| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs |
| * Copyright (C) 2013, 2021 Intel Corporation |
| */ |
| |
| #include <linux/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/bug.h> |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/dmaengine.h> |
| #include <linux/err.h> |
| #include <linux/gpio/consumer.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/math64.h> |
| #include <linux/minmax.h> |
| #include <linux/module.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/property.h> |
| #include <linux/slab.h> |
| #include <linux/types.h> |
| |
| #include <linux/spi/spi.h> |
| |
| #include "internals.h" |
| #include "spi-pxa2xx.h" |
| |
| #define TIMOUT_DFLT 1000 |
| |
| /* |
| * For testing SSCR1 changes that require SSP restart, basically |
| * everything except the service and interrupt enables, the PXA270 developer |
| * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this |
| * list, but the PXA255 developer manual says all bits without really meaning |
| * the service and interrupt enables. |
| */ |
| #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
| | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
| | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
| | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
| | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ |
| | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| |
| #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ |
| | QUARK_X1000_SSCR1_EFWR \ |
| | QUARK_X1000_SSCR1_RFT \ |
| | QUARK_X1000_SSCR1_TFT \ |
| | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| |
| #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ |
| | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ |
| | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ |
| | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ |
| | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ |
| | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) |
| |
| struct chip_data { |
| u32 cr1; |
| u32 dds_rate; |
| u32 threshold; |
| u16 lpss_rx_threshold; |
| u16 lpss_tx_threshold; |
| }; |
| |
| #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) |
| #define LPSS_CS_CONTROL_SW_MODE BIT(0) |
| #define LPSS_CS_CONTROL_CS_HIGH BIT(1) |
| #define LPSS_CAPS_CS_EN_SHIFT 9 |
| #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) |
| |
| #define LPSS_PRIV_CLOCK_GATE 0x38 |
| #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 |
| #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 |
| |
| struct lpss_config { |
| /* LPSS offset from drv_data->ioaddr */ |
| unsigned offset; |
| /* Register offsets from drv_data->lpss_base or -1 */ |
| int reg_general; |
| int reg_ssp; |
| int reg_cs_ctrl; |
| int reg_capabilities; |
| /* FIFO thresholds */ |
| u32 rx_threshold; |
| u32 tx_threshold_lo; |
| u32 tx_threshold_hi; |
| /* Chip select control */ |
| unsigned cs_sel_shift; |
| unsigned cs_sel_mask; |
| /* Quirks */ |
| unsigned cs_clk_stays_gated : 1; |
| }; |
| |
| /* Keep these sorted with enum pxa_ssp_type */ |
| static const struct lpss_config lpss_platforms[] = { |
| { /* LPSS_LPT_SSP */ |
| .offset = 0x800, |
| .reg_general = 0x08, |
| .reg_ssp = 0x0c, |
| .reg_cs_ctrl = 0x18, |
| .reg_capabilities = -1, |
| .rx_threshold = 64, |
| .tx_threshold_lo = 160, |
| .tx_threshold_hi = 224, |
| }, |
| { /* LPSS_BYT_SSP */ |
| .offset = 0x400, |
| .reg_general = 0x08, |
| .reg_ssp = 0x0c, |
| .reg_cs_ctrl = 0x18, |
| .reg_capabilities = -1, |
| .rx_threshold = 64, |
| .tx_threshold_lo = 160, |
| .tx_threshold_hi = 224, |
| }, |
| { /* LPSS_BSW_SSP */ |
| .offset = 0x400, |
| .reg_general = 0x08, |
| .reg_ssp = 0x0c, |
| .reg_cs_ctrl = 0x18, |
| .reg_capabilities = -1, |
| .rx_threshold = 64, |
| .tx_threshold_lo = 160, |
| .tx_threshold_hi = 224, |
| .cs_sel_shift = 2, |
| .cs_sel_mask = 1 << 2, |
| }, |
| { /* LPSS_SPT_SSP */ |
| .offset = 0x200, |
| .reg_general = -1, |
| .reg_ssp = 0x20, |
| .reg_cs_ctrl = 0x24, |
| .reg_capabilities = -1, |
| .rx_threshold = 1, |
| .tx_threshold_lo = 32, |
| .tx_threshold_hi = 56, |
| }, |
| { /* LPSS_BXT_SSP */ |
| .offset = 0x200, |
| .reg_general = -1, |
| .reg_ssp = 0x20, |
| .reg_cs_ctrl = 0x24, |
| .reg_capabilities = 0xfc, |
| .rx_threshold = 1, |
| .tx_threshold_lo = 16, |
| .tx_threshold_hi = 48, |
| .cs_sel_shift = 8, |
| .cs_sel_mask = 3 << 8, |
| .cs_clk_stays_gated = true, |
| }, |
| { /* LPSS_CNL_SSP */ |
| .offset = 0x200, |
| .reg_general = -1, |
| .reg_ssp = 0x20, |
| .reg_cs_ctrl = 0x24, |
| .reg_capabilities = 0xfc, |
| .rx_threshold = 1, |
| .tx_threshold_lo = 32, |
| .tx_threshold_hi = 56, |
| .cs_sel_shift = 8, |
| .cs_sel_mask = 3 << 8, |
| .cs_clk_stays_gated = true, |
| }, |
| }; |
| |
| static inline const struct lpss_config |
| *lpss_get_config(const struct driver_data *drv_data) |
| { |
| return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; |
| } |
| |
| static bool is_lpss_ssp(const struct driver_data *drv_data) |
| { |
| switch (drv_data->ssp_type) { |
| case LPSS_LPT_SSP: |
| case LPSS_BYT_SSP: |
| case LPSS_BSW_SSP: |
| case LPSS_SPT_SSP: |
| case LPSS_BXT_SSP: |
| case LPSS_CNL_SSP: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool is_quark_x1000_ssp(const struct driver_data *drv_data) |
| { |
| return drv_data->ssp_type == QUARK_X1000_SSP; |
| } |
| |
| static bool is_mmp2_ssp(const struct driver_data *drv_data) |
| { |
| return drv_data->ssp_type == MMP2_SSP; |
| } |
| |
| static bool is_mrfld_ssp(const struct driver_data *drv_data) |
| { |
| return drv_data->ssp_type == MRFLD_SSP; |
| } |
| |
| static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) |
| { |
| if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) |
| pxa2xx_spi_write(drv_data, reg, value & mask); |
| } |
| |
| static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) |
| { |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| return QUARK_X1000_SSCR1_CHANGE_MASK; |
| case CE4100_SSP: |
| return CE4100_SSCR1_CHANGE_MASK; |
| default: |
| return SSCR1_CHANGE_MASK; |
| } |
| } |
| |
| static u32 |
| pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) |
| { |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| return RX_THRESH_QUARK_X1000_DFLT; |
| case CE4100_SSP: |
| return RX_THRESH_CE4100_DFLT; |
| default: |
| return RX_THRESH_DFLT; |
| } |
| } |
| |
| static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) |
| { |
| u32 mask; |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| mask = QUARK_X1000_SSSR_TFL_MASK; |
| break; |
| case CE4100_SSP: |
| mask = CE4100_SSSR_TFL_MASK; |
| break; |
| default: |
| mask = SSSR_TFL_MASK; |
| break; |
| } |
| |
| return read_SSSR_bits(drv_data, mask) == mask; |
| } |
| |
| static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, |
| u32 *sccr1_reg) |
| { |
| u32 mask; |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| mask = QUARK_X1000_SSCR1_RFT; |
| break; |
| case CE4100_SSP: |
| mask = CE4100_SSCR1_RFT; |
| break; |
| default: |
| mask = SSCR1_RFT; |
| break; |
| } |
| *sccr1_reg &= ~mask; |
| } |
| |
| static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, |
| u32 *sccr1_reg, u32 threshold) |
| { |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); |
| break; |
| case CE4100_SSP: |
| *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); |
| break; |
| default: |
| *sccr1_reg |= SSCR1_RxTresh(threshold); |
| break; |
| } |
| } |
| |
| static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, |
| u32 clk_div, u8 bits) |
| { |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| return clk_div |
| | QUARK_X1000_SSCR0_Motorola |
| | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); |
| default: |
| return clk_div |
| | SSCR0_Motorola |
| | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) |
| | (bits > 16 ? SSCR0_EDSS : 0); |
| } |
| } |
| |
| /* |
| * Read and write LPSS SSP private registers. Caller must first check that |
| * is_lpss_ssp() returns true before these can be called. |
| */ |
| static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) |
| { |
| WARN_ON(!drv_data->lpss_base); |
| return readl(drv_data->lpss_base + offset); |
| } |
| |
| static void __lpss_ssp_write_priv(struct driver_data *drv_data, |
| unsigned offset, u32 value) |
| { |
| WARN_ON(!drv_data->lpss_base); |
| writel(value, drv_data->lpss_base + offset); |
| } |
| |
| /* |
| * lpss_ssp_setup - perform LPSS SSP specific setup |
| * @drv_data: pointer to the driver private data |
| * |
| * Perform LPSS SSP specific setup. This function must be called first if |
| * one is going to use LPSS SSP private registers. |
| */ |
| static void lpss_ssp_setup(struct driver_data *drv_data) |
| { |
| const struct lpss_config *config; |
| u32 value; |
| |
| config = lpss_get_config(drv_data); |
| drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; |
| |
| /* Enable software chip select control */ |
| value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); |
| value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); |
| value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; |
| __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); |
| |
| /* Enable multiblock DMA transfers */ |
| if (drv_data->controller_info->enable_dma) { |
| __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); |
| |
| if (config->reg_general >= 0) { |
| value = __lpss_ssp_read_priv(drv_data, |
| config->reg_general); |
| value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; |
| __lpss_ssp_write_priv(drv_data, |
| config->reg_general, value); |
| } |
| } |
| } |
| |
| static void lpss_ssp_select_cs(struct spi_device *spi, |
| const struct lpss_config *config) |
| { |
| struct driver_data *drv_data = |
| spi_controller_get_devdata(spi->controller); |
| u32 value, cs; |
| |
| if (!config->cs_sel_mask) |
| return; |
| |
| value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); |
| |
| cs = spi_get_chipselect(spi, 0); |
| cs <<= config->cs_sel_shift; |
| if (cs != (value & config->cs_sel_mask)) { |
| /* |
| * When switching another chip select output active the |
| * output must be selected first and wait 2 ssp_clk cycles |
| * before changing state to active. Otherwise a short |
| * glitch will occur on the previous chip select since |
| * output select is latched but state control is not. |
| */ |
| value &= ~config->cs_sel_mask; |
| value |= cs; |
| __lpss_ssp_write_priv(drv_data, |
| config->reg_cs_ctrl, value); |
| ndelay(1000000000 / |
| (drv_data->controller->max_speed_hz / 2)); |
| } |
| } |
| |
| static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) |
| { |
| struct driver_data *drv_data = |
| spi_controller_get_devdata(spi->controller); |
| const struct lpss_config *config; |
| u32 value; |
| |
| config = lpss_get_config(drv_data); |
| |
| if (enable) |
| lpss_ssp_select_cs(spi, config); |
| |
| value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); |
| if (enable) |
| value &= ~LPSS_CS_CONTROL_CS_HIGH; |
| else |
| value |= LPSS_CS_CONTROL_CS_HIGH; |
| __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); |
| if (config->cs_clk_stays_gated) { |
| u32 clkgate; |
| |
| /* |
| * Changing CS alone when dynamic clock gating is on won't |
| * actually flip CS at that time. This ruins SPI transfers |
| * that specify delays, or have no data. Toggle the clock mode |
| * to force on briefly to poke the CS pin to move. |
| */ |
| clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); |
| value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | |
| LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; |
| |
| __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); |
| __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); |
| } |
| } |
| |
| static void cs_assert(struct spi_device *spi) |
| { |
| struct driver_data *drv_data = |
| spi_controller_get_devdata(spi->controller); |
| |
| if (drv_data->ssp_type == CE4100_SSP) { |
| pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); |
| return; |
| } |
| |
| if (is_lpss_ssp(drv_data)) |
| lpss_ssp_cs_control(spi, true); |
| } |
| |
| static void cs_deassert(struct spi_device *spi) |
| { |
| struct driver_data *drv_data = |
| spi_controller_get_devdata(spi->controller); |
| unsigned long timeout; |
| |
| if (drv_data->ssp_type == CE4100_SSP) |
| return; |
| |
| /* Wait until SSP becomes idle before deasserting the CS */ |
| timeout = jiffies + msecs_to_jiffies(10); |
| while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && |
| !time_after(jiffies, timeout)) |
| cpu_relax(); |
| |
| if (is_lpss_ssp(drv_data)) |
| lpss_ssp_cs_control(spi, false); |
| } |
| |
| static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) |
| { |
| if (level) |
| cs_deassert(spi); |
| else |
| cs_assert(spi); |
| } |
| |
| int pxa2xx_spi_flush(struct driver_data *drv_data) |
| { |
| unsigned long limit = loops_per_jiffy << 1; |
| |
| do { |
| while (read_SSSR_bits(drv_data, SSSR_RNE)) |
| pxa2xx_spi_read(drv_data, SSDR); |
| } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); |
| write_SSSR_CS(drv_data, SSSR_ROR); |
| |
| return limit; |
| } |
| |
| static void pxa2xx_spi_off(struct driver_data *drv_data) |
| { |
| /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ |
| if (is_mmp2_ssp(drv_data)) |
| return; |
| |
| pxa_ssp_disable(drv_data->ssp); |
| } |
| |
| static int null_writer(struct driver_data *drv_data) |
| { |
| u8 n_bytes = drv_data->n_bytes; |
| |
| if (pxa2xx_spi_txfifo_full(drv_data) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| pxa2xx_spi_write(drv_data, SSDR, 0); |
| drv_data->tx += n_bytes; |
| |
| return 1; |
| } |
| |
| static int null_reader(struct driver_data *drv_data) |
| { |
| u8 n_bytes = drv_data->n_bytes; |
| |
| while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| pxa2xx_spi_read(drv_data, SSDR); |
| drv_data->rx += n_bytes; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u8_writer(struct driver_data *drv_data) |
| { |
| if (pxa2xx_spi_txfifo_full(drv_data) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); |
| ++drv_data->tx; |
| |
| return 1; |
| } |
| |
| static int u8_reader(struct driver_data *drv_data) |
| { |
| while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| ++drv_data->rx; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u16_writer(struct driver_data *drv_data) |
| { |
| if (pxa2xx_spi_txfifo_full(drv_data) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); |
| drv_data->tx += 2; |
| |
| return 1; |
| } |
| |
| static int u16_reader(struct driver_data *drv_data) |
| { |
| while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| drv_data->rx += 2; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static int u32_writer(struct driver_data *drv_data) |
| { |
| if (pxa2xx_spi_txfifo_full(drv_data) |
| || (drv_data->tx == drv_data->tx_end)) |
| return 0; |
| |
| pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); |
| drv_data->tx += 4; |
| |
| return 1; |
| } |
| |
| static int u32_reader(struct driver_data *drv_data) |
| { |
| while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { |
| *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); |
| drv_data->rx += 4; |
| } |
| |
| return drv_data->rx == drv_data->rx_end; |
| } |
| |
| static void reset_sccr1(struct driver_data *drv_data) |
| { |
| u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; |
| struct chip_data *chip; |
| |
| if (drv_data->controller->cur_msg) { |
| chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); |
| threshold = chip->threshold; |
| } else { |
| threshold = 0; |
| } |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| mask |= QUARK_X1000_SSCR1_RFT; |
| break; |
| case CE4100_SSP: |
| mask |= CE4100_SSCR1_RFT; |
| break; |
| default: |
| mask |= SSCR1_RFT; |
| break; |
| } |
| |
| pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); |
| } |
| |
| static void int_stop_and_reset(struct driver_data *drv_data) |
| { |
| /* Clear and disable interrupts */ |
| write_SSSR_CS(drv_data, drv_data->clear_sr); |
| reset_sccr1(drv_data); |
| if (pxa25x_ssp_comp(drv_data)) |
| return; |
| |
| pxa2xx_spi_write(drv_data, SSTO, 0); |
| } |
| |
| static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) |
| { |
| int_stop_and_reset(drv_data); |
| pxa2xx_spi_flush(drv_data); |
| pxa2xx_spi_off(drv_data); |
| |
| dev_err(drv_data->ssp->dev, "%s\n", msg); |
| |
| drv_data->controller->cur_msg->status = err; |
| spi_finalize_current_transfer(drv_data->controller); |
| } |
| |
| static void int_transfer_complete(struct driver_data *drv_data) |
| { |
| int_stop_and_reset(drv_data); |
| |
| spi_finalize_current_transfer(drv_data->controller); |
| } |
| |
| static irqreturn_t interrupt_transfer(struct driver_data *drv_data) |
| { |
| u32 irq_status; |
| |
| irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); |
| if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) |
| irq_status &= ~SSSR_TFS; |
| |
| if (irq_status & SSSR_ROR) { |
| int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); |
| return IRQ_HANDLED; |
| } |
| |
| if (irq_status & SSSR_TUR) { |
| int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); |
| return IRQ_HANDLED; |
| } |
| |
| if (irq_status & SSSR_TINT) { |
| pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| } |
| |
| /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ |
| do { |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| } while (drv_data->write(drv_data)); |
| |
| if (drv_data->read(drv_data)) { |
| int_transfer_complete(drv_data); |
| return IRQ_HANDLED; |
| } |
| |
| if (drv_data->tx == drv_data->tx_end) { |
| u32 bytes_left; |
| u32 sccr1_reg; |
| |
| sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); |
| sccr1_reg &= ~SSCR1_TIE; |
| |
| /* |
| * PXA25x_SSP has no timeout, set up Rx threshold for |
| * the remaining Rx bytes. |
| */ |
| if (pxa25x_ssp_comp(drv_data)) { |
| u32 rx_thre; |
| |
| pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); |
| |
| bytes_left = drv_data->rx_end - drv_data->rx; |
| switch (drv_data->n_bytes) { |
| case 4: |
| bytes_left >>= 2; |
| break; |
| case 2: |
| bytes_left >>= 1; |
| break; |
| } |
| |
| rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); |
| if (rx_thre > bytes_left) |
| rx_thre = bytes_left; |
| |
| pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); |
| } |
| pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); |
| } |
| |
| /* We did something */ |
| return IRQ_HANDLED; |
| } |
| |
| static void handle_bad_msg(struct driver_data *drv_data) |
| { |
| int_stop_and_reset(drv_data); |
| pxa2xx_spi_off(drv_data); |
| |
| dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); |
| } |
| |
| static irqreturn_t ssp_int(int irq, void *dev_id) |
| { |
| struct driver_data *drv_data = dev_id; |
| u32 sccr1_reg; |
| u32 mask = drv_data->mask_sr; |
| u32 status; |
| |
| /* |
| * The IRQ might be shared with other peripherals so we must first |
| * check that are we RPM suspended or not. If we are we assume that |
| * the IRQ was not for us (we shouldn't be RPM suspended when the |
| * interrupt is enabled). |
| */ |
| if (pm_runtime_suspended(drv_data->ssp->dev)) |
| return IRQ_NONE; |
| |
| /* |
| * If the device is not yet in RPM suspended state and we get an |
| * interrupt that is meant for another device, check if status bits |
| * are all set to one. That means that the device is already |
| * powered off. |
| */ |
| status = pxa2xx_spi_read(drv_data, SSSR); |
| if (status == ~0) |
| return IRQ_NONE; |
| |
| sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); |
| |
| /* Ignore possible writes if we don't need to write */ |
| if (!(sccr1_reg & SSCR1_TIE)) |
| mask &= ~SSSR_TFS; |
| |
| /* Ignore RX timeout interrupt if it is disabled */ |
| if (!(sccr1_reg & SSCR1_TINTE)) |
| mask &= ~SSSR_TINT; |
| |
| if (!(status & mask)) |
| return IRQ_NONE; |
| |
| pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); |
| pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); |
| |
| if (!drv_data->controller->cur_msg) { |
| handle_bad_msg(drv_data); |
| /* Never fail */ |
| return IRQ_HANDLED; |
| } |
| |
| return drv_data->transfer_handler(drv_data); |
| } |
| |
| /* |
| * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply |
| * input frequency by fractions of 2^24. It also has a divider by 5. |
| * |
| * There are formulas to get baud rate value for given input frequency and |
| * divider parameters, such as DDS_CLK_RATE and SCR: |
| * |
| * Fsys = 200MHz |
| * |
| * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) |
| * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) |
| * |
| * DDS_CLK_RATE either 2^n or 2^n / 5. |
| * SCR is in range 0 .. 255 |
| * |
| * Divisor = 5^i * 2^j * 2 * k |
| * i = [0, 1] i = 1 iff j = 0 or j > 3 |
| * j = [0, 23] j = 0 iff i = 1 |
| * k = [1, 256] |
| * Special case: j = 0, i = 1: Divisor = 2 / 5 |
| * |
| * Accordingly to the specification the recommended values for DDS_CLK_RATE |
| * are: |
| * Case 1: 2^n, n = [0, 23] |
| * Case 2: 2^24 * 2 / 5 (0x666666) |
| * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) |
| * |
| * In all cases the lowest possible value is better. |
| * |
| * The function calculates parameters for all cases and chooses the one closest |
| * to the asked baud rate. |
| */ |
| static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) |
| { |
| unsigned long xtal = 200000000; |
| unsigned long fref = xtal / 2; /* mandatory division by 2, |
| see (2) */ |
| /* case 3 */ |
| unsigned long fref1 = fref / 2; /* case 1 */ |
| unsigned long fref2 = fref * 2 / 5; /* case 2 */ |
| unsigned long scale; |
| unsigned long q, q1, q2; |
| long r, r1, r2; |
| u32 mul; |
| |
| /* Case 1 */ |
| |
| /* Set initial value for DDS_CLK_RATE */ |
| mul = (1 << 24) >> 1; |
| |
| /* Calculate initial quot */ |
| q1 = DIV_ROUND_UP(fref1, rate); |
| |
| /* Scale q1 if it's too big */ |
| if (q1 > 256) { |
| /* Scale q1 to range [1, 512] */ |
| scale = fls_long(q1 - 1); |
| if (scale > 9) { |
| q1 >>= scale - 9; |
| mul >>= scale - 9; |
| } |
| |
| /* Round the result if we have a remainder */ |
| q1 += q1 & 1; |
| } |
| |
| /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ |
| scale = __ffs(q1); |
| q1 >>= scale; |
| mul >>= scale; |
| |
| /* Get the remainder */ |
| r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); |
| |
| /* Case 2 */ |
| |
| q2 = DIV_ROUND_UP(fref2, rate); |
| r2 = abs(fref2 / q2 - rate); |
| |
| /* |
| * Choose the best between two: less remainder we have the better. We |
| * can't go case 2 if q2 is greater than 256 since SCR register can |
| * hold only values 0 .. 255. |
| */ |
| if (r2 >= r1 || q2 > 256) { |
| /* case 1 is better */ |
| r = r1; |
| q = q1; |
| } else { |
| /* case 2 is better */ |
| r = r2; |
| q = q2; |
| mul = (1 << 24) * 2 / 5; |
| } |
| |
| /* Check case 3 only if the divisor is big enough */ |
| if (fref / rate >= 80) { |
| u64 fssp; |
| u32 m; |
| |
| /* Calculate initial quot */ |
| q1 = DIV_ROUND_UP(fref, rate); |
| m = (1 << 24) / q1; |
| |
| /* Get the remainder */ |
| fssp = (u64)fref * m; |
| do_div(fssp, 1 << 24); |
| r1 = abs(fssp - rate); |
| |
| /* Choose this one if it suits better */ |
| if (r1 < r) { |
| /* case 3 is better */ |
| q = 1; |
| mul = m; |
| } |
| } |
| |
| *dds = mul; |
| return q - 1; |
| } |
| |
| static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) |
| { |
| unsigned long ssp_clk = drv_data->controller->max_speed_hz; |
| const struct ssp_device *ssp = drv_data->ssp; |
| |
| rate = min_t(int, ssp_clk, rate); |
| |
| /* |
| * Calculate the divisor for the SCR (Serial Clock Rate), avoiding |
| * that the SSP transmission rate can be greater than the device rate. |
| */ |
| if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) |
| return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; |
| else |
| return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; |
| } |
| |
| static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, |
| int rate) |
| { |
| struct chip_data *chip = |
| spi_get_ctldata(drv_data->controller->cur_msg->spi); |
| unsigned int clk_div; |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); |
| break; |
| default: |
| clk_div = ssp_get_clk_div(drv_data, rate); |
| break; |
| } |
| return clk_div << 8; |
| } |
| |
| static bool pxa2xx_spi_can_dma(struct spi_controller *controller, |
| struct spi_device *spi, |
| struct spi_transfer *xfer) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| |
| return drv_data->controller_info->enable_dma && |
| xfer->len <= MAX_DMA_LEN && |
| xfer->len >= drv_data->controller_info->dma_burst_size; |
| } |
| |
| static int pxa2xx_spi_transfer_one(struct spi_controller *controller, |
| struct spi_device *spi, |
| struct spi_transfer *transfer) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| struct chip_data *chip = spi_get_ctldata(spi); |
| u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); |
| u32 dma_thresh; |
| u32 clk_div; |
| u8 bits; |
| u32 speed; |
| u32 cr0; |
| u32 cr1; |
| int err; |
| int dma_mapped; |
| |
| /* Check if we can DMA this transfer */ |
| if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) { |
| /* Warn ... we force this to PIO mode */ |
| dev_warn_ratelimited(&spi->dev, |
| "DMA disabled for transfer length %u greater than %d\n", |
| transfer->len, MAX_DMA_LEN); |
| } |
| |
| /* Setup the transfer state based on the type of transfer */ |
| if (pxa2xx_spi_flush(drv_data) == 0) { |
| dev_err(&spi->dev, "Flush failed\n"); |
| return -EIO; |
| } |
| drv_data->tx = (void *)transfer->tx_buf; |
| drv_data->tx_end = drv_data->tx + transfer->len; |
| drv_data->rx = transfer->rx_buf; |
| drv_data->rx_end = drv_data->rx + transfer->len; |
| |
| /* Change speed and bit per word on a per transfer */ |
| bits = transfer->bits_per_word; |
| speed = transfer->speed_hz; |
| |
| clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); |
| |
| if (bits <= 8) { |
| drv_data->n_bytes = 1; |
| drv_data->read = drv_data->rx ? u8_reader : null_reader; |
| drv_data->write = drv_data->tx ? u8_writer : null_writer; |
| } else if (bits <= 16) { |
| drv_data->n_bytes = 2; |
| drv_data->read = drv_data->rx ? u16_reader : null_reader; |
| drv_data->write = drv_data->tx ? u16_writer : null_writer; |
| } else if (bits <= 32) { |
| drv_data->n_bytes = 4; |
| drv_data->read = drv_data->rx ? u32_reader : null_reader; |
| drv_data->write = drv_data->tx ? u32_writer : null_writer; |
| } |
| |
| dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); |
| dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer); |
| if (dma_mapped) { |
| /* Ensure we have the correct interrupt handler */ |
| drv_data->transfer_handler = pxa2xx_spi_dma_transfer; |
| |
| err = pxa2xx_spi_dma_prepare(drv_data, transfer); |
| if (err) |
| return err; |
| |
| /* Clear status and start DMA engine */ |
| cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; |
| pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); |
| |
| pxa2xx_spi_dma_start(drv_data); |
| } else { |
| /* Ensure we have the correct interrupt handler */ |
| drv_data->transfer_handler = interrupt_transfer; |
| |
| /* Clear status */ |
| cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; |
| write_SSSR_CS(drv_data, drv_data->clear_sr); |
| } |
| |
| /* NOTE: PXA25x_SSP _could_ use external clocking ... */ |
| cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); |
| if (!pxa25x_ssp_comp(drv_data)) |
| dev_dbg(&spi->dev, "%u Hz actual, %s\n", |
| controller->max_speed_hz |
| / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), |
| dma_mapped ? "DMA" : "PIO"); |
| else |
| dev_dbg(&spi->dev, "%u Hz actual, %s\n", |
| controller->max_speed_hz / 2 |
| / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), |
| dma_mapped ? "DMA" : "PIO"); |
| |
| if (is_lpss_ssp(drv_data)) { |
| pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); |
| pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); |
| } |
| |
| if (is_mrfld_ssp(drv_data)) { |
| u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; |
| u32 thresh = 0; |
| |
| thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); |
| thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); |
| |
| pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); |
| } |
| |
| if (is_quark_x1000_ssp(drv_data)) |
| pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); |
| |
| /* Stop the SSP */ |
| if (!is_mmp2_ssp(drv_data)) |
| pxa_ssp_disable(drv_data->ssp); |
| |
| if (!pxa25x_ssp_comp(drv_data)) |
| pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT); |
| |
| /* First set CR1 without interrupt and service enables */ |
| pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); |
| |
| /* See if we need to reload the configuration registers */ |
| pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); |
| |
| /* Restart the SSP */ |
| pxa_ssp_enable(drv_data->ssp); |
| |
| if (is_mmp2_ssp(drv_data)) { |
| u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; |
| |
| if (tx_level) { |
| /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ |
| dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); |
| if (tx_level > transfer->len) |
| tx_level = transfer->len; |
| drv_data->tx += tx_level; |
| } |
| } |
| |
| if (spi_controller_is_target(controller)) { |
| while (drv_data->write(drv_data)) |
| ; |
| if (drv_data->gpiod_ready) { |
| gpiod_set_value(drv_data->gpiod_ready, 1); |
| udelay(1); |
| gpiod_set_value(drv_data->gpiod_ready, 0); |
| } |
| } |
| |
| /* |
| * Release the data by enabling service requests and interrupts, |
| * without changing any mode bits. |
| */ |
| pxa2xx_spi_write(drv_data, SSCR1, cr1); |
| |
| return 1; |
| } |
| |
| static int pxa2xx_spi_target_abort(struct spi_controller *controller) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| |
| int_error_stop(drv_data, "transfer aborted", -EINTR); |
| |
| return 0; |
| } |
| |
| static void pxa2xx_spi_handle_err(struct spi_controller *controller, |
| struct spi_message *msg) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| |
| int_stop_and_reset(drv_data); |
| |
| /* Disable the SSP */ |
| pxa2xx_spi_off(drv_data); |
| |
| /* |
| * Stop the DMA if running. Note DMA callback handler may have unset |
| * the dma_running already, which is fine as stopping is not needed |
| * then but we shouldn't rely this flag for anything else than |
| * stopping. For instance to differentiate between PIO and DMA |
| * transfers. |
| */ |
| if (atomic_read(&drv_data->dma_running)) |
| pxa2xx_spi_dma_stop(drv_data); |
| } |
| |
| static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| |
| /* Disable the SSP now */ |
| pxa2xx_spi_off(drv_data); |
| |
| return 0; |
| } |
| |
| static int setup(struct spi_device *spi) |
| { |
| struct chip_data *chip; |
| const struct lpss_config *config; |
| struct driver_data *drv_data = |
| spi_controller_get_devdata(spi->controller); |
| uint tx_thres, tx_hi_thres, rx_thres; |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| tx_thres = TX_THRESH_QUARK_X1000_DFLT; |
| tx_hi_thres = 0; |
| rx_thres = RX_THRESH_QUARK_X1000_DFLT; |
| break; |
| case MRFLD_SSP: |
| tx_thres = TX_THRESH_MRFLD_DFLT; |
| tx_hi_thres = 0; |
| rx_thres = RX_THRESH_MRFLD_DFLT; |
| break; |
| case CE4100_SSP: |
| tx_thres = TX_THRESH_CE4100_DFLT; |
| tx_hi_thres = 0; |
| rx_thres = RX_THRESH_CE4100_DFLT; |
| break; |
| case LPSS_LPT_SSP: |
| case LPSS_BYT_SSP: |
| case LPSS_BSW_SSP: |
| case LPSS_SPT_SSP: |
| case LPSS_BXT_SSP: |
| case LPSS_CNL_SSP: |
| config = lpss_get_config(drv_data); |
| tx_thres = config->tx_threshold_lo; |
| tx_hi_thres = config->tx_threshold_hi; |
| rx_thres = config->rx_threshold; |
| break; |
| default: |
| tx_hi_thres = 0; |
| if (spi_controller_is_target(drv_data->controller)) { |
| tx_thres = 1; |
| rx_thres = 2; |
| } else { |
| tx_thres = TX_THRESH_DFLT; |
| rx_thres = RX_THRESH_DFLT; |
| } |
| break; |
| } |
| |
| if (drv_data->ssp_type == CE4100_SSP) { |
| if (spi_get_chipselect(spi, 0) > 4) { |
| dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n"); |
| return -EINVAL; |
| } |
| } |
| |
| /* Only allocate on the first setup */ |
| chip = spi_get_ctldata(spi); |
| if (!chip) { |
| chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); |
| if (!chip) |
| return -ENOMEM; |
| } |
| |
| chip->cr1 = 0; |
| if (spi_controller_is_target(drv_data->controller)) { |
| chip->cr1 |= SSCR1_SCFR; |
| chip->cr1 |= SSCR1_SCLKDIR; |
| chip->cr1 |= SSCR1_SFRMDIR; |
| chip->cr1 |= SSCR1_SPH; |
| } |
| |
| if (is_lpss_ssp(drv_data)) { |
| chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); |
| chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | |
| SSITF_TxHiThresh(tx_hi_thres); |
| } |
| |
| if (is_mrfld_ssp(drv_data)) { |
| chip->lpss_rx_threshold = rx_thres; |
| chip->lpss_tx_threshold = tx_thres; |
| } |
| |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) |
| & QUARK_X1000_SSCR1_RFT) |
| | (QUARK_X1000_SSCR1_TxTresh(tx_thres) |
| & QUARK_X1000_SSCR1_TFT); |
| break; |
| case CE4100_SSP: |
| chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | |
| (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); |
| break; |
| default: |
| chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | |
| (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); |
| break; |
| } |
| |
| chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); |
| chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | |
| ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); |
| |
| if (spi->mode & SPI_LOOP) |
| chip->cr1 |= SSCR1_LBM; |
| |
| spi_set_ctldata(spi, chip); |
| |
| return 0; |
| } |
| |
| static void cleanup(struct spi_device *spi) |
| { |
| struct chip_data *chip = spi_get_ctldata(spi); |
| |
| kfree(chip); |
| } |
| |
| static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, |
| unsigned int cs) |
| { |
| struct driver_data *drv_data = spi_controller_get_devdata(controller); |
| |
| switch (drv_data->ssp_type) { |
| /* |
| * For some of Intel Atoms the ACPI DeviceSelection used by the Windows |
| * driver starts from 1 instead of 0 so translate it here to match what |
| * Linux expects. |
| */ |
| case LPSS_BYT_SSP: |
| case LPSS_BSW_SSP: |
| return cs - 1; |
| |
| default: |
| return cs; |
| } |
| } |
| |
| static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) |
| { |
| return MAX_DMA_LEN; |
| } |
| |
| int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp) |
| { |
| struct pxa2xx_spi_controller *platform_info; |
| struct spi_controller *controller; |
| struct driver_data *drv_data; |
| const struct lpss_config *config; |
| int status; |
| u32 tmp; |
| |
| platform_info = dev_get_platdata(dev); |
| if (platform_info->is_target) |
| controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); |
| else |
| controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); |
| if (!controller) |
| return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n"); |
| |
| drv_data = spi_controller_get_devdata(controller); |
| drv_data->controller = controller; |
| drv_data->controller_info = platform_info; |
| drv_data->ssp = ssp; |
| |
| device_set_node(&controller->dev, dev_fwnode(dev)); |
| |
| /* The spi->mode bits understood by this driver: */ |
| controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; |
| |
| controller->bus_num = ssp->port_id; |
| controller->dma_alignment = DMA_ALIGNMENT; |
| controller->cleanup = cleanup; |
| controller->setup = setup; |
| controller->set_cs = pxa2xx_spi_set_cs; |
| controller->transfer_one = pxa2xx_spi_transfer_one; |
| controller->target_abort = pxa2xx_spi_target_abort; |
| controller->handle_err = pxa2xx_spi_handle_err; |
| controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; |
| controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; |
| controller->auto_runtime_pm = true; |
| controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; |
| |
| drv_data->ssp_type = ssp->type; |
| |
| if (pxa25x_ssp_comp(drv_data)) { |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| break; |
| default: |
| controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); |
| break; |
| } |
| |
| drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; |
| drv_data->dma_cr1 = 0; |
| drv_data->clear_sr = SSSR_ROR; |
| drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; |
| } else { |
| controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; |
| drv_data->dma_cr1 = DEFAULT_DMA_CR1; |
| drv_data->clear_sr = SSSR_ROR | SSSR_TINT; |
| drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS |
| | SSSR_ROR | SSSR_TUR; |
| } |
| |
| status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), |
| drv_data); |
| if (status < 0) |
| return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq); |
| |
| /* Setup DMA if requested */ |
| if (platform_info->enable_dma) { |
| status = pxa2xx_spi_dma_setup(drv_data); |
| if (status) { |
| dev_warn(dev, "no DMA channels available, using PIO\n"); |
| platform_info->enable_dma = false; |
| } else { |
| controller->can_dma = pxa2xx_spi_can_dma; |
| controller->max_dma_len = MAX_DMA_LEN; |
| controller->max_transfer_size = |
| pxa2xx_spi_max_dma_transfer_size; |
| |
| dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size); |
| } |
| } |
| |
| /* Enable SOC clock */ |
| status = clk_prepare_enable(ssp->clk); |
| if (status) |
| goto out_error_dma_irq_alloc; |
| |
| controller->max_speed_hz = clk_get_rate(ssp->clk); |
| /* |
| * Set minimum speed for all other platforms than Intel Quark which is |
| * able do under 1 Hz transfers. |
| */ |
| if (!pxa25x_ssp_comp(drv_data)) |
| controller->min_speed_hz = |
| DIV_ROUND_UP(controller->max_speed_hz, 4096); |
| else if (!is_quark_x1000_ssp(drv_data)) |
| controller->min_speed_hz = |
| DIV_ROUND_UP(controller->max_speed_hz, 512); |
| |
| pxa_ssp_disable(ssp); |
| |
| /* Load default SSP configuration */ |
| switch (drv_data->ssp_type) { |
| case QUARK_X1000_SSP: |
| tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | |
| QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); |
| pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| |
| /* Using the Motorola SPI protocol and use 8 bit frame */ |
| tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); |
| pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| break; |
| case CE4100_SSP: |
| tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | |
| CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); |
| pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); |
| pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| break; |
| default: |
| |
| if (spi_controller_is_target(controller)) { |
| tmp = SSCR1_SCFR | |
| SSCR1_SCLKDIR | |
| SSCR1_SFRMDIR | |
| SSCR1_RxTresh(2) | |
| SSCR1_TxTresh(1) | |
| SSCR1_SPH; |
| } else { |
| tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | |
| SSCR1_TxTresh(TX_THRESH_DFLT); |
| } |
| pxa2xx_spi_write(drv_data, SSCR1, tmp); |
| tmp = SSCR0_Motorola | SSCR0_DataSize(8); |
| if (!spi_controller_is_target(controller)) |
| tmp |= SSCR0_SCR(2); |
| pxa2xx_spi_write(drv_data, SSCR0, tmp); |
| break; |
| } |
| |
| if (!pxa25x_ssp_comp(drv_data)) |
| pxa2xx_spi_write(drv_data, SSTO, 0); |
| |
| if (!is_quark_x1000_ssp(drv_data)) |
| pxa2xx_spi_write(drv_data, SSPSP, 0); |
| |
| if (is_lpss_ssp(drv_data)) { |
| lpss_ssp_setup(drv_data); |
| config = lpss_get_config(drv_data); |
| if (config->reg_capabilities >= 0) { |
| tmp = __lpss_ssp_read_priv(drv_data, |
| config->reg_capabilities); |
| tmp &= LPSS_CAPS_CS_EN_MASK; |
| tmp >>= LPSS_CAPS_CS_EN_SHIFT; |
| platform_info->num_chipselect = ffz(tmp); |
| } |
| } |
| controller->num_chipselect = platform_info->num_chipselect; |
| controller->use_gpio_descriptors = true; |
| |
| if (platform_info->is_target) { |
| drv_data->gpiod_ready = devm_gpiod_get_optional(dev, |
| "ready", GPIOD_OUT_LOW); |
| if (IS_ERR(drv_data->gpiod_ready)) { |
| status = PTR_ERR(drv_data->gpiod_ready); |
| goto out_error_clock_enabled; |
| } |
| } |
| |
| pm_runtime_set_autosuspend_delay(dev, 50); |
| pm_runtime_use_autosuspend(dev); |
| pm_runtime_set_active(dev); |
| pm_runtime_enable(dev); |
| |
| /* Register with the SPI framework */ |
| dev_set_drvdata(dev, drv_data); |
| status = spi_register_controller(controller); |
| if (status) { |
| dev_err_probe(dev, status, "problem registering SPI controller\n"); |
| goto out_error_pm_runtime_enabled; |
| } |
| |
| return status; |
| |
| out_error_pm_runtime_enabled: |
| pm_runtime_disable(dev); |
| |
| out_error_clock_enabled: |
| clk_disable_unprepare(ssp->clk); |
| |
| out_error_dma_irq_alloc: |
| pxa2xx_spi_dma_release(drv_data); |
| free_irq(ssp->irq, drv_data); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx); |
| |
| void pxa2xx_spi_remove(struct device *dev) |
| { |
| struct driver_data *drv_data = dev_get_drvdata(dev); |
| struct ssp_device *ssp = drv_data->ssp; |
| |
| pm_runtime_get_sync(dev); |
| |
| spi_unregister_controller(drv_data->controller); |
| |
| /* Disable the SSP at the peripheral and SOC level */ |
| pxa_ssp_disable(ssp); |
| clk_disable_unprepare(ssp->clk); |
| |
| /* Release DMA */ |
| if (drv_data->controller_info->enable_dma) |
| pxa2xx_spi_dma_release(drv_data); |
| |
| pm_runtime_put_noidle(dev); |
| pm_runtime_disable(dev); |
| |
| /* Release IRQ */ |
| free_irq(ssp->irq, drv_data); |
| } |
| EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx); |
| |
| static int pxa2xx_spi_suspend(struct device *dev) |
| { |
| struct driver_data *drv_data = dev_get_drvdata(dev); |
| struct ssp_device *ssp = drv_data->ssp; |
| int status; |
| |
| status = spi_controller_suspend(drv_data->controller); |
| if (status) |
| return status; |
| |
| pxa_ssp_disable(ssp); |
| |
| if (!pm_runtime_suspended(dev)) |
| clk_disable_unprepare(ssp->clk); |
| |
| return 0; |
| } |
| |
| static int pxa2xx_spi_resume(struct device *dev) |
| { |
| struct driver_data *drv_data = dev_get_drvdata(dev); |
| struct ssp_device *ssp = drv_data->ssp; |
| int status; |
| |
| /* Enable the SSP clock */ |
| if (!pm_runtime_suspended(dev)) { |
| status = clk_prepare_enable(ssp->clk); |
| if (status) |
| return status; |
| } |
| |
| /* Start the queue running */ |
| return spi_controller_resume(drv_data->controller); |
| } |
| |
| static int pxa2xx_spi_runtime_suspend(struct device *dev) |
| { |
| struct driver_data *drv_data = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(drv_data->ssp->clk); |
| return 0; |
| } |
| |
| static int pxa2xx_spi_runtime_resume(struct device *dev) |
| { |
| struct driver_data *drv_data = dev_get_drvdata(dev); |
| |
| return clk_prepare_enable(drv_data->ssp->clk); |
| } |
| |
| EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = { |
| SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) |
| RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) |
| }; |
| |
| MODULE_AUTHOR("Stephen Street"); |
| MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver"); |
| MODULE_LICENSE("GPL"); |