * |
| * - Regular cancel request |
| * Then ret == -ECANCELED and balance_cancel_req > 0 |
| * |
| * - Fatal signal to "btrfs" process |
| * Either the signal caught by wait_reserve_ticket() and callers |
| * got -EINTR, or caught by btrfs_should_cancel_balance() and |
| * got -ECANCELED. |
| * Either way, in this case balance_cancel_req = 0, and |
| * ret == -EINTR or ret == -ECANCELED. |
| * |
| * So here we only check the return value to catch canceled balance. |
| */ |
| else if (ret == -ECANCELED || ret == -EINTR) |
| btrfs_info(fs_info, "balance: canceled"); |
| else |
| btrfs_info(fs_info, "balance: ended with status: %d", ret); |
| |
| clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); |
| |
| if (bargs) { |
| memset(bargs, 0, sizeof(*bargs)); |
| btrfs_update_ioctl_balance_args(fs_info, bargs); |
| } |
| |
| /* We didn't pause, we can clean everything up. */ |
| if (!paused) { |
| reset_balance_state(fs_info); |
| btrfs_exclop_finish(fs_info); |
| } |
| |
| wake_up(&fs_info->balance_wait_q); |
| |
| return ret; |
| out: |
| if (bctl->flags & BTRFS_BALANCE_RESUME) |
| reset_balance_state(fs_info); |
| else |
| kfree(bctl); |
| btrfs_exclop_finish(fs_info); |
| |
| return ret; |
| } |
| |
| static int balance_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = data; |
| int ret = 0; |
| |
| sb_start_write(fs_info->sb); |
| mutex_lock(&fs_info->balance_mutex); |
| if (fs_info->balance_ctl) |
| ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); |
| mutex_unlock(&fs_info->balance_mutex); |
| sb_end_write(fs_info->sb); |
| |
| return ret; |
| } |
| |
| int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) |
| { |
| struct task_struct *tsk; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return 0; |
| } |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { |
| btrfs_info(fs_info, "balance: resume skipped"); |
| return 0; |
| } |
| |
| spin_lock(&fs_info->super_lock); |
| ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); |
| fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; |
| spin_unlock(&fs_info->super_lock); |
| /* |
| * A ro->rw remount sequence should continue with the paused balance |
| * regardless of who pauses it, system or the user as of now, so set |
| * the resume flag. |
| */ |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; |
| spin_unlock(&fs_info->balance_lock); |
| |
| tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); |
| return PTR_ERR_OR_ZERO(tsk); |
| } |
| |
| int btrfs_recover_balance(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_balance_control *bctl; |
| struct btrfs_balance_item *item; |
| struct btrfs_disk_balance_args disk_bargs; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| key.objectid = BTRFS_BALANCE_OBJECTID; |
| key.type = BTRFS_TEMPORARY_ITEM_KEY; |
| key.offset = 0; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { /* ret = -ENOENT; */ |
| ret = 0; |
| goto out; |
| } |
| |
| bctl = kzalloc(sizeof(*bctl), GFP_NOFS); |
| if (!bctl) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| leaf = path->nodes[0]; |
| item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); |
| |
| bctl->flags = btrfs_balance_flags(leaf, item); |
| bctl->flags |= BTRFS_BALANCE_RESUME; |
| |
| btrfs_balance_data(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); |
| btrfs_balance_meta(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); |
| btrfs_balance_sys(leaf, item, &disk_bargs); |
| btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); |
| |
| /* |
| * This should never happen, as the paused balance state is recovered |
| * during mount without any chance of other exclusive ops to collide. |
| * |
| * This gives the exclusive op status to balance and keeps in paused |
| * state until user intervention (cancel or umount). If the ownership |
| * cannot be assigned, show a message but do not fail. The balance |
| * is in a paused state and must have fs_info::balance_ctl properly |
| * set up. |
| */ |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) |
| btrfs_warn(fs_info, |
| "balance: cannot set exclusive op status, resume manually"); |
| |
| btrfs_release_path(path); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| BUG_ON(fs_info->balance_ctl); |
| spin_lock(&fs_info->balance_lock); |
| fs_info->balance_ctl = bctl; |
| spin_unlock(&fs_info->balance_lock); |
| mutex_unlock(&fs_info->balance_mutex); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_pause_balance(struct btrfs_fs_info *fs_info) |
| { |
| int ret = 0; |
| |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -ENOTCONN; |
| } |
| |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| atomic_inc(&fs_info->balance_pause_req); |
| mutex_unlock(&fs_info->balance_mutex); |
| |
| wait_event(fs_info->balance_wait_q, |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| |
| mutex_lock(&fs_info->balance_mutex); |
| /* we are good with balance_ctl ripped off from under us */ |
| BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| atomic_dec(&fs_info->balance_pause_req); |
| } else { |
| ret = -ENOTCONN; |
| } |
| |
| mutex_unlock(&fs_info->balance_mutex); |
| return ret; |
| } |
| |
| int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) |
| { |
| mutex_lock(&fs_info->balance_mutex); |
| if (!fs_info->balance_ctl) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -ENOTCONN; |
| } |
| |
| /* |
| * A paused balance with the item stored on disk can be resumed at |
| * mount time if the mount is read-write. Otherwise it's still paused |
| * and we must not allow cancelling as it deletes the item. |
| */ |
| if (sb_rdonly(fs_info->sb)) { |
| mutex_unlock(&fs_info->balance_mutex); |
| return -EROFS; |
| } |
| |
| atomic_inc(&fs_info->balance_cancel_req); |
| /* |
| * if we are running just wait and return, balance item is |
| * deleted in btrfs_balance in this case |
| */ |
| if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { |
| mutex_unlock(&fs_info->balance_mutex); |
| wait_event(fs_info->balance_wait_q, |
| !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| mutex_lock(&fs_info->balance_mutex); |
| } else { |
| mutex_unlock(&fs_info->balance_mutex); |
| /* |
| * Lock released to allow other waiters to continue, we'll |
| * reexamine the status again. |
| */ |
| mutex_lock(&fs_info->balance_mutex); |
| |
| if (fs_info->balance_ctl) { |
| reset_balance_state(fs_info); |
| btrfs_exclop_finish(fs_info); |
| btrfs_info(fs_info, "balance: canceled"); |
| } |
| } |
| |
| ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); |
| atomic_dec(&fs_info->balance_cancel_req); |
| mutex_unlock(&fs_info->balance_mutex); |
| return 0; |
| } |
| |
| int btrfs_uuid_scan_kthread(void *data) |
| { |
| struct btrfs_fs_info *fs_info = data; |
| struct btrfs_root *root = fs_info->tree_root; |
| struct btrfs_key key; |
| struct btrfs_path *path = NULL; |
| int ret = 0; |
| struct extent_buffer *eb; |
| int slot; |
| struct btrfs_root_item root_item; |
| u32 item_size; |
| struct btrfs_trans_handle *trans = NULL; |
| bool closing = false; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| key.objectid = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = 0; |
| |
| while (1) { |
| if (btrfs_fs_closing(fs_info)) { |
| closing = true; |
| break; |
| } |
| ret = btrfs_search_forward(root, &key, path, |
| BTRFS_OLDEST_GENERATION); |
| if (ret) { |
| if (ret > 0) |
| ret = 0; |
| break; |
| } |
| |
| if (key.type != BTRFS_ROOT_ITEM_KEY || |
| (key.objectid < BTRFS_FIRST_FREE_OBJECTID && |
| key.objectid != BTRFS_FS_TREE_OBJECTID) || |
| key.objectid > BTRFS_LAST_FREE_OBJECTID) |
| goto skip; |
| |
| eb = path->nodes[0]; |
| slot = path->slots[0]; |
| item_size = btrfs_item_size(eb, slot); |
| if (item_size < sizeof(root_item)) |
| goto skip; |
| |
| read_extent_buffer(eb, &root_item, |
| btrfs_item_ptr_offset(eb, slot), |
| (int)sizeof(root_item)); |
| if (btrfs_root_refs(&root_item) == 0) |
| goto skip; |
| |
| if (!btrfs_is_empty_uuid(root_item.uuid) || |
| !btrfs_is_empty_uuid(root_item.received_uuid)) { |
| if (trans) |
| goto update_tree; |
| |
| btrfs_release_path(path); |
| /* |
| * 1 - subvol uuid item |
| * 1 - received_subvol uuid item |
| */ |
| trans = btrfs_start_transaction(fs_info->uuid_root, 2); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| break; |
| } |
| continue; |
| } else { |
| goto skip; |
| } |
| update_tree: |
| btrfs_release_path(path); |
| if (!btrfs_is_empty_uuid(root_item.uuid)) { |
| ret = btrfs_uuid_tree_add(trans, root_item.uuid, |
| BTRFS_UUID_KEY_SUBVOL, |
| key.objectid); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "uuid_tree_add failed %d", |
| ret); |
| break; |
| } |
| } |
| |
| if (!btrfs_is_empty_uuid(root_item.received_uuid)) { |
| ret = btrfs_uuid_tree_add(trans, |
| root_item.received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| key.objectid); |
| if (ret < 0) { |
| btrfs_warn(fs_info, "uuid_tree_add failed %d", |
| ret); |
| break; |
| } |
| } |
| |
| skip: |
| btrfs_release_path(path); |
| if (trans) { |
| ret = btrfs_end_transaction(trans); |
| trans = NULL; |
| if (ret) |
| break; |
| } |
| |
| if (key.offset < (u64)-1) { |
| key.offset++; |
| } else if (key.type < BTRFS_ROOT_ITEM_KEY) { |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| } else if (key.objectid < (u64)-1) { |
| key.offset = 0; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.objectid++; |
| } else { |
| break; |
| } |
| cond_resched(); |
| } |
| |
| out: |
| btrfs_free_path(path); |
| if (trans && !IS_ERR(trans)) |
| btrfs_end_transaction(trans); |
| if (ret) |
| btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); |
| else if (!closing) |
| set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return 0; |
| } |
| |
| int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_trans_handle *trans; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *uuid_root; |
| struct task_struct *task; |
| int ret; |
| |
| /* |
| * 1 - root node |
| * 1 - root item |
| */ |
| trans = btrfs_start_transaction(tree_root, 2); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); |
| if (IS_ERR(uuid_root)) { |
| ret = PTR_ERR(uuid_root); |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| return ret; |
| } |
| |
| fs_info->uuid_root = uuid_root; |
| |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| return ret; |
| |
| down(&fs_info->uuid_tree_rescan_sem); |
| task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); |
| if (IS_ERR(task)) { |
| /* fs_info->update_uuid_tree_gen remains 0 in all error case */ |
| btrfs_warn(fs_info, "failed to start uuid_scan task"); |
| up(&fs_info->uuid_tree_rescan_sem); |
| return PTR_ERR(task); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * shrinking a device means finding all of the device extents past |
| * the new size, and then following the back refs to the chunks. |
| * The chunk relocation code actually frees the device extent |
| */ |
| int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) |
| { |
| struct btrfs_fs_info *fs_info = device->fs_info; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_dev_extent *dev_extent = NULL; |
| struct btrfs_path *path; |
| u64 length; |
| u64 chunk_offset; |
| int ret; |
| int slot; |
| int failed = 0; |
| bool retried = false; |
| struct extent_buffer *l; |
| struct btrfs_key key; |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| u64 old_total = btrfs_super_total_bytes(super_copy); |
| u64 old_size = btrfs_device_get_total_bytes(device); |
| u64 diff; |
| u64 start; |
| |
| new_size = round_down(new_size, fs_info->sectorsize); |
| start = new_size; |
| diff = round_down(old_size - new_size, fs_info->sectorsize); |
| |
| if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| return -EINVAL; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_BACK; |
| |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| btrfs_free_path(path); |
| return PTR_ERR(trans); |
| } |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| |
| btrfs_device_set_total_bytes(device, new_size); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| device->fs_devices->total_rw_bytes -= diff; |
| atomic64_sub(diff, &fs_info->free_chunk_space); |
| } |
| |
| /* |
| * Once the device's size has been set to the new size, ensure all |
| * in-memory chunks are synced to disk so that the loop below sees them |
| * and relocates them accordingly. |
| */ |
| if (contains_pending_extent(device, &start, diff)) { |
| mutex_unlock(&fs_info->chunk_mutex); |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| goto done; |
| } else { |
| mutex_unlock(&fs_info->chunk_mutex); |
| btrfs_end_transaction(trans); |
| } |
| |
| again: |
| key.objectid = device->devid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| |
| do { |
| mutex_lock(&fs_info->reclaim_bgs_lock); |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto done; |
| } |
| |
| ret = btrfs_previous_item(root, path, 0, key.type); |
| if (ret) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| if (ret < 0) |
| goto done; |
| ret = 0; |
| btrfs_release_path(path); |
| break; |
| } |
| |
| l = path->nodes[0]; |
| slot = path->slots[0]; |
| btrfs_item_key_to_cpu(l, &key, path->slots[0]); |
| |
| if (key.objectid != device->devid) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| btrfs_release_path(path); |
| break; |
| } |
| |
| dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); |
| length = btrfs_dev_extent_length(l, dev_extent); |
| |
| if (key.offset + length <= new_size) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| btrfs_release_path(path); |
| break; |
| } |
| |
| chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); |
| btrfs_release_path(path); |
| |
| /* |
| * We may be relocating the only data chunk we have, |
| * which could potentially end up with losing data's |
| * raid profile, so lets allocate an empty one in |
| * advance. |
| */ |
| ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); |
| if (ret < 0) { |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| goto done; |
| } |
| |
| ret = btrfs_relocate_chunk(fs_info, chunk_offset); |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| if (ret == -ENOSPC) { |
| failed++; |
| } else if (ret) { |
| if (ret == -ETXTBSY) { |
| btrfs_warn(fs_info, |
| "could not shrink block group %llu due to active swapfile", |
| chunk_offset); |
| } |
| goto done; |
| } |
| } while (key.offset-- > 0); |
| |
| if (failed && !retried) { |
| failed = 0; |
| retried = true; |
| goto again; |
| } else if (failed && retried) { |
| ret = -ENOSPC; |
| goto done; |
| } |
| |
| /* Shrinking succeeded, else we would be at "done". */ |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) { |
| ret = PTR_ERR(trans); |
| goto done; |
| } |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| /* Clear all state bits beyond the shrunk device size */ |
| clear_extent_bits(&device->alloc_state, new_size, (u64)-1, |
| CHUNK_STATE_MASK); |
| |
| btrfs_device_set_disk_total_bytes(device, new_size); |
| if (list_empty(&device->post_commit_list)) |
| list_add_tail(&device->post_commit_list, |
| &trans->transaction->dev_update_list); |
| |
| WARN_ON(diff > old_total); |
| btrfs_set_super_total_bytes(super_copy, |
| round_down(old_total - diff, fs_info->sectorsize)); |
| mutex_unlock(&fs_info->chunk_mutex); |
| |
| btrfs_reserve_chunk_metadata(trans, false); |
| /* Now btrfs_update_device() will change the on-disk size. */ |
| ret = btrfs_update_device(trans, device); |
| btrfs_trans_release_chunk_metadata(trans); |
| if (ret < 0) { |
| btrfs_abort_transaction(trans, ret); |
| btrfs_end_transaction(trans); |
| } else { |
| ret = btrfs_commit_transaction(trans); |
| } |
| done: |
| btrfs_free_path(path); |
| if (ret) { |
| mutex_lock(&fs_info->chunk_mutex); |
| btrfs_device_set_total_bytes(device, old_size); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) |
| device->fs_devices->total_rw_bytes += diff; |
| atomic64_add(diff, &fs_info->free_chunk_space); |
| mutex_unlock(&fs_info->chunk_mutex); |
| } |
| return ret; |
| } |
| |
| static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *key, |
| struct btrfs_chunk *chunk, int item_size) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct btrfs_disk_key disk_key; |
| u32 array_size; |
| u8 *ptr; |
| |
| lockdep_assert_held(&fs_info->chunk_mutex); |
| |
| array_size = btrfs_super_sys_array_size(super_copy); |
| if (array_size + item_size + sizeof(disk_key) |
| > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) |
| return -EFBIG; |
| |
| ptr = super_copy->sys_chunk_array + array_size; |
| btrfs_cpu_key_to_disk(&disk_key, key); |
| memcpy(ptr, &disk_key, sizeof(disk_key)); |
| ptr += sizeof(disk_key); |
| memcpy(ptr, chunk, item_size); |
| item_size += sizeof(disk_key); |
| btrfs_set_super_sys_array_size(super_copy, array_size + item_size); |
| |
| return 0; |
| } |
| |
| /* |
| * sort the devices in descending order by max_avail, total_avail |
| */ |
| static int btrfs_cmp_device_info(const void *a, const void *b) |
| { |
| const struct btrfs_device_info *di_a = a; |
| const struct btrfs_device_info *di_b = b; |
| |
| if (di_a->max_avail > di_b->max_avail) |
| return -1; |
| if (di_a->max_avail < di_b->max_avail) |
| return 1; |
| if (di_a->total_avail > di_b->total_avail) |
| return -1; |
| if (di_a->total_avail < di_b->total_avail) |
| return 1; |
| return 0; |
| } |
| |
| static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) |
| { |
| if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| return; |
| |
| btrfs_set_fs_incompat(info, RAID56); |
| } |
| |
| static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) |
| { |
| if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) |
| return; |
| |
| btrfs_set_fs_incompat(info, RAID1C34); |
| } |
| |
| /* |
| * Structure used internally for btrfs_create_chunk() function. |
| * Wraps needed parameters. |
| */ |
| struct alloc_chunk_ctl { |
| u64 start; |
| u64 type; |
| /* Total number of stripes to allocate */ |
| int num_stripes; |
| /* sub_stripes info for map */ |
| int sub_stripes; |
| /* Stripes per device */ |
| int dev_stripes; |
| /* Maximum number of devices to use */ |
| int devs_max; |
| /* Minimum number of devices to use */ |
| int devs_min; |
| /* ndevs has to be a multiple of this */ |
| int devs_increment; |
| /* Number of copies */ |
| int ncopies; |
| /* Number of stripes worth of bytes to store parity information */ |
| int nparity; |
| u64 max_stripe_size; |
| u64 max_chunk_size; |
| u64 dev_extent_min; |
| u64 stripe_size; |
| u64 chunk_size; |
| int ndevs; |
| }; |
| |
| static void init_alloc_chunk_ctl_policy_regular( |
| struct btrfs_fs_devices *fs_devices, |
| struct alloc_chunk_ctl *ctl) |
| { |
| struct btrfs_space_info *space_info; |
| |
| space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); |
| ASSERT(space_info); |
| |
| ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); |
| ctl->max_stripe_size = ctl->max_chunk_size; |
| |
| if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) |
| ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); |
| |
| /* We don't want a chunk larger than 10% of writable space */ |
| ctl->max_chunk_size = min(mult_perc(fs_devices->total_rw_bytes, 10), |
| ctl->max_chunk_size); |
| ctl->dev_extent_min = btrfs_stripe_nr_to_offset(ctl->dev_stripes); |
| } |
| |
| static void init_alloc_chunk_ctl_policy_zoned( |
| struct btrfs_fs_devices *fs_devices, |
| struct alloc_chunk_ctl *ctl) |
| { |
| u64 zone_size = fs_devices->fs_info->zone_size; |
| u64 limit; |
| int min_num_stripes = ctl->devs_min * ctl->dev_stripes; |
| int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; |
| u64 min_chunk_size = min_data_stripes * zone_size; |
| u64 type = ctl->type; |
| |
| ctl->max_stripe_size = zone_size; |
| if (type & BTRFS_BLOCK_GROUP_DATA) { |
| ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, |
| zone_size); |
| } else if (type & BTRFS_BLOCK_GROUP_METADATA) { |
| ctl->max_chunk_size = ctl->max_stripe_size; |
| } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ctl->max_chunk_size = 2 * ctl->max_stripe_size; |
| ctl->devs_max = min_t(int, ctl->devs_max, |
| BTRFS_MAX_DEVS_SYS_CHUNK); |
| } else { |
| BUG(); |
| } |
| |
| /* We don't want a chunk larger than 10% of writable space */ |
| limit = max(round_down(mult_perc(fs_devices->total_rw_bytes, 10), |
| zone_size), |
| min_chunk_size); |
| ctl->max_chunk_size = min(limit, ctl->max_chunk_size); |
| ctl->dev_extent_min = zone_size * ctl->dev_stripes; |
| } |
| |
| static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, |
| struct alloc_chunk_ctl *ctl) |
| { |
| int index = btrfs_bg_flags_to_raid_index(ctl->type); |
| |
| ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; |
| ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; |
| ctl->devs_max = btrfs_raid_array[index].devs_max; |
| if (!ctl->devs_max) |
| ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); |
| ctl->devs_min = btrfs_raid_array[index].devs_min; |
| ctl->devs_increment = btrfs_raid_array[index].devs_increment; |
| ctl->ncopies = btrfs_raid_array[index].ncopies; |
| ctl->nparity = btrfs_raid_array[index].nparity; |
| ctl->ndevs = 0; |
| |
| switch (fs_devices->chunk_alloc_policy) { |
| case BTRFS_CHUNK_ALLOC_REGULAR: |
| init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); |
| break; |
| case BTRFS_CHUNK_ALLOC_ZONED: |
| init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static int gather_device_info(struct btrfs_fs_devices *fs_devices, |
| struct alloc_chunk_ctl *ctl, |
| struct btrfs_device_info *devices_info) |
| { |
| struct btrfs_fs_info *info = fs_devices->fs_info; |
| struct btrfs_device *device; |
| u64 total_avail; |
| u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; |
| int ret; |
| int ndevs = 0; |
| u64 max_avail; |
| u64 dev_offset; |
| |
| /* |
| * in the first pass through the devices list, we gather information |
| * about the available holes on each device. |
| */ |
| list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { |
| WARN(1, KERN_ERR |
| "BTRFS: read-only device in alloc_list\n"); |
| continue; |
| } |
| |
| if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &device->dev_state) || |
| test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) |
| continue; |
| |
| if (device->total_bytes > device->bytes_used) |
| total_avail = device->total_bytes - device->bytes_used; |
| else |
| total_avail = 0; |
| |
| /* If there is no space on this device, skip it. */ |
| if (total_avail < ctl->dev_extent_min) |
| continue; |
| |
| ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, |
| &max_avail); |
| if (ret && ret != -ENOSPC) |
| return ret; |
| |
| if (ret == 0) |
| max_avail = dev_extent_want; |
| |
| if (max_avail < ctl->dev_extent_min) { |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) |
| btrfs_debug(info, |
| "%s: devid %llu has no free space, have=%llu want=%llu", |
| __func__, device->devid, max_avail, |
| ctl->dev_extent_min); |
| continue; |
| } |
| |
| if (ndevs == fs_devices->rw_devices) { |
| WARN(1, "%s: found more than %llu devices\n", |
| __func__, fs_devices->rw_devices); |
| break; |
| } |
| devices_info[ndevs].dev_offset = dev_offset; |
| devices_info[ndevs].max_avail = max_avail; |
| devices_info[ndevs].total_avail = total_avail; |
| devices_info[ndevs].dev = device; |
| ++ndevs; |
| } |
| ctl->ndevs = ndevs; |
| |
| /* |
| * now sort the devices by hole size / available space |
| */ |
| sort(devices_info, ndevs, sizeof(struct btrfs_device_info), |
| btrfs_cmp_device_info, NULL); |
| |
| return 0; |
| } |
| |
| static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, |
| struct btrfs_device_info *devices_info) |
| { |
| /* Number of stripes that count for block group size */ |
| int data_stripes; |
| |
| /* |
| * The primary goal is to maximize the number of stripes, so use as |
| * many devices as possible, even if the stripes are not maximum sized. |
| * |
| * The DUP profile stores more than one stripe per device, the |
| * max_avail is the total size so we have to adjust. |
| */ |
| ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, |
| ctl->dev_stripes); |
| ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; |
| |
| /* This will have to be fixed for RAID1 and RAID10 over more drives */ |
| data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; |
| |
| /* |
| * Use the number of data stripes to figure out how big this chunk is |
| * really going to be in terms of logical address space, and compare |
| * that answer with the max chunk size. If it's higher, we try to |
| * reduce stripe_size. |
| */ |
| if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { |
| /* |
| * Reduce stripe_size, round it up to a 16MB boundary again and |
| * then use it, unless it ends up being even bigger than the |
| * previous value we had already. |
| */ |
| ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, |
| data_stripes), SZ_16M), |
| ctl->stripe_size); |
| } |
| |
| /* Stripe size should not go beyond 1G. */ |
| ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); |
| |
| /* Align to BTRFS_STRIPE_LEN */ |
| ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); |
| ctl->chunk_size = ctl->stripe_size * data_stripes; |
| |
| return 0; |
| } |
| |
| static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, |
| struct btrfs_device_info *devices_info) |
| { |
| u64 zone_size = devices_info[0].dev->zone_info->zone_size; |
| /* Number of stripes that count for block group size */ |
| int data_stripes; |
| |
| /* |
| * It should hold because: |
| * dev_extent_min == dev_extent_want == zone_size * dev_stripes |
| */ |
| ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); |
| |
| ctl->stripe_size = zone_size; |
| ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; |
| data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; |
| |
| /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ |
| if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { |
| ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, |
| ctl->stripe_size) + ctl->nparity, |
| ctl->dev_stripes); |
| ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; |
| data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; |
| ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); |
| } |
| |
| ctl->chunk_size = ctl->stripe_size * data_stripes; |
| |
| return 0; |
| } |
| |
| static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, |
| struct alloc_chunk_ctl *ctl, |
| struct btrfs_device_info *devices_info) |
| { |
| struct btrfs_fs_info *info = fs_devices->fs_info; |
| |
| /* |
| * Round down to number of usable stripes, devs_increment can be any |
| * number so we can't use round_down() that requires power of 2, while |
| * rounddown is safe. |
| */ |
| ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); |
| |
| if (ctl->ndevs < ctl->devs_min) { |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) { |
| btrfs_debug(info, |
| "%s: not enough devices with free space: have=%d minimum required=%d", |
| __func__, ctl->ndevs, ctl->devs_min); |
| } |
| return -ENOSPC; |
| } |
| |
| ctl->ndevs = min(ctl->ndevs, ctl->devs_max); |
| |
| switch (fs_devices->chunk_alloc_policy) { |
| case BTRFS_CHUNK_ALLOC_REGULAR: |
| return decide_stripe_size_regular(ctl, devices_info); |
| case BTRFS_CHUNK_ALLOC_ZONED: |
| return decide_stripe_size_zoned(ctl, devices_info); |
| default: |
| BUG(); |
| } |
| } |
| |
| static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, |
| struct alloc_chunk_ctl *ctl, |
| struct btrfs_device_info *devices_info) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct map_lookup *map = NULL; |
| struct extent_map_tree *em_tree; |
| struct btrfs_block_group *block_group; |
| struct extent_map *em; |
| u64 start = ctl->start; |
| u64 type = ctl->type; |
| int ret; |
| int i; |
| int j; |
| |
| map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); |
| if (!map) |
| return ERR_PTR(-ENOMEM); |
| map->num_stripes = ctl->num_stripes; |
| |
| for (i = 0; i < ctl->ndevs; ++i) { |
| for (j = 0; j < ctl->dev_stripes; ++j) { |
| int s = i * ctl->dev_stripes + j; |
| map->stripes[s].dev = devices_info[i].dev; |
| map->stripes[s].physical = devices_info[i].dev_offset + |
| j * ctl->stripe_size; |
| } |
| } |
| map->io_align = BTRFS_STRIPE_LEN; |
| map->io_width = BTRFS_STRIPE_LEN; |
| map->type = type; |
| map->sub_stripes = ctl->sub_stripes; |
| |
| trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| kfree(map); |
| return ERR_PTR(-ENOMEM); |
| } |
| set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); |
| em->map_lookup = map; |
| em->start = start; |
| em->len = ctl->chunk_size; |
| em->block_start = 0; |
| em->block_len = em->len; |
| em->orig_block_len = ctl->stripe_size; |
| |
| em_tree = &info->mapping_tree; |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 0); |
| if (ret) { |
| write_unlock(&em_tree->lock); |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| write_unlock(&em_tree->lock); |
| |
| block_group = btrfs_make_block_group(trans, type, start, ctl->chunk_size); |
| if (IS_ERR(block_group)) |
| goto error_del_extent; |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *dev = map->stripes[i].dev; |
| |
| btrfs_device_set_bytes_used(dev, |
| dev->bytes_used + ctl->stripe_size); |
| if (list_empty(&dev->post_commit_list)) |
| list_add_tail(&dev->post_commit_list, |
| &trans->transaction->dev_update_list); |
| } |
| |
| atomic64_sub(ctl->stripe_size * map->num_stripes, |
| &info->free_chunk_space); |
| |
| free_extent_map(em); |
| check_raid56_incompat_flag(info, type); |
| check_raid1c34_incompat_flag(info, type); |
| |
| return block_group; |
| |
| error_del_extent: |
| write_lock(&em_tree->lock); |
| remove_extent_mapping(em_tree, em); |
| write_unlock(&em_tree->lock); |
| |
| /* One for our allocation */ |
| free_extent_map(em); |
| /* One for the tree reference */ |
| free_extent_map(em); |
| |
| return block_group; |
| } |
| |
| struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, |
| u64 type) |
| { |
| struct btrfs_fs_info *info = trans->fs_info; |
| struct btrfs_fs_devices *fs_devices = info->fs_devices; |
| struct btrfs_device_info *devices_info = NULL; |
| struct alloc_chunk_ctl ctl; |
| struct btrfs_block_group *block_group; |
| int ret; |
| |
| lockdep_assert_held(&info->chunk_mutex); |
| |
| if (!alloc_profile_is_valid(type, 0)) { |
| ASSERT(0); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (list_empty(&fs_devices->alloc_list)) { |
| if (btrfs_test_opt(info, ENOSPC_DEBUG)) |
| btrfs_debug(info, "%s: no writable device", __func__); |
| return ERR_PTR(-ENOSPC); |
| } |
| |
| if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { |
| btrfs_err(info, "invalid chunk type 0x%llx requested", type); |
| ASSERT(0); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ctl.start = find_next_chunk(info); |
| ctl.type = type; |
| init_alloc_chunk_ctl(fs_devices, &ctl); |
| |
| devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), |
| GFP_NOFS); |
| if (!devices_info) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = gather_device_info(fs_devices, &ctl, devices_info); |
| if (ret < 0) { |
| block_group = ERR_PTR(ret); |
| goto out; |
| } |
| |
| ret = decide_stripe_size(fs_devices, &ctl, devices_info); |
| if (ret < 0) { |
| block_group = ERR_PTR(ret); |
| goto out; |
| } |
| |
| block_group = create_chunk(trans, &ctl, devices_info); |
| |
| out: |
| kfree(devices_info); |
| return block_group; |
| } |
| |
| /* |
| * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the |
| * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system |
| * chunks. |
| * |
| * See the comment at btrfs_chunk_alloc() for details about the chunk allocation |
| * phases. |
| */ |
| int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, |
| struct btrfs_block_group *bg) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *chunk_root = fs_info->chunk_root; |
| struct btrfs_key key; |
| struct btrfs_chunk *chunk; |
| struct btrfs_stripe *stripe; |
| struct extent_map *em; |
| struct map_lookup *map; |
| size_t item_size; |
| int i; |
| int ret; |
| |
| /* |
| * We take the chunk_mutex for 2 reasons: |
| * |
| * 1) Updates and insertions in the chunk btree must be done while holding |
| * the chunk_mutex, as well as updating the system chunk array in the |
| * superblock. See the comment on top of btrfs_chunk_alloc() for the |
| * details; |
| * |
| * 2) To prevent races with the final phase of a device replace operation |
| * that replaces the device object associated with the map's stripes, |
| * because the device object's id can change at any time during that |
| * final phase of the device replace operation |
| * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the |
| * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, |
| * which would cause a failure when updating the device item, which does |
| * not exists, or persisting a stripe of the chunk item with such ID. |
| * Here we can't use the device_list_mutex because our caller already |
| * has locked the chunk_mutex, and the final phase of device replace |
| * acquires both mutexes - first the device_list_mutex and then the |
| * chunk_mutex. Using any of those two mutexes protects us from a |
| * concurrent device replace. |
| */ |
| lockdep_assert_held(&fs_info->chunk_mutex); |
| |
| em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); |
| if (IS_ERR(em)) { |
| ret = PTR_ERR(em); |
| btrfs_abort_transaction(trans, ret); |
| return ret; |
| } |
| |
| map = em->map_lookup; |
| item_size = btrfs_chunk_item_size(map->num_stripes); |
| |
| chunk = kzalloc(item_size, GFP_NOFS); |
| if (!chunk) { |
| ret = -ENOMEM; |
| btrfs_abort_transaction(trans, ret); |
| goto out; |
| } |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *device = map->stripes[i].dev; |
| |
| ret = btrfs_update_device(trans, device); |
| if (ret) |
| goto out; |
| } |
| |
| stripe = &chunk->stripe; |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *device = map->stripes[i].dev; |
| const u64 dev_offset = map->stripes[i].physical; |
| |
| btrfs_set_stack_stripe_devid(stripe, device->devid); |
| btrfs_set_stack_stripe_offset(stripe, dev_offset); |
| memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); |
| stripe++; |
| } |
| |
| btrfs_set_stack_chunk_length(chunk, bg->length); |
| btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); |
| btrfs_set_stack_chunk_stripe_len(chunk, BTRFS_STRIPE_LEN); |
| btrfs_set_stack_chunk_type(chunk, map->type); |
| btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); |
| btrfs_set_stack_chunk_io_align(chunk, BTRFS_STRIPE_LEN); |
| btrfs_set_stack_chunk_io_width(chunk, BTRFS_STRIPE_LEN); |
| btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); |
| btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); |
| |
| key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; |
| key.type = BTRFS_CHUNK_ITEM_KEY; |
| key.offset = bg->start; |
| |
| ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); |
| if (ret) |
| goto out; |
| |
| set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { |
| ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); |
| if (ret) |
| goto out; |
| } |
| |
| out: |
| kfree(chunk); |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| u64 alloc_profile; |
| struct btrfs_block_group *meta_bg; |
| struct btrfs_block_group *sys_bg; |
| |
| /* |
| * When adding a new device for sprouting, the seed device is read-only |
| * so we must first allocate a metadata and a system chunk. But before |
| * adding the block group items to the extent, device and chunk btrees, |
| * we must first: |
| * |
| * 1) Create both chunks without doing any changes to the btrees, as |
| * otherwise we would get -ENOSPC since the block groups from the |
| * seed device are read-only; |
| * |
| * 2) Add the device item for the new sprout device - finishing the setup |
| * of a new block group requires updating the device item in the chunk |
| * btree, so it must exist when we attempt to do it. The previous step |
| * ensures this does not fail with -ENOSPC. |
| * |
| * After that we can add the block group items to their btrees: |
| * update existing device item in the chunk btree, add a new block group |
| * item to the extent btree, add a new chunk item to the chunk btree and |
| * finally add the new device extent items to the devices btree. |
| */ |
| |
| alloc_profile = btrfs_metadata_alloc_profile(fs_info); |
| meta_bg = btrfs_create_chunk(trans, alloc_profile); |
| if (IS_ERR(meta_bg)) |
| return PTR_ERR(meta_bg); |
| |
| alloc_profile = btrfs_system_alloc_profile(fs_info); |
| sys_bg = btrfs_create_chunk(trans, alloc_profile); |
| if (IS_ERR(sys_bg)) |
| return PTR_ERR(sys_bg); |
| |
| return 0; |
| } |
| |
| static inline int btrfs_chunk_max_errors(struct map_lookup *map) |
| { |
| const int index = btrfs_bg_flags_to_raid_index(map->type); |
| |
| return btrfs_raid_array[index].tolerated_failures; |
| } |
| |
| bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| int miss_ndevs = 0; |
| int i; |
| bool ret = true; |
| |
| em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); |
| if (IS_ERR(em)) |
| return false; |
| |
| map = em->map_lookup; |
| for (i = 0; i < map->num_stripes; i++) { |
| if (test_bit(BTRFS_DEV_STATE_MISSING, |
| &map->stripes[i].dev->dev_state)) { |
| miss_ndevs++; |
| continue; |
| } |
| if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, |
| &map->stripes[i].dev->dev_state)) { |
| ret = false; |
| goto end; |
| } |
| } |
| |
| /* |
| * If the number of missing devices is larger than max errors, we can |
| * not write the data into that chunk successfully. |
| */ |
| if (miss_ndevs > btrfs_chunk_max_errors(map)) |
| ret = false; |
| end: |
| free_extent_map(em); |
| return ret; |
| } |
| |
| void btrfs_mapping_tree_free(struct extent_map_tree *tree) |
| { |
| struct extent_map *em; |
| |
| while (1) { |
| write_lock(&tree->lock); |
| em = lookup_extent_mapping(tree, 0, (u64)-1); |
| if (em) |
| remove_extent_mapping(tree, em); |
| write_unlock(&tree->lock); |
| if (!em) |
| break; |
| /* once for us */ |
| free_extent_map(em); |
| /* once for the tree */ |
| free_extent_map(em); |
| } |
| } |
| |
| int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| enum btrfs_raid_types index; |
| int ret = 1; |
| |
| em = btrfs_get_chunk_map(fs_info, logical, len); |
| if (IS_ERR(em)) |
| /* |
| * We could return errors for these cases, but that could get |
| * ugly and we'd probably do the same thing which is just not do |
| * anything else and exit, so return 1 so the callers don't try |
| * to use other copies. |
| */ |
| return 1; |
| |
| map = em->map_lookup; |
| index = btrfs_bg_flags_to_raid_index(map->type); |
| |
| /* Non-RAID56, use their ncopies from btrfs_raid_array. */ |
| if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) |
| ret = btrfs_raid_array[index].ncopies; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID5) |
| ret = 2; |
| else if (map->type & BTRFS_BLOCK_GROUP_RAID6) |
| /* |
| * There could be two corrupted data stripes, we need |
| * to loop retry in order to rebuild the correct data. |
| * |
| * Fail a stripe at a time on every retry except the |
| * stripe under reconstruction. |
| */ |
| ret = map->num_stripes; |
| free_extent_map(em); |
| return ret; |
| } |
| |
| unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, |
| u64 logical) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| unsigned long len = fs_info->sectorsize; |
| |
| if (!btrfs_fs_incompat(fs_info, RAID56)) |
| return len; |
| |
| em = btrfs_get_chunk_map(fs_info, logical, len); |
| |
| if (!WARN_ON(IS_ERR(em))) { |
| map = em->map_lookup; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| len = btrfs_stripe_nr_to_offset(nr_data_stripes(map)); |
| free_extent_map(em); |
| } |
| return len; |
| } |
| |
| int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| int ret = 0; |
| |
| if (!btrfs_fs_incompat(fs_info, RAID56)) |
| return 0; |
| |
| em = btrfs_get_chunk_map(fs_info, logical, len); |
| |
| if(!WARN_ON(IS_ERR(em))) { |
| map = em->map_lookup; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| ret = 1; |
| free_extent_map(em); |
| } |
| return ret; |
| } |
| |
| static int find_live_mirror(struct btrfs_fs_info *fs_info, |
| struct map_lookup *map, int first, |
| int dev_replace_is_ongoing) |
| { |
| int i; |
| int num_stripes; |
| int preferred_mirror; |
| int tolerance; |
| struct btrfs_device *srcdev; |
| |
| ASSERT((map->type & |
| (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID10) |
| num_stripes = map->sub_stripes; |
| else |
| num_stripes = map->num_stripes; |
| |
| switch (fs_info->fs_devices->read_policy) { |
| default: |
| /* Shouldn't happen, just warn and use pid instead of failing */ |
| btrfs_warn_rl(fs_info, |
| "unknown read_policy type %u, reset to pid", |
| fs_info->fs_devices->read_policy); |
| fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; |
| fallthrough; |
| case BTRFS_READ_POLICY_PID: |
| preferred_mirror = first + (current->pid % num_stripes); |
| break; |
| } |
| |
| if (dev_replace_is_ongoing && |
| fs_info->dev_replace.cont_reading_from_srcdev_mode == |
| BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) |
| srcdev = fs_info->dev_replace.srcdev; |
| else |
| srcdev = NULL; |
| |
| /* |
| * try to avoid the drive that is the source drive for a |
| * dev-replace procedure, only choose it if no other non-missing |
| * mirror is available |
| */ |
| for (tolerance = 0; tolerance < 2; tolerance++) { |
| if (map->stripes[preferred_mirror].dev->bdev && |
| (tolerance || map->stripes[preferred_mirror].dev != srcdev)) |
| return preferred_mirror; |
| for (i = first; i < first + num_stripes; i++) { |
| if (map->stripes[i].dev->bdev && |
| (tolerance || map->stripes[i].dev != srcdev)) |
| return i; |
| } |
| } |
| |
| /* we couldn't find one that doesn't fail. Just return something |
| * and the io error handling code will clean up eventually |
| */ |
| return preferred_mirror; |
| } |
| |
| static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, |
| u16 total_stripes) |
| { |
| struct btrfs_io_context *bioc; |
| |
| bioc = kzalloc( |
| /* The size of btrfs_io_context */ |
| sizeof(struct btrfs_io_context) + |
| /* Plus the variable array for the stripes */ |
| sizeof(struct btrfs_io_stripe) * (total_stripes), |
| GFP_NOFS); |
| |
| if (!bioc) |
| return NULL; |
| |
| refcount_set(&bioc->refs, 1); |
| |
| bioc->fs_info = fs_info; |
| bioc->replace_stripe_src = -1; |
| bioc->full_stripe_logical = (u64)-1; |
| |
| return bioc; |
| } |
| |
| void btrfs_get_bioc(struct btrfs_io_context *bioc) |
| { |
| WARN_ON(!refcount_read(&bioc->refs)); |
| refcount_inc(&bioc->refs); |
| } |
| |
| void btrfs_put_bioc(struct btrfs_io_context *bioc) |
| { |
| if (!bioc) |
| return; |
| if (refcount_dec_and_test(&bioc->refs)) |
| kfree(bioc); |
| } |
| |
| /* |
| * Please note that, discard won't be sent to target device of device |
| * replace. |
| */ |
| struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 *length_ret, |
| u32 *num_stripes) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct btrfs_discard_stripe *stripes; |
| u64 length = *length_ret; |
| u64 offset; |
| u32 stripe_nr; |
| u32 stripe_nr_end; |
| u32 stripe_cnt; |
| u64 stripe_end_offset; |
| u64 stripe_offset; |
| u32 stripe_index; |
| u32 factor = 0; |
| u32 sub_stripes = 0; |
| u32 stripes_per_dev = 0; |
| u32 remaining_stripes = 0; |
| u32 last_stripe = 0; |
| int ret; |
| int i; |
| |
| em = btrfs_get_chunk_map(fs_info, logical, length); |
| if (IS_ERR(em)) |
| return ERR_CAST(em); |
| |
| map = em->map_lookup; |
| |
| /* we don't discard raid56 yet */ |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| ret = -EOPNOTSUPP; |
| goto out_free_map; |
| } |
| |
| offset = logical - em->start; |
| length = min_t(u64, em->start + em->len - logical, length); |
| *length_ret = length; |
| |
| /* |
| * stripe_nr counts the total number of stripes we have to stride |
| * to get to this block |
| */ |
| stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; |
| |
| /* stripe_offset is the offset of this block in its stripe */ |
| stripe_offset = offset - btrfs_stripe_nr_to_offset(stripe_nr); |
| |
| stripe_nr_end = round_up(offset + length, BTRFS_STRIPE_LEN) >> |
| BTRFS_STRIPE_LEN_SHIFT; |
| stripe_cnt = stripe_nr_end - stripe_nr; |
| stripe_end_offset = btrfs_stripe_nr_to_offset(stripe_nr_end) - |
| (offset + length); |
| /* |
| * after this, stripe_nr is the number of stripes on this |
| * device we have to walk to find the data, and stripe_index is |
| * the number of our device in the stripe array |
| */ |
| *num_stripes = 1; |
| stripe_index = 0; |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)) { |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) |
| sub_stripes = 1; |
| else |
| sub_stripes = map->sub_stripes; |
| |
| factor = map->num_stripes / sub_stripes; |
| *num_stripes = min_t(u64, map->num_stripes, |
| sub_stripes * stripe_cnt); |
| stripe_index = stripe_nr % factor; |
| stripe_nr /= factor; |
| stripe_index *= sub_stripes; |
| |
| remaining_stripes = stripe_cnt % factor; |
| stripes_per_dev = stripe_cnt / factor; |
| last_stripe = ((stripe_nr_end - 1) % factor) * sub_stripes; |
| } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | |
| BTRFS_BLOCK_GROUP_DUP)) { |
| *num_stripes = map->num_stripes; |
| } else { |
| stripe_index = stripe_nr % map->num_stripes; |
| stripe_nr /= map->num_stripes; |
| } |
| |
| stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); |
| if (!stripes) { |
| ret = -ENOMEM; |
| goto out_free_map; |
| } |
| |
| for (i = 0; i < *num_stripes; i++) { |
| stripes[i].physical = |
| map->stripes[stripe_index].physical + |
| stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); |
| stripes[i].dev = map->stripes[stripe_index].dev; |
| |
| if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | |
| BTRFS_BLOCK_GROUP_RAID10)) { |
| stripes[i].length = btrfs_stripe_nr_to_offset(stripes_per_dev); |
| |
| if (i / sub_stripes < remaining_stripes) |
| stripes[i].length += BTRFS_STRIPE_LEN; |
| |
| /* |
| * Special for the first stripe and |
| * the last stripe: |
| * |
| * |-------|...|-------| |
| * |----------| |
| * off end_off |
| */ |
| if (i < sub_stripes) |
| stripes[i].length -= stripe_offset; |
| |
| if (stripe_index >= last_stripe && |
| stripe_index <= (last_stripe + |
| sub_stripes - 1)) |
| stripes[i].length -= stripe_end_offset; |
| |
| if (i == sub_stripes - 1) |
| stripe_offset = 0; |
| } else { |
| stripes[i].length = length; |
| } |
| |
| stripe_index++; |
| if (stripe_index == map->num_stripes) { |
| stripe_index = 0; |
| stripe_nr++; |
| } |
| } |
| |
| free_extent_map(em); |
| return stripes; |
| out_free_map: |
| free_extent_map(em); |
| return ERR_PTR(ret); |
| } |
| |
| static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) |
| { |
| struct btrfs_block_group *cache; |
| bool ret; |
| |
| /* Non zoned filesystem does not use "to_copy" flag */ |
| if (!btrfs_is_zoned(fs_info)) |
| return false; |
| |
| cache = btrfs_lookup_block_group(fs_info, logical); |
| |
| ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); |
| |
| btrfs_put_block_group(cache); |
| return ret; |
| } |
| |
| static void handle_ops_on_dev_replace(enum btrfs_map_op op, |
| struct btrfs_io_context *bioc, |
| struct btrfs_dev_replace *dev_replace, |
| u64 logical, |
| int *num_stripes_ret, int *max_errors_ret) |
| { |
| u64 srcdev_devid = dev_replace->srcdev->devid; |
| /* |
| * At this stage, num_stripes is still the real number of stripes, |
| * excluding the duplicated stripes. |
| */ |
| int num_stripes = *num_stripes_ret; |
| int nr_extra_stripes = 0; |
| int max_errors = *max_errors_ret; |
| int i; |
| |
| /* |
| * A block group which has "to_copy" set will eventually be copied by |
| * the dev-replace process. We can avoid cloning IO here. |
| */ |
| if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) |
| return; |
| |
| /* |
| * Duplicate the write operations while the dev-replace procedure is |
| * running. Since the copying of the old disk to the new disk takes |
| * place at run time while the filesystem is mounted writable, the |
| * regular write operations to the old disk have to be duplicated to go |
| * to the new disk as well. |
| * |
| * Note that device->missing is handled by the caller, and that the |
| * write to the old disk is already set up in the stripes array. |
| */ |
| for (i = 0; i < num_stripes; i++) { |
| struct btrfs_io_stripe *old = &bioc->stripes[i]; |
| struct btrfs_io_stripe *new = &bioc->stripes[num_stripes + nr_extra_stripes]; |
| |
| if (old->dev->devid != srcdev_devid) |
| continue; |
| |
| new->physical = old->physical; |
| new->dev = dev_replace->tgtdev; |
| if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) |
| bioc->replace_stripe_src = i; |
| nr_extra_stripes++; |
| } |
| |
| /* We can only have at most 2 extra nr_stripes (for DUP). */ |
| ASSERT(nr_extra_stripes <= 2); |
| /* |
| * For GET_READ_MIRRORS, we can only return at most 1 extra stripe for |
| * replace. |
| * If we have 2 extra stripes, only choose the one with smaller physical. |
| */ |
| if (op == BTRFS_MAP_GET_READ_MIRRORS && nr_extra_stripes == 2) { |
| struct btrfs_io_stripe *first = &bioc->stripes[num_stripes]; |
| struct btrfs_io_stripe *second = &bioc->stripes[num_stripes + 1]; |
| |
| /* Only DUP can have two extra stripes. */ |
| ASSERT(bioc->map_type & BTRFS_BLOCK_GROUP_DUP); |
| |
| /* |
| * Swap the last stripe stripes and reduce @nr_extra_stripes. |
| * The extra stripe would still be there, but won't be accessed. |
| */ |
| if (first->physical > second->physical) { |
| swap(second->physical, first->physical); |
| swap(second->dev, first->dev); |
| nr_extra_stripes--; |
| } |
| } |
| |
| *num_stripes_ret = num_stripes + nr_extra_stripes; |
| *max_errors_ret = max_errors + nr_extra_stripes; |
| bioc->replace_nr_stripes = nr_extra_stripes; |
| } |
| |
| static u64 btrfs_max_io_len(struct map_lookup *map, enum btrfs_map_op op, |
| u64 offset, u32 *stripe_nr, u64 *stripe_offset, |
| u64 *full_stripe_start) |
| { |
| /* |
| * Stripe_nr is the stripe where this block falls. stripe_offset is |
| * the offset of this block in its stripe. |
| */ |
| *stripe_offset = offset & BTRFS_STRIPE_LEN_MASK; |
| *stripe_nr = offset >> BTRFS_STRIPE_LEN_SHIFT; |
| ASSERT(*stripe_offset < U32_MAX); |
| |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| unsigned long full_stripe_len = |
| btrfs_stripe_nr_to_offset(nr_data_stripes(map)); |
| |
| /* |
| * For full stripe start, we use previously calculated |
| * @stripe_nr. Align it to nr_data_stripes, then multiply with |
| * STRIPE_LEN. |
| * |
| * By this we can avoid u64 division completely. And we have |
| * to go rounddown(), not round_down(), as nr_data_stripes is |
| * not ensured to be power of 2. |
| */ |
| *full_stripe_start = |
| btrfs_stripe_nr_to_offset( |
| rounddown(*stripe_nr, nr_data_stripes(map))); |
| |
| ASSERT(*full_stripe_start + full_stripe_len > offset); |
| ASSERT(*full_stripe_start <= offset); |
| /* |
| * For writes to RAID56, allow to write a full stripe set, but |
| * no straddling of stripe sets. |
| */ |
| if (op == BTRFS_MAP_WRITE) |
| return full_stripe_len - (offset - *full_stripe_start); |
| } |
| |
| /* |
| * For other RAID types and for RAID56 reads, allow a single stripe (on |
| * a single disk). |
| */ |
| if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) |
| return BTRFS_STRIPE_LEN - *stripe_offset; |
| return U64_MAX; |
| } |
| |
| static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, |
| u32 stripe_index, u64 stripe_offset, u32 stripe_nr) |
| { |
| dst->dev = map->stripes[stripe_index].dev; |
| dst->physical = map->stripes[stripe_index].physical + |
| stripe_offset + btrfs_stripe_nr_to_offset(stripe_nr); |
| } |
| |
| /* |
| * Map one logical range to one or more physical ranges. |
| * |
| * @length: (Mandatory) mapped length of this run. |
| * One logical range can be split into different segments |
| * due to factors like zones and RAID0/5/6/10 stripe |
| * boundaries. |
| * |
| * @bioc_ret: (Mandatory) returned btrfs_io_context structure. |
| * which has one or more physical ranges (btrfs_io_stripe) |
| * recorded inside. |
| * Caller should call btrfs_put_bioc() to free it after use. |
| * |
| * @smap: (Optional) single physical range optimization. |
| * If the map request can be fulfilled by one single |
| * physical range, and this is parameter is not NULL, |
| * then @bioc_ret would be NULL, and @smap would be |
| * updated. |
| * |
| * @mirror_num_ret: (Mandatory) returned mirror number if the original |
| * value is 0. |
| * |
| * Mirror number 0 means to choose any live mirrors. |
| * |
| * For non-RAID56 profiles, non-zero mirror_num means |
| * the Nth mirror. (e.g. mirror_num 1 means the first |
| * copy). |
| * |
| * For RAID56 profile, mirror 1 means rebuild from P and |
| * the remaining data stripes. |
| * |
| * For RAID6 profile, mirror > 2 means mark another |
| * data/P stripe error and rebuild from the remaining |
| * stripes.. |
| * |
| * @need_raid_map: (Used only for integrity checker) whether the map wants |
| * a full stripe map (including all data and P/Q stripes) |
| * for RAID56. Should always be 1 except integrity checker. |
| */ |
| int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, |
| u64 logical, u64 *length, |
| struct btrfs_io_context **bioc_ret, |
| struct btrfs_io_stripe *smap, int *mirror_num_ret, |
| int need_raid_map) |
| { |
| struct extent_map *em; |
| struct map_lookup *map; |
| u64 map_offset; |
| u64 stripe_offset; |
| u32 stripe_nr; |
| u32 stripe_index; |
| int data_stripes; |
| int i; |
| int ret = 0; |
| int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); |
| int num_stripes; |
| int num_copies; |
| int max_errors = 0; |
| struct btrfs_io_context *bioc = NULL; |
| struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; |
| int dev_replace_is_ongoing = 0; |
| u16 num_alloc_stripes; |
| u64 raid56_full_stripe_start = (u64)-1; |
| u64 max_len; |
| |
| ASSERT(bioc_ret); |
| |
| num_copies = btrfs_num_copies(fs_info, logical, fs_info->sectorsize); |
| if (mirror_num > num_copies) |
| return -EINVAL; |
| |
| em = btrfs_get_chunk_map(fs_info, logical, *length); |
| if (IS_ERR(em)) |
| return PTR_ERR(em); |
| |
| map = em->map_lookup; |
| data_stripes = nr_data_stripes(map); |
| |
| map_offset = logical - em->start; |
| max_len = btrfs_max_io_len(map, op, map_offset, &stripe_nr, |
| &stripe_offset, &raid56_full_stripe_start); |
| *length = min_t(u64, em->len - map_offset, max_len); |
| |
| down_read(&dev_replace->rwsem); |
| dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); |
| /* |
| * Hold the semaphore for read during the whole operation, write is |
| * requested at commit time but must wait. |
| */ |
| if (!dev_replace_is_ongoing) |
| up_read(&dev_replace->rwsem); |
| |
| num_stripes = 1; |
| stripe_index = 0; |
| if (map->type & BTRFS_BLOCK_GROUP_RAID0) { |
| stripe_index = stripe_nr % map->num_stripes; |
| stripe_nr /= map->num_stripes; |
| if (op == BTRFS_MAP_READ) |
| mirror_num = 1; |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { |
| if (op != BTRFS_MAP_READ) { |
| num_stripes = map->num_stripes; |
| } else if (mirror_num) { |
| stripe_index = mirror_num - 1; |
| } else { |
| stripe_index = find_live_mirror(fs_info, map, 0, |
| dev_replace_is_ongoing); |
| mirror_num = stripe_index + 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { |
| if (op != BTRFS_MAP_READ) { |
| num_stripes = map->num_stripes; |
| } else if (mirror_num) { |
| stripe_index = mirror_num - 1; |
| } else { |
| mirror_num = 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { |
| u32 factor = map->num_stripes / map->sub_stripes; |
| |
| stripe_index = (stripe_nr % factor) * map->sub_stripes; |
| stripe_nr /= factor; |
| |
| if (op != BTRFS_MAP_READ) |
| num_stripes = map->sub_stripes; |
| else if (mirror_num) |
| stripe_index += mirror_num - 1; |
| else { |
| int old_stripe_index = stripe_index; |
| stripe_index = find_live_mirror(fs_info, map, |
| stripe_index, |
| dev_replace_is_ongoing); |
| mirror_num = stripe_index - old_stripe_index + 1; |
| } |
| |
| } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| if (need_raid_map && (op != BTRFS_MAP_READ || mirror_num > 1)) { |
| /* |
| * Push stripe_nr back to the start of the full stripe |
| * For those cases needing a full stripe, @stripe_nr |
| * is the full stripe number. |
| * |
| * Originally we go raid56_full_stripe_start / full_stripe_len, |
| * but that can be expensive. Here we just divide |
| * @stripe_nr with @data_stripes. |
| */ |
| stripe_nr /= data_stripes; |
| |
| /* RAID[56] write or recovery. Return all stripes */ |
| num_stripes = map->num_stripes; |
| max_errors = btrfs_chunk_max_errors(map); |
| |
| /* Return the length to the full stripe end */ |
| *length = min(logical + *length, |
| raid56_full_stripe_start + em->start + |
| btrfs_stripe_nr_to_offset(data_stripes)) - |
| logical; |
| stripe_index = 0; |
| stripe_offset = 0; |
| } else { |
| /* |
| * Mirror #0 or #1 means the original data block. |
| * Mirror #2 is RAID5 parity block. |
| * Mirror #3 is RAID6 Q block. |
| */ |
| stripe_index = stripe_nr % data_stripes; |
| stripe_nr /= data_stripes; |
| if (mirror_num > 1) |
| stripe_index = data_stripes + mirror_num - 2; |
| |
| /* We distribute the parity blocks across stripes */ |
| stripe_index = (stripe_nr + stripe_index) % map->num_stripes; |
| if (op == BTRFS_MAP_READ && mirror_num <= 1) |
| mirror_num = 1; |
| } |
| } else { |
| /* |
| * After this, stripe_nr is the number of stripes on this |
| * device we have to walk to find the data, and stripe_index is |
| * the number of our device in the stripe array |
| */ |
| stripe_index = stripe_nr % map->num_stripes; |
| stripe_nr /= map->num_stripes; |
| mirror_num = stripe_index + 1; |
| } |
| if (stripe_index >= map->num_stripes) { |
| btrfs_crit(fs_info, |
| "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", |
| stripe_index, map->num_stripes); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| num_alloc_stripes = num_stripes; |
| if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && |
| op != BTRFS_MAP_READ) |
| /* |
| * For replace case, we need to add extra stripes for extra |
| * duplicated stripes. |
| * |
| * For both WRITE and GET_READ_MIRRORS, we may have at most |
| * 2 more stripes (DUP types, otherwise 1). |
| */ |
| num_alloc_stripes += 2; |
| |
| /* |
| * If this I/O maps to a single device, try to return the device and |
| * physical block information on the stack instead of allocating an |
| * I/O context structure. |
| */ |
| if (smap && num_alloc_stripes == 1 && |
| !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1)) { |
| set_io_stripe(smap, map, stripe_index, stripe_offset, stripe_nr); |
| if (mirror_num_ret) |
| *mirror_num_ret = mirror_num; |
| *bioc_ret = NULL; |
| ret = 0; |
| goto out; |
| } |
| |
| bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes); |
| if (!bioc) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| bioc->map_type = map->type; |
| |
| /* |
| * For RAID56 full map, we need to make sure the stripes[] follows the |
| * rule that data stripes are all ordered, then followed with P and Q |
| * (if we have). |
| * |
| * It's still mostly the same as other profiles, just with extra rotation. |
| */ |
| if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && |
| (op != BTRFS_MAP_READ || mirror_num > 1)) { |
| /* |
| * For RAID56 @stripe_nr is already the number of full stripes |
| * before us, which is also the rotation value (needs to modulo |
| * with num_stripes). |
| * |
| * In this case, we just add @stripe_nr with @i, then do the |
| * modulo, to reduce one modulo call. |
| */ |
| bioc->full_stripe_logical = em->start + |
| btrfs_stripe_nr_to_offset(stripe_nr * data_stripes); |
| for (i = 0; i < num_stripes; i++) |
| set_io_stripe(&bioc->stripes[i], map, |
| (i + stripe_nr) % num_stripes, |
| stripe_offset, stripe_nr); |
| } else { |
| /* |
| * For all other non-RAID56 profiles, just copy the target |
| * stripe into the bioc. |
| */ |
| for (i = 0; i < num_stripes; i++) { |
| set_io_stripe(&bioc->stripes[i], map, stripe_index, |
| stripe_offset, stripe_nr); |
| stripe_index++; |
| } |
| } |
| |
| if (op != BTRFS_MAP_READ) |
| max_errors = btrfs_chunk_max_errors(map); |
| |
| if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && |
| op != BTRFS_MAP_READ) { |
| handle_ops_on_dev_replace(op, bioc, dev_replace, logical, |
| &num_stripes, &max_errors); |
| } |
| |
| *bioc_ret = bioc; |
| bioc->num_stripes = num_stripes; |
| bioc->max_errors = max_errors; |
| bioc->mirror_num = mirror_num; |
| |
| out: |
| if (dev_replace_is_ongoing) { |
| lockdep_assert_held(&dev_replace->rwsem); |
| /* Unlock and let waiting writers proceed */ |
| up_read(&dev_replace->rwsem); |
| } |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, |
| const struct btrfs_fs_devices *fs_devices) |
| { |
| if (args->fsid == NULL) |
| return true; |
| if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) |
| return true; |
| return false; |
| } |
| |
| static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, |
| const struct btrfs_device *device) |
| { |
| if (args->missing) { |
| if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && |
| !device->bdev) |
| return true; |
| return false; |
| } |
| |
| if (device->devid != args->devid) |
| return false; |
| if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) |
| return false; |
| return true; |
| } |
| |
| /* |
| * Find a device specified by @devid or @uuid in the list of @fs_devices, or |
| * return NULL. |
| * |
| * If devid and uuid are both specified, the match must be exact, otherwise |
| * only devid is used. |
| */ |
| struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, |
| const struct btrfs_dev_lookup_args *args) |
| { |
| struct btrfs_device *device; |
| struct btrfs_fs_devices *seed_devs; |
| |
| if (dev_args_match_fs_devices(args, fs_devices)) { |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| if (dev_args_match_device(args, device)) |
| return device; |
| } |
| } |
| |
| list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { |
| if (!dev_args_match_fs_devices(args, seed_devs)) |
| continue; |
| list_for_each_entry(device, &seed_devs->devices, dev_list) { |
| if (dev_args_match_device(args, device)) |
| return device; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, |
| u64 devid, u8 *dev_uuid) |
| { |
| struct btrfs_device *device; |
| unsigned int nofs_flag; |
| |
| /* |
| * We call this under the chunk_mutex, so we want to use NOFS for this |
| * allocation, however we don't want to change btrfs_alloc_device() to |
| * always do NOFS because we use it in a lot of other GFP_KERNEL safe |
| * places. |
| */ |
| |
| nofs_flag = memalloc_nofs_save(); |
| device = btrfs_alloc_device(NULL, &devid, dev_uuid, NULL); |
| memalloc_nofs_restore(nofs_flag); |
| if (IS_ERR(device)) |
| return device; |
| |
| list_add(&device->dev_list, &fs_devices->devices); |
| device->fs_devices = fs_devices; |
| fs_devices->num_devices++; |
| |
| set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| fs_devices->missing_devices++; |
| |
| return device; |
| } |
| |
| /* |
| * Allocate new device struct, set up devid and UUID. |
| * |
| * @fs_info: used only for generating a new devid, can be NULL if |
| * devid is provided (i.e. @devid != NULL). |
| * @devid: a pointer to devid for this device. If NULL a new devid |
| * is generated. |
| * @uuid: a pointer to UUID for this device. If NULL a new UUID |
| * is generated. |
| * @path: a pointer to device path if available, NULL otherwise. |
| * |
| * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() |
| * on error. Returned struct is not linked onto any lists and must be |
| * destroyed with btrfs_free_device. |
| */ |
| struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, |
| const u64 *devid, const u8 *uuid, |
| const char *path) |
| { |
| struct btrfs_device *dev; |
| u64 tmp; |
| |
| if (WARN_ON(!devid && !fs_info)) |
| return ERR_PTR(-EINVAL); |
| |
| dev = kzalloc(sizeof(*dev), GFP_KERNEL); |
| if (!dev) |
| return ERR_PTR(-ENOMEM); |
| |
| INIT_LIST_HEAD(&dev->dev_list); |
| INIT_LIST_HEAD(&dev->dev_alloc_list); |
| INIT_LIST_HEAD(&dev->post_commit_list); |
| |
| atomic_set(&dev->dev_stats_ccnt, 0); |
| btrfs_device_data_ordered_init(dev); |
| extent_io_tree_init(fs_info, &dev->alloc_state, IO_TREE_DEVICE_ALLOC_STATE); |
| |
| if (devid) |
| tmp = *devid; |
| else { |
| int ret; |
| |
| ret = find_next_devid(fs_info, &tmp); |
| if (ret) { |
| btrfs_free_device(dev); |
| return ERR_PTR(ret); |
| } |
| } |
| dev->devid = tmp; |
| |
| if (uuid) |
| memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); |
| else |
| generate_random_uuid(dev->uuid); |
| |
| if (path) { |
| struct rcu_string *name; |
| |
| name = rcu_string_strdup(path, GFP_KERNEL); |
| if (!name) { |
| btrfs_free_device(dev); |
| return ERR_PTR(-ENOMEM); |
| } |
| rcu_assign_pointer(dev->name, name); |
| } |
| |
| return dev; |
| } |
| |
| static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, |
| u64 devid, u8 *uuid, bool error) |
| { |
| if (error) |
| btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", |
| devid, uuid); |
| else |
| btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", |
| devid, uuid); |
| } |
| |
| u64 btrfs_calc_stripe_length(const struct extent_map *em) |
| { |
| const struct map_lookup *map = em->map_lookup; |
| const int data_stripes = calc_data_stripes(map->type, map->num_stripes); |
| |
| return div_u64(em->len, data_stripes); |
| } |
| |
| #if BITS_PER_LONG == 32 |
| /* |
| * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE |
| * can't be accessed on 32bit systems. |
| * |
| * This function do mount time check to reject the fs if it already has |
| * metadata chunk beyond that limit. |
| */ |
| static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length, u64 type) |
| { |
| if (!(type & BTRFS_BLOCK_GROUP_METADATA)) |
| return 0; |
| |
| if (logical + length < MAX_LFS_FILESIZE) |
| return 0; |
| |
| btrfs_err_32bit_limit(fs_info); |
| return -EOVERFLOW; |
| } |
| |
| /* |
| * This is to give early warning for any metadata chunk reaching |
| * BTRFS_32BIT_EARLY_WARN_THRESHOLD. |
| * Although we can still access the metadata, it's not going to be possible |
| * once the limit is reached. |
| */ |
| static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, |
| u64 logical, u64 length, u64 type) |
| { |
| if (!(type & BTRFS_BLOCK_GROUP_METADATA)) |
| return; |
| |
| if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) |
| return; |
| |
| btrfs_warn_32bit_limit(fs_info); |
| } |
| #endif |
| |
| static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, |
| u64 devid, u8 *uuid) |
| { |
| struct btrfs_device *dev; |
| |
| if (!btrfs_test_opt(fs_info, DEGRADED)) { |
| btrfs_report_missing_device(fs_info, devid, uuid, true); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| dev = add_missing_dev(fs_info->fs_devices, devid, uuid); |
| if (IS_ERR(dev)) { |
| btrfs_err(fs_info, "failed to init missing device %llu: %ld", |
| devid, PTR_ERR(dev)); |
| return dev; |
| } |
| btrfs_report_missing_device(fs_info, devid, uuid, false); |
| |
| return dev; |
| } |
| |
| static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, |
| struct btrfs_chunk *chunk) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
| struct map_lookup *map; |
| struct extent_map *em; |
| u64 logical; |
| u64 length; |
| u64 devid; |
| u64 type; |
| u8 uuid[BTRFS_UUID_SIZE]; |
| int index; |
| int num_stripes; |
| int ret; |
| int i; |
| |
| logical = key->offset; |
| length = btrfs_chunk_length(leaf, chunk); |
| type = btrfs_chunk_type(leaf, chunk); |
| index = btrfs_bg_flags_to_raid_index(type); |
| num_stripes = btrfs_chunk_num_stripes(leaf, chunk); |
| |
| #if BITS_PER_LONG == 32 |
| ret = check_32bit_meta_chunk(fs_info, logical, length, type); |
| if (ret < 0) |
| return ret; |
| warn_32bit_meta_chunk(fs_info, logical, length, type); |
| #endif |
| |
| /* |
| * Only need to verify chunk item if we're reading from sys chunk array, |
| * as chunk item in tree block is already verified by tree-checker. |
| */ |
| if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { |
| ret = btrfs_check_chunk_valid(leaf, chunk, logical); |
| if (ret) |
| return ret; |
| } |
| |
| read_lock(&map_tree->lock); |
| em = lookup_extent_mapping(map_tree, logical, 1); |
| read_unlock(&map_tree->lock); |
| |
| /* already mapped? */ |
| if (em && em->start <= logical && em->start + em->len > logical) { |
| free_extent_map(em); |
| return 0; |
| } else if (em) { |
| free_extent_map(em); |
| } |
| |
| em = alloc_extent_map(); |
| if (!em) |
| return -ENOMEM; |
| map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); |
| if (!map) { |
| free_extent_map(em); |
| return -ENOMEM; |
| } |
| |
| set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); |
| em->map_lookup = map; |
| em->start = logical; |
| em->len = length; |
| em->orig_start = 0; |
| em->block_start = 0; |
| em->block_len = em->len; |
| |
| map->num_stripes = num_stripes; |
| map->io_width = btrfs_chunk_io_width(leaf, chunk); |
| map->io_align = btrfs_chunk_io_align(leaf, chunk); |
| map->type = type; |
| /* |
| * We can't use the sub_stripes value, as for profiles other than |
| * RAID10, they may have 0 as sub_stripes for filesystems created by |
| * older mkfs (<v5.4). |
| * In that case, it can cause divide-by-zero errors later. |
| * Since currently sub_stripes is fixed for each profile, let's |
| * use the trusted value instead. |
| */ |
| map->sub_stripes = btrfs_raid_array[index].sub_stripes; |
| map->verified_stripes = 0; |
| em->orig_block_len = btrfs_calc_stripe_length(em); |
| for (i = 0; i < num_stripes; i++) { |
| map->stripes[i].physical = |
| btrfs_stripe_offset_nr(leaf, chunk, i); |
| devid = btrfs_stripe_devid_nr(leaf, chunk, i); |
| args.devid = devid; |
| read_extent_buffer(leaf, uuid, (unsigned long) |
| btrfs_stripe_dev_uuid_nr(chunk, i), |
| BTRFS_UUID_SIZE); |
| args.uuid = uuid; |
| map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!map->stripes[i].dev) { |
| map->stripes[i].dev = handle_missing_device(fs_info, |
| devid, uuid); |
| if (IS_ERR(map->stripes[i].dev)) { |
| ret = PTR_ERR(map->stripes[i].dev); |
| free_extent_map(em); |
| return ret; |
| } |
| } |
| |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, |
| &(map->stripes[i].dev->dev_state)); |
| } |
| |
| write_lock(&map_tree->lock); |
| ret = add_extent_mapping(map_tree, em, 0); |
| write_unlock(&map_tree->lock); |
| if (ret < 0) { |
| btrfs_err(fs_info, |
| "failed to add chunk map, start=%llu len=%llu: %d", |
| em->start, em->len, ret); |
| } |
| free_extent_map(em); |
| |
| return ret; |
| } |
| |
| static void fill_device_from_item(struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item, |
| struct btrfs_device *device) |
| { |
| unsigned long ptr; |
| |
| device->devid = btrfs_device_id(leaf, dev_item); |
| device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); |
| device->total_bytes = device->disk_total_bytes; |
| device->commit_total_bytes = device->disk_total_bytes; |
| device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); |
| device->commit_bytes_used = device->bytes_used; |
| device->type = btrfs_device_type(leaf, dev_item); |
| device->io_align = btrfs_device_io_align(leaf, dev_item); |
| device->io_width = btrfs_device_io_width(leaf, dev_item); |
| device->sector_size = btrfs_device_sector_size(leaf, dev_item); |
| WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); |
| clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); |
| |
| ptr = btrfs_device_uuid(dev_item); |
| read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); |
| } |
| |
| static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, |
| u8 *fsid) |
| { |
| struct btrfs_fs_devices *fs_devices; |
| int ret; |
| |
| lockdep_assert_held(&uuid_mutex); |
| ASSERT(fsid); |
| |
| /* This will match only for multi-device seed fs */ |
| list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) |
| if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) |
| return fs_devices; |
| |
| |
| fs_devices = find_fsid(fsid, NULL); |
| if (!fs_devices) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) |
| return ERR_PTR(-ENOENT); |
| |
| fs_devices = alloc_fs_devices(fsid, NULL); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| fs_devices->seeding = true; |
| fs_devices->opened = 1; |
| return fs_devices; |
| } |
| |
| /* |
| * Upon first call for a seed fs fsid, just create a private copy of the |
| * respective fs_devices and anchor it at fs_info->fs_devices->seed_list |
| */ |
| fs_devices = clone_fs_devices(fs_devices); |
| if (IS_ERR(fs_devices)) |
| return fs_devices; |
| |
| ret = open_fs_devices(fs_devices, BLK_OPEN_READ, fs_info->bdev_holder); |
| if (ret) { |
| free_fs_devices(fs_devices); |
| return ERR_PTR(ret); |
| } |
| |
| if (!fs_devices->seeding) { |
| close_fs_devices(fs_devices); |
| free_fs_devices(fs_devices); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); |
| |
| return fs_devices; |
| } |
| |
| static int read_one_dev(struct extent_buffer *leaf, |
| struct btrfs_dev_item *dev_item) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_fs_info *fs_info = leaf->fs_info; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| u64 devid; |
| int ret; |
| u8 fs_uuid[BTRFS_FSID_SIZE]; |
| u8 dev_uuid[BTRFS_UUID_SIZE]; |
| |
| devid = btrfs_device_id(leaf, dev_item); |
| args.devid = devid; |
| read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), |
| BTRFS_UUID_SIZE); |
| read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), |
| BTRFS_FSID_SIZE); |
| args.uuid = dev_uuid; |
| args.fsid = fs_uuid; |
| |
| if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { |
| fs_devices = open_seed_devices(fs_info, fs_uuid); |
| if (IS_ERR(fs_devices)) |
| return PTR_ERR(fs_devices); |
| } |
| |
| device = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!device) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) { |
| btrfs_report_missing_device(fs_info, devid, |
| dev_uuid, true); |
| return -ENOENT; |
| } |
| |
| device = add_missing_dev(fs_devices, devid, dev_uuid); |
| if (IS_ERR(device)) { |
| btrfs_err(fs_info, |
| "failed to add missing dev %llu: %ld", |
| devid, PTR_ERR(device)); |
| return PTR_ERR(device); |
| } |
| btrfs_report_missing_device(fs_info, devid, dev_uuid, false); |
| } else { |
| if (!device->bdev) { |
| if (!btrfs_test_opt(fs_info, DEGRADED)) { |
| btrfs_report_missing_device(fs_info, |
| devid, dev_uuid, true); |
| return -ENOENT; |
| } |
| btrfs_report_missing_device(fs_info, devid, |
| dev_uuid, false); |
| } |
| |
| if (!device->bdev && |
| !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { |
| /* |
| * this happens when a device that was properly setup |
| * in the device info lists suddenly goes bad. |
| * device->bdev is NULL, and so we have to set |
| * device->missing to one here |
| */ |
| device->fs_devices->missing_devices++; |
| set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); |
| } |
| |
| /* Move the device to its own fs_devices */ |
| if (device->fs_devices != fs_devices) { |
| ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, |
| &device->dev_state)); |
| |
| list_move(&device->dev_list, &fs_devices->devices); |
| device->fs_devices->num_devices--; |
| fs_devices->num_devices++; |
| |
| device->fs_devices->missing_devices--; |
| fs_devices->missing_devices++; |
| |
| device->fs_devices = fs_devices; |
| } |
| } |
| |
| if (device->fs_devices != fs_info->fs_devices) { |
| BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); |
| if (device->generation != |
| btrfs_device_generation(leaf, dev_item)) |
| return -EINVAL; |
| } |
| |
| fill_device_from_item(leaf, dev_item, device); |
| if (device->bdev) { |
| u64 max_total_bytes = bdev_nr_bytes(device->bdev); |
| |
| if (device->total_bytes > max_total_bytes) { |
| btrfs_err(fs_info, |
| "device total_bytes should be at most %llu but found %llu", |
| max_total_bytes, device->total_bytes); |
| return -EINVAL; |
| } |
| } |
| set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); |
| if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && |
| !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { |
| device->fs_devices->total_rw_bytes += device->total_bytes; |
| atomic64_add(device->total_bytes - device->bytes_used, |
| &fs_info->free_chunk_space); |
| } |
| ret = 0; |
| return ret; |
| } |
| |
| int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_super_block *super_copy = fs_info->super_copy; |
| struct extent_buffer *sb; |
| struct btrfs_disk_key *disk_key; |
| struct btrfs_chunk *chunk; |
| u8 *array_ptr; |
| unsigned long sb_array_offset; |
| int ret = 0; |
| u32 num_stripes; |
| u32 array_size; |
| u32 len = 0; |
| u32 cur_offset; |
| u64 type; |
| struct btrfs_key key; |
| |
| ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); |
| |
| /* |
| * We allocated a dummy extent, just to use extent buffer accessors. |
| * There will be unused space after BTRFS_SUPER_INFO_SIZE, but |
| * that's fine, we will not go beyond system chunk array anyway. |
| */ |
| sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); |
| if (!sb) |
| return -ENOMEM; |
| set_extent_buffer_uptodate(sb); |
| |
| write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); |
| array_size = btrfs_super_sys_array_size(super_copy); |
| |
| array_ptr = super_copy->sys_chunk_array; |
| sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); |
| cur_offset = 0; |
| |
| while (cur_offset < array_size) { |
| disk_key = (struct btrfs_disk_key *)array_ptr; |
| len = sizeof(*disk_key); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| btrfs_disk_key_to_cpu(&key, disk_key); |
| |
| array_ptr += len; |
| sb_array_offset += len; |
| cur_offset += len; |
| |
| if (key.type != BTRFS_CHUNK_ITEM_KEY) { |
| btrfs_err(fs_info, |
| "unexpected item type %u in sys_array at offset %u", |
| (u32)key.type, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| |
| chunk = (struct btrfs_chunk *)sb_array_offset; |
| /* |
| * At least one btrfs_chunk with one stripe must be present, |
| * exact stripe count check comes afterwards |
| */ |
| len = btrfs_chunk_item_size(1); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| num_stripes = btrfs_chunk_num_stripes(sb, chunk); |
| if (!num_stripes) { |
| btrfs_err(fs_info, |
| "invalid number of stripes %u in sys_array at offset %u", |
| num_stripes, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| |
| type = btrfs_chunk_type(sb, chunk); |
| if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { |
| btrfs_err(fs_info, |
| "invalid chunk type %llu in sys_array at offset %u", |
| type, cur_offset); |
| ret = -EIO; |
| break; |
| } |
| |
| len = btrfs_chunk_item_size(num_stripes); |
| if (cur_offset + len > array_size) |
| goto out_short_read; |
| |
| ret = read_one_chunk(&key, sb, chunk); |
| if (ret) |
| break; |
| |
| array_ptr += len; |
| sb_array_offset += len; |
| cur_offset += len; |
| } |
| clear_extent_buffer_uptodate(sb); |
| free_extent_buffer_stale(sb); |
| return ret; |
| |
| out_short_read: |
| btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", |
| len, cur_offset); |
| clear_extent_buffer_uptodate(sb); |
| free_extent_buffer_stale(sb); |
| return -EIO; |
| } |
| |
| /* |
| * Check if all chunks in the fs are OK for read-write degraded mount |
| * |
| * If the @failing_dev is specified, it's accounted as missing. |
| * |
| * Return true if all chunks meet the minimal RW mount requirements. |
| * Return false if any chunk doesn't meet the minimal RW mount requirements. |
| */ |
| bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, |
| struct btrfs_device *failing_dev) |
| { |
| struct extent_map_tree *map_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| u64 next_start = 0; |
| bool ret = true; |
| |
| read_lock(&map_tree->lock); |
| em = lookup_extent_mapping(map_tree, 0, (u64)-1); |
| read_unlock(&map_tree->lock); |
| /* No chunk at all? Return false anyway */ |
| if (!em) { |
| ret = false; |
| goto out; |
| } |
| while (em) { |
| struct map_lookup *map; |
| int missing = 0; |
| int max_tolerated; |
| int i; |
| |
| map = em->map_lookup; |
| max_tolerated = |
| btrfs_get_num_tolerated_disk_barrier_failures( |
| map->type); |
| for (i = 0; i < map->num_stripes; i++) { |
| struct btrfs_device *dev = map->stripes[i].dev; |
| |
| if (!dev || !dev->bdev || |
| test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || |
| dev->last_flush_error) |
| missing++; |
| else if (failing_dev && failing_dev == dev) |
| missing++; |
| } |
| if (missing > max_tolerated) { |
| if (!failing_dev) |
| btrfs_warn(fs_info, |
| "chunk %llu missing %d devices, max tolerance is %d for writable mount", |
| em->start, missing, max_tolerated); |
| free_extent_map(em); |
| ret = false; |
| goto out; |
| } |
| next_start = extent_map_end(em); |
| free_extent_map(em); |
| |
| read_lock(&map_tree->lock); |
| em = lookup_extent_mapping(map_tree, next_start, |
| (u64)(-1) - next_start); |
| read_unlock(&map_tree->lock); |
| } |
| out: |
| return ret; |
| } |
| |
| static void readahead_tree_node_children(struct extent_buffer *node) |
| { |
| int i; |
| const int nr_items = btrfs_header_nritems(node); |
| |
| for (i = 0; i < nr_items; i++) |
| btrfs_readahead_node_child(node, i); |
| } |
| |
| int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root = fs_info->chunk_root; |
| struct btrfs_path *path; |
| struct extent_buffer *leaf; |
| struct btrfs_key key; |
| struct btrfs_key found_key; |
| int ret; |
| int slot; |
| int iter_ret = 0; |
| u64 total_dev = 0; |
| u64 last_ra_node = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| /* |
| * uuid_mutex is needed only if we are mounting a sprout FS |
| * otherwise we don't need it. |
| */ |
| mutex_lock(&uuid_mutex); |
| |
| /* |
| * It is possible for mount and umount to race in such a way that |
| * we execute this code path, but open_fs_devices failed to clear |
| * total_rw_bytes. We certainly want it cleared before reading the |
| * device items, so clear it here. |
| */ |
| fs_info->fs_devices->total_rw_bytes = 0; |
| |
| /* |
| * Lockdep complains about possible circular locking dependency between |
| * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores |
| * used for freeze procection of a fs (struct super_block.s_writers), |
| * which we take when starting a transaction, and extent buffers of the |
| * chunk tree if we call read_one_dev() while holding a lock on an |
| * extent buffer of the chunk tree. Since we are mounting the filesystem |
| * and at this point there can't be any concurrent task modifying the |
| * chunk tree, to keep it simple, just skip locking on the chunk tree. |
| */ |
| ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); |
| path->skip_locking = 1; |
| |
| /* |
| * Read all device items, and then all the chunk items. All |
| * device items are found before any chunk item (their object id |
| * is smaller than the lowest possible object id for a chunk |
| * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). |
| */ |
| key.objectid = BTRFS_DEV_ITEMS_OBJECTID; |
| key.offset = 0; |
| key.type = 0; |
| btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { |
| struct extent_buffer *node = path->nodes[1]; |
| |
| leaf = path->nodes[0]; |
| slot = path->slots[0]; |
| |
| if (node) { |
| if (last_ra_node != node->start) { |
| readahead_tree_node_children(node); |
| last_ra_node = node->start; |
| } |
| } |
| if (found_key.type == BTRFS_DEV_ITEM_KEY) { |
| struct btrfs_dev_item *dev_item; |
| dev_item = btrfs_item_ptr(leaf, slot, |
| struct btrfs_dev_item); |
| ret = read_one_dev(leaf, dev_item); |
| if (ret) |
| goto error; |
| total_dev++; |
| } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { |
| struct btrfs_chunk *chunk; |
| |
| /* |
| * We are only called at mount time, so no need to take |
| * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, |
| * we always lock first fs_info->chunk_mutex before |
| * acquiring any locks on the chunk tree. This is a |
| * requirement for chunk allocation, see the comment on |
| * top of btrfs_chunk_alloc() for details. |
| */ |
| chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); |
| ret = read_one_chunk(&found_key, leaf, chunk); |
| if (ret) |
| goto error; |
| } |
| } |
| /* Catch error found during iteration */ |
| if (iter_ret < 0) { |
| ret = iter_ret; |
| goto error; |
| } |
| |
| /* |
| * After loading chunk tree, we've got all device information, |
| * do another round of validation checks. |
| */ |
| if (total_dev != fs_info->fs_devices->total_devices) { |
| btrfs_warn(fs_info, |
| "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", |
| btrfs_super_num_devices(fs_info->super_copy), |
| total_dev); |
| fs_info->fs_devices->total_devices = total_dev; |
| btrfs_set_super_num_devices(fs_info->super_copy, total_dev); |
| } |
| if (btrfs_super_total_bytes(fs_info->super_copy) < |
| fs_info->fs_devices->total_rw_bytes) { |
| btrfs_err(fs_info, |
| "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", |
| btrfs_super_total_bytes(fs_info->super_copy), |
| fs_info->fs_devices->total_rw_bytes); |
| ret = -EINVAL; |
| goto error; |
| } |
| ret = 0; |
| error: |
| mutex_unlock(&uuid_mutex); |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; |
| struct btrfs_device *device; |
| int ret = 0; |
| |
| fs_devices->fs_info = fs_info; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) |
| device->fs_info = fs_info; |
| |
| list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { |
| list_for_each_entry(device, &seed_devs->devices, dev_list) { |
| device->fs_info = fs_info; |
| ret = btrfs_get_dev_zone_info(device, false); |
| if (ret) |
| break; |
| } |
| |
| seed_devs->fs_info = fs_info; |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| return ret; |
| } |
| |
| static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, |
| const struct btrfs_dev_stats_item *ptr, |
| int index) |
| { |
| u64 val; |
| |
| read_extent_buffer(eb, &val, |
| offsetof(struct btrfs_dev_stats_item, values) + |
| ((unsigned long)ptr) + (index * sizeof(u64)), |
| sizeof(val)); |
| return val; |
| } |
| |
| static void btrfs_set_dev_stats_value(struct extent_buffer *eb, |
| struct btrfs_dev_stats_item *ptr, |
| int index, u64 val) |
| { |
| write_extent_buffer(eb, &val, |
| offsetof(struct btrfs_dev_stats_item, values) + |
| ((unsigned long)ptr) + (index * sizeof(u64)), |
| sizeof(val)); |
| } |
| |
| static int btrfs_device_init_dev_stats(struct btrfs_device *device, |
| struct btrfs_path *path) |
| { |
| struct btrfs_dev_stats_item *ptr; |
| struct extent_buffer *eb; |
| struct btrfs_key key; |
| int item_size; |
| int i, ret, slot; |
| |
| if (!device->fs_info->dev_root) |
| return 0; |
| |
| key.objectid = BTRFS_DEV_STATS_OBJECTID; |
| key.type = BTRFS_PERSISTENT_ITEM_KEY; |
| key.offset = device->devid; |
| ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); |
| if (ret) { |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| btrfs_dev_stat_set(device, i, 0); |
| device->dev_stats_valid = 1; |
| btrfs_release_path(path); |
| return ret < 0 ? ret : 0; |
| } |
| slot = path->slots[0]; |
| eb = path->nodes[0]; |
| item_size = btrfs_item_size(eb, slot); |
| |
| ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); |
| |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { |
| if (item_size >= (1 + i) * sizeof(__le64)) |
| btrfs_dev_stat_set(device, i, |
| btrfs_dev_stats_value(eb, ptr, i)); |
| else |
| btrfs_dev_stat_set(device, i, 0); |
| } |
| |
| device->dev_stats_valid = 1; |
| btrfs_dev_stat_print_on_load(device); |
| btrfs_release_path(path); |
| |
| return 0; |
| } |
| |
| int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; |
| struct btrfs_device *device; |
| struct btrfs_path *path = NULL; |
| int ret = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| ret = btrfs_device_init_dev_stats(device, path); |
| if (ret) |
| goto out; |
| } |
| list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { |
| list_for_each_entry(device, &seed_devs->devices, dev_list) { |
| ret = btrfs_device_init_dev_stats(device, path); |
| if (ret) |
| goto out; |
| } |
| } |
| out: |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| static int update_dev_stat_item(struct btrfs_trans_handle *trans, |
| struct btrfs_device *device) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_root *dev_root = fs_info->dev_root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| struct extent_buffer *eb; |
| struct btrfs_dev_stats_item *ptr; |
| int ret; |
| int i; |
| |
| key.objectid = BTRFS_DEV_STATS_OBJECTID; |
| key.type = BTRFS_PERSISTENT_ITEM_KEY; |
| key.offset = device->devid; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); |
| if (ret < 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "error %d while searching for dev_stats item for device %s", |
| ret, btrfs_dev_name(device)); |
| goto out; |
| } |
| |
| if (ret == 0 && |
| btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { |
| /* need to delete old one and insert a new one */ |
| ret = btrfs_del_item(trans, dev_root, path); |
| if (ret != 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "delete too small dev_stats item for device %s failed %d", |
| btrfs_dev_name(device), ret); |
| goto out; |
| } |
| ret = 1; |
| } |
| |
| if (ret == 1) { |
| /* need to insert a new item */ |
| btrfs_release_path(path); |
| ret = btrfs_insert_empty_item(trans, dev_root, path, |
| &key, sizeof(*ptr)); |
| if (ret < 0) { |
| btrfs_warn_in_rcu(fs_info, |
| "insert dev_stats item for device %s failed %d", |
| btrfs_dev_name(device), ret); |
| goto out; |
| } |
| } |
| |
| eb = path->nodes[0]; |
| ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| btrfs_set_dev_stats_value(eb, ptr, i, |
| btrfs_dev_stat_read(device, i)); |
| btrfs_mark_buffer_dirty(eb); |
| |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * called from commit_transaction. Writes all changed device stats to disk. |
| */ |
| int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) |
| { |
| struct btrfs_fs_info *fs_info = trans->fs_info; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| struct btrfs_device *device; |
| int stats_cnt; |
| int ret = 0; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| list_for_each_entry(device, &fs_devices->devices, dev_list) { |
| stats_cnt = atomic_read(&device->dev_stats_ccnt); |
| if (!device->dev_stats_valid || stats_cnt == 0) |
| continue; |
| |
| |
| /* |
| * There is a LOAD-LOAD control dependency between the value of |
| * dev_stats_ccnt and updating the on-disk values which requires |
| * reading the in-memory counters. Such control dependencies |
| * require explicit read memory barriers. |
| * |
| * This memory barriers pairs with smp_mb__before_atomic in |
| * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full |
| * barrier implied by atomic_xchg in |
| * btrfs_dev_stats_read_and_reset |
| */ |
| smp_rmb(); |
| |
| ret = update_dev_stat_item(trans, device); |
| if (!ret) |
| atomic_sub(stats_cnt, &device->dev_stats_ccnt); |
| } |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| return ret; |
| } |
| |
| void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) |
| { |
| btrfs_dev_stat_inc(dev, index); |
| |
| if (!dev->dev_stats_valid) |
| return; |
| btrfs_err_rl_in_rcu(dev->fs_info, |
| "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", |
| btrfs_dev_name(dev), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); |
| } |
| |
| static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| if (btrfs_dev_stat_read(dev, i) != 0) |
| break; |
| if (i == BTRFS_DEV_STAT_VALUES_MAX) |
| return; /* all values == 0, suppress message */ |
| |
| btrfs_info_in_rcu(dev->fs_info, |
| "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", |
| btrfs_dev_name(dev), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), |
| btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); |
| } |
| |
| int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, |
| struct btrfs_ioctl_get_dev_stats *stats) |
| { |
| BTRFS_DEV_LOOKUP_ARGS(args); |
| struct btrfs_device *dev; |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| int i; |
| |
| mutex_lock(&fs_devices->device_list_mutex); |
| args.devid = stats->devid; |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| mutex_unlock(&fs_devices->device_list_mutex); |
| |
| if (!dev) { |
| btrfs_warn(fs_info, "get dev_stats failed, device not found"); |
| return -ENODEV; |
| } else if (!dev->dev_stats_valid) { |
| btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); |
| return -ENODEV; |
| } else if (stats->flags & BTRFS_DEV_STATS_RESET) { |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { |
| if (stats->nr_items > i) |
| stats->values[i] = |
| btrfs_dev_stat_read_and_reset(dev, i); |
| else |
| btrfs_dev_stat_set(dev, i, 0); |
| } |
| btrfs_info(fs_info, "device stats zeroed by %s (%d)", |
| current->comm, task_pid_nr(current)); |
| } else { |
| for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) |
| if (stats->nr_items > i) |
| stats->values[i] = btrfs_dev_stat_read(dev, i); |
| } |
| if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) |
| stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; |
| return 0; |
| } |
| |
| /* |
| * Update the size and bytes used for each device where it changed. This is |
| * delayed since we would otherwise get errors while writing out the |
| * superblocks. |
| * |
| * Must be invoked during transaction commit. |
| */ |
| void btrfs_commit_device_sizes(struct btrfs_transaction *trans) |
| { |
| struct btrfs_device *curr, *next; |
| |
| ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); |
| |
| if (list_empty(&trans->dev_update_list)) |
| return; |
| |
| /* |
| * We don't need the device_list_mutex here. This list is owned by the |
| * transaction and the transaction must complete before the device is |
| * released. |
| */ |
| mutex_lock(&trans->fs_info->chunk_mutex); |
| list_for_each_entry_safe(curr, next, &trans->dev_update_list, |
| post_commit_list) { |
| list_del_init(&curr->post_commit_list); |
| curr->commit_total_bytes = curr->disk_total_bytes; |
| curr->commit_bytes_used = curr->bytes_used; |
| } |
| mutex_unlock(&trans->fs_info->chunk_mutex); |
| } |
| |
| /* |
| * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. |
| */ |
| int btrfs_bg_type_to_factor(u64 flags) |
| { |
| const int index = btrfs_bg_flags_to_raid_index(flags); |
| |
| return btrfs_raid_array[index].ncopies; |
| } |
| |
| |
| |
| static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, |
| u64 chunk_offset, u64 devid, |
| u64 physical_offset, u64 physical_len) |
| { |
| struct btrfs_dev_lookup_args args = { .devid = devid }; |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| struct map_lookup *map; |
| struct btrfs_device *dev; |
| u64 stripe_len; |
| bool found = false; |
| int ret = 0; |
| int i; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, chunk_offset, 1); |
| read_unlock(&em_tree->lock); |
| |
| if (!em) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", |
| physical_offset, devid); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| map = em->map_lookup; |
| stripe_len = btrfs_calc_stripe_length(em); |
| if (physical_len != stripe_len) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", |
| physical_offset, devid, em->start, physical_len, |
| stripe_len); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| /* |
| * Very old mkfs.btrfs (before v4.1) will not respect the reserved |
| * space. Although kernel can handle it without problem, better to warn |
| * the users. |
| */ |
| if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) |
| btrfs_warn(fs_info, |
| "devid %llu physical %llu len %llu inside the reserved space", |
| devid, physical_offset, physical_len); |
| |
| for (i = 0; i < map->num_stripes; i++) { |
| if (map->stripes[i].dev->devid == devid && |
| map->stripes[i].physical == physical_offset) { |
| found = true; |
| if (map->verified_stripes >= map->num_stripes) { |
| btrfs_err(fs_info, |
| "too many dev extents for chunk %llu found", |
| em->start); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| map->verified_stripes++; |
| break; |
| } |
| } |
| if (!found) { |
| btrfs_err(fs_info, |
| "dev extent physical offset %llu devid %llu has no corresponding chunk", |
| physical_offset, devid); |
| ret = -EUCLEAN; |
| } |
| |
| /* Make sure no dev extent is beyond device boundary */ |
| dev = btrfs_find_device(fs_info->fs_devices, &args); |
| if (!dev) { |
| btrfs_err(fs_info, "failed to find devid %llu", devid); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| if (physical_offset + physical_len > dev->disk_total_bytes) { |
| btrfs_err(fs_info, |
| "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", |
| devid, physical_offset, physical_len, |
| dev->disk_total_bytes); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| if (dev->zone_info) { |
| u64 zone_size = dev->zone_info->zone_size; |
| |
| if (!IS_ALIGNED(physical_offset, zone_size) || |
| !IS_ALIGNED(physical_len, zone_size)) { |
| btrfs_err(fs_info, |
| "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", |
| devid, physical_offset, physical_len); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| |
| out: |
| free_extent_map(em); |
| return ret; |
| } |
| |
| static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) |
| { |
| struct extent_map_tree *em_tree = &fs_info->mapping_tree; |
| struct extent_map *em; |
| struct rb_node *node; |
| int ret = 0; |
| |
| read_lock(&em_tree->lock); |
| for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { |
| em = rb_entry(node, struct extent_map, rb_node); |
| if (em->map_lookup->num_stripes != |
| em->map_lookup->verified_stripes) { |
| btrfs_err(fs_info, |
| "chunk %llu has missing dev extent, have %d expect %d", |
| em->start, em->map_lookup->verified_stripes, |
| em->map_lookup->num_stripes); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| out: |
| read_unlock(&em_tree->lock); |
| return ret; |
| } |
| |
| /* |
| * Ensure that all dev extents are mapped to correct chunk, otherwise |
| * later chunk allocation/free would cause unexpected behavior. |
| * |
| * NOTE: This will iterate through the whole device tree, which should be of |
| * the same size level as the chunk tree. This slightly increases mount time. |
| */ |
| int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_path *path; |
| struct btrfs_root *root = fs_info->dev_root; |
| struct btrfs_key key; |
| u64 prev_devid = 0; |
| u64 prev_dev_ext_end = 0; |
| int ret = 0; |
| |
| /* |
| * We don't have a dev_root because we mounted with ignorebadroots and |
| * failed to load the root, so we want to skip the verification in this |
| * case for sure. |
| * |
| * However if the dev root is fine, but the tree itself is corrupted |
| * we'd still fail to mount. This verification is only to make sure |
| * writes can happen safely, so instead just bypass this check |
| * completely in the case of IGNOREBADROOTS. |
| */ |
| if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) |
| return 0; |
| |
| key.objectid = 1; |
| key.type = BTRFS_DEV_EXTENT_KEY; |
| key.offset = 0; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return -ENOMEM; |
| |
| path->reada = READA_FORWARD; |
| ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); |
| if (ret < 0) |
| goto out; |
| |
| if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { |
| ret = btrfs_next_leaf(root, path); |
| if (ret < 0) |
| goto out; |
| /* No dev extents at all? Not good */ |
| if (ret > 0) { |
| ret = -EUCLEAN; |
| goto out; |
| } |
| } |
| while (1) { |
| struct extent_buffer *leaf = path->nodes[0]; |
| struct btrfs_dev_extent *dext; |
| int slot = path->slots[0]; |
| u64 chunk_offset; |
| u64 physical_offset; |
| u64 physical_len; |
| u64 devid; |
| |
| btrfs_item_key_to_cpu(leaf, &key, slot); |
| if (key.type != BTRFS_DEV_EXTENT_KEY) |
| break; |
| devid = key.objectid; |
| physical_offset = key.offset; |
| |
| dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); |
| chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); |
| physical_len = btrfs_dev_extent_length(leaf, dext); |
| |
| /* Check if this dev extent overlaps with the previous one */ |
| if (devid == prev_devid && physical_offset < prev_dev_ext_end) { |
| btrfs_err(fs_info, |
| "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", |
| devid, physical_offset, prev_dev_ext_end); |
| ret = -EUCLEAN; |
| goto out; |
| } |
| |
| ret = verify_one_dev_extent(fs_info, chunk_offset, devid, |
| physical_offset, physical_len); |
| if (ret < 0) |
| goto out; |
| prev_devid = devid; |
| prev_dev_ext_end = physical_offset + physical_len; |
| |
| ret = btrfs_next_item(root, path); |
| if (ret < 0) |
| goto out; |
| if (ret > 0) { |
| ret = 0; |
| break; |
| } |
| } |
| |
| /* Ensure all chunks have corresponding dev extents */ |
| ret = verify_chunk_dev_extent_mapping(fs_info); |
| out: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * Check whether the given block group or device is pinned by any inode being |
| * used as a swapfile. |
| */ |
| bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) |
| { |
| struct btrfs_swapfile_pin *sp; |
| struct rb_node *node; |
| |
| spin_lock(&fs_info->swapfile_pins_lock); |
| node = fs_info->swapfile_pins.rb_node; |
| while (node) { |
| sp = rb_entry(node, struct btrfs_swapfile_pin, node); |
| if (ptr < sp->ptr) |
| node = node->rb_left; |
| else if (ptr > sp->ptr) |
| node = node->rb_right; |
| else |
| break; |
| } |
| spin_unlock(&fs_info->swapfile_pins_lock); |
| return node != NULL; |
| } |
| |
| static int relocating_repair_kthread(void *data) |
| { |
| struct btrfs_block_group *cache = data; |
| struct btrfs_fs_info *fs_info = cache->fs_info; |
| u64 target; |
| int ret = 0; |
| |
| target = cache->start; |
| btrfs_put_block_group(cache); |
| |
| sb_start_write(fs_info->sb); |
| if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { |
| btrfs_info(fs_info, |
| "zoned: skip relocating block group %llu to repair: EBUSY", |
| target); |
| sb_end_write(fs_info->sb); |
| return -EBUSY; |
| } |
| |
| mutex_lock(&fs_info->reclaim_bgs_lock); |
| |
| /* Ensure block group still exists */ |
| cache = btrfs_lookup_block_group(fs_info, target); |
| if (!cache) |
| goto out; |
| |
| if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) |
| goto out; |
| |
| ret = btrfs_may_alloc_data_chunk(fs_info, target); |
| if (ret < 0) |
| goto out; |
| |
| btrfs_info(fs_info, |
| "zoned: relocating block group %llu to repair IO failure", |
| target); |
| ret = btrfs_relocate_chunk(fs_info, target); |
| |
| out: |
| if (cache) |
| btrfs_put_block_group(cache); |
| mutex_unlock(&fs_info->reclaim_bgs_lock); |
| btrfs_exclop_finish(fs_info); |
| sb_end_write(fs_info->sb); |
| |
| return ret; |
| } |
| |
| bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) |
| { |
| struct btrfs_block_group *cache; |
| |
| if (!btrfs_is_zoned(fs_info)) |
| return false; |
| |
| /* Do not attempt to repair in degraded state */ |
| if (btrfs_test_opt(fs_info, DEGRADED)) |
| return true; |
| |
| cache = btrfs_lookup_block_group(fs_info, logical); |
| if (!cache) |
| return true; |
| |
| if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { |
| btrfs_put_block_group(cache); |
| return true; |
| } |
| |
| kthread_run(relocating_repair_kthread, cache, |
| "btrfs-relocating-repair"); |
| |
| return true; |
| } |
| |
| static void map_raid56_repair_block(struct btrfs_io_context *bioc, |
| struct btrfs_io_stripe *smap, |
| u64 logical) |
| { |
| int data_stripes = nr_bioc_data_stripes(bioc); |
| int i; |
| |
| for (i = 0; i < data_stripes; i++) { |
| u64 stripe_start = bioc->full_stripe_logical + |
| btrfs_stripe_nr_to_offset(i); |
| |
| if (logical >= stripe_start && |
| logical < stripe_start + BTRFS_STRIPE_LEN) |
| break; |
| } |
| ASSERT(i < data_stripes); |
| smap->dev = bioc->stripes[i].dev; |
| smap->physical = bioc->stripes[i].physical + |
| ((logical - bioc->full_stripe_logical) & |
| BTRFS_STRIPE_LEN_MASK); |
| } |
| |
| /* |
| * Map a repair write into a single device. |
| * |
| * A repair write is triggered by read time repair or scrub, which would only |
| * update the contents of a single device. |
| * Not update any other mirrors nor go through RMW path. |
| * |
| * Callers should ensure: |
| * |
| * - Call btrfs_bio_counter_inc_blocked() first |
| * - The range does not cross stripe boundary |
| * - Has a valid @mirror_num passed in. |
| */ |
| int btrfs_map_repair_block(struct btrfs_fs_info *fs_info, |
| struct btrfs_io_stripe *smap, u64 logical, |
| u32 length, int mirror_num) |
| { |
| struct btrfs_io_context *bioc = NULL; |
| u64 map_length = length; |
| int mirror_ret = mirror_num; |
| int ret; |
| |
| ASSERT(mirror_num > 0); |
| |
| ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical, &map_length, |
| &bioc, smap, &mirror_ret, true); |
| if (ret < 0) |
| return ret; |
| |
| /* The map range should not cross stripe boundary. */ |
| ASSERT(map_length >= length); |
| |
| /* Already mapped to single stripe. */ |
| if (!bioc) |
| goto out; |
| |
| /* Map the RAID56 multi-stripe writes to a single one. */ |
| if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { |
| map_raid56_repair_block(bioc, smap, logical); |
| goto out; |
| } |
| |
| ASSERT(mirror_num <= bioc->num_stripes); |
| smap->dev = bioc->stripes[mirror_num - 1].dev; |
| smap->physical = bioc->stripes[mirror_num - 1].physical; |
| out: |
| btrfs_put_bioc(bioc); |
| ASSERT(smap->dev); |
| return 0; |
| } |