| /* SPDX-License-Identifier: GPL-2.0-only */ |
| |
| #ifndef WW_RT |
| |
| #define MUTEX mutex |
| #define MUTEX_WAITER mutex_waiter |
| |
| static inline struct mutex_waiter * |
| __ww_waiter_first(struct mutex *lock) |
| { |
| struct mutex_waiter *w; |
| |
| w = list_first_entry(&lock->wait_list, struct mutex_waiter, list); |
| if (list_entry_is_head(w, &lock->wait_list, list)) |
| return NULL; |
| |
| return w; |
| } |
| |
| static inline struct mutex_waiter * |
| __ww_waiter_next(struct mutex *lock, struct mutex_waiter *w) |
| { |
| w = list_next_entry(w, list); |
| if (list_entry_is_head(w, &lock->wait_list, list)) |
| return NULL; |
| |
| return w; |
| } |
| |
| static inline struct mutex_waiter * |
| __ww_waiter_prev(struct mutex *lock, struct mutex_waiter *w) |
| { |
| w = list_prev_entry(w, list); |
| if (list_entry_is_head(w, &lock->wait_list, list)) |
| return NULL; |
| |
| return w; |
| } |
| |
| static inline struct mutex_waiter * |
| __ww_waiter_last(struct mutex *lock) |
| { |
| struct mutex_waiter *w; |
| |
| w = list_last_entry(&lock->wait_list, struct mutex_waiter, list); |
| if (list_entry_is_head(w, &lock->wait_list, list)) |
| return NULL; |
| |
| return w; |
| } |
| |
| static inline void |
| __ww_waiter_add(struct mutex *lock, struct mutex_waiter *waiter, struct mutex_waiter *pos) |
| { |
| struct list_head *p = &lock->wait_list; |
| if (pos) |
| p = &pos->list; |
| __mutex_add_waiter(lock, waiter, p); |
| } |
| |
| static inline struct task_struct * |
| __ww_mutex_owner(struct mutex *lock) |
| { |
| return __mutex_owner(lock); |
| } |
| |
| static inline bool |
| __ww_mutex_has_waiters(struct mutex *lock) |
| { |
| return atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS; |
| } |
| |
| static inline void lock_wait_lock(struct mutex *lock) |
| { |
| raw_spin_lock(&lock->wait_lock); |
| } |
| |
| static inline void unlock_wait_lock(struct mutex *lock) |
| { |
| raw_spin_unlock(&lock->wait_lock); |
| } |
| |
| static inline void lockdep_assert_wait_lock_held(struct mutex *lock) |
| { |
| lockdep_assert_held(&lock->wait_lock); |
| } |
| |
| #else /* WW_RT */ |
| |
| #define MUTEX rt_mutex |
| #define MUTEX_WAITER rt_mutex_waiter |
| |
| static inline struct rt_mutex_waiter * |
| __ww_waiter_first(struct rt_mutex *lock) |
| { |
| struct rb_node *n = rb_first(&lock->rtmutex.waiters.rb_root); |
| if (!n) |
| return NULL; |
| return rb_entry(n, struct rt_mutex_waiter, tree.entry); |
| } |
| |
| static inline struct rt_mutex_waiter * |
| __ww_waiter_next(struct rt_mutex *lock, struct rt_mutex_waiter *w) |
| { |
| struct rb_node *n = rb_next(&w->tree.entry); |
| if (!n) |
| return NULL; |
| return rb_entry(n, struct rt_mutex_waiter, tree.entry); |
| } |
| |
| static inline struct rt_mutex_waiter * |
| __ww_waiter_prev(struct rt_mutex *lock, struct rt_mutex_waiter *w) |
| { |
| struct rb_node *n = rb_prev(&w->tree.entry); |
| if (!n) |
| return NULL; |
| return rb_entry(n, struct rt_mutex_waiter, tree.entry); |
| } |
| |
| static inline struct rt_mutex_waiter * |
| __ww_waiter_last(struct rt_mutex *lock) |
| { |
| struct rb_node *n = rb_last(&lock->rtmutex.waiters.rb_root); |
| if (!n) |
| return NULL; |
| return rb_entry(n, struct rt_mutex_waiter, tree.entry); |
| } |
| |
| static inline void |
| __ww_waiter_add(struct rt_mutex *lock, struct rt_mutex_waiter *waiter, struct rt_mutex_waiter *pos) |
| { |
| /* RT unconditionally adds the waiter first and then removes it on error */ |
| } |
| |
| static inline struct task_struct * |
| __ww_mutex_owner(struct rt_mutex *lock) |
| { |
| return rt_mutex_owner(&lock->rtmutex); |
| } |
| |
| static inline bool |
| __ww_mutex_has_waiters(struct rt_mutex *lock) |
| { |
| return rt_mutex_has_waiters(&lock->rtmutex); |
| } |
| |
| static inline void lock_wait_lock(struct rt_mutex *lock) |
| { |
| raw_spin_lock(&lock->rtmutex.wait_lock); |
| } |
| |
| static inline void unlock_wait_lock(struct rt_mutex *lock) |
| { |
| raw_spin_unlock(&lock->rtmutex.wait_lock); |
| } |
| |
| static inline void lockdep_assert_wait_lock_held(struct rt_mutex *lock) |
| { |
| lockdep_assert_held(&lock->rtmutex.wait_lock); |
| } |
| |
| #endif /* WW_RT */ |
| |
| /* |
| * Wait-Die: |
| * The newer transactions are killed when: |
| * It (the new transaction) makes a request for a lock being held |
| * by an older transaction. |
| * |
| * Wound-Wait: |
| * The newer transactions are wounded when: |
| * An older transaction makes a request for a lock being held by |
| * the newer transaction. |
| */ |
| |
| /* |
| * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired |
| * it. |
| */ |
| static __always_inline void |
| ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) |
| { |
| #ifdef DEBUG_WW_MUTEXES |
| /* |
| * If this WARN_ON triggers, you used ww_mutex_lock to acquire, |
| * but released with a normal mutex_unlock in this call. |
| * |
| * This should never happen, always use ww_mutex_unlock. |
| */ |
| DEBUG_LOCKS_WARN_ON(ww->ctx); |
| |
| /* |
| * Not quite done after calling ww_acquire_done() ? |
| */ |
| DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); |
| |
| if (ww_ctx->contending_lock) { |
| /* |
| * After -EDEADLK you tried to |
| * acquire a different ww_mutex? Bad! |
| */ |
| DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); |
| |
| /* |
| * You called ww_mutex_lock after receiving -EDEADLK, |
| * but 'forgot' to unlock everything else first? |
| */ |
| DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); |
| ww_ctx->contending_lock = NULL; |
| } |
| |
| /* |
| * Naughty, using a different class will lead to undefined behavior! |
| */ |
| DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); |
| #endif |
| ww_ctx->acquired++; |
| ww->ctx = ww_ctx; |
| } |
| |
| /* |
| * Determine if @a is 'less' than @b. IOW, either @a is a lower priority task |
| * or, when of equal priority, a younger transaction than @b. |
| * |
| * Depending on the algorithm, @a will either need to wait for @b, or die. |
| */ |
| static inline bool |
| __ww_ctx_less(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) |
| { |
| /* |
| * Can only do the RT prio for WW_RT, because task->prio isn't stable due to PI, |
| * so the wait_list ordering will go wobbly. rt_mutex re-queues the waiter and |
| * isn't affected by this. |
| */ |
| #ifdef WW_RT |
| /* kernel prio; less is more */ |
| int a_prio = a->task->prio; |
| int b_prio = b->task->prio; |
| |
| if (rt_prio(a_prio) || rt_prio(b_prio)) { |
| |
| if (a_prio > b_prio) |
| return true; |
| |
| if (a_prio < b_prio) |
| return false; |
| |
| /* equal static prio */ |
| |
| if (dl_prio(a_prio)) { |
| if (dl_time_before(b->task->dl.deadline, |
| a->task->dl.deadline)) |
| return true; |
| |
| if (dl_time_before(a->task->dl.deadline, |
| b->task->dl.deadline)) |
| return false; |
| } |
| |
| /* equal prio */ |
| } |
| #endif |
| |
| /* FIFO order tie break -- bigger is younger */ |
| return (signed long)(a->stamp - b->stamp) > 0; |
| } |
| |
| /* |
| * Wait-Die; wake a lesser waiter context (when locks held) such that it can |
| * die. |
| * |
| * Among waiters with context, only the first one can have other locks acquired |
| * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and |
| * __ww_mutex_check_kill() wake any but the earliest context. |
| */ |
| static bool |
| __ww_mutex_die(struct MUTEX *lock, struct MUTEX_WAITER *waiter, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| if (!ww_ctx->is_wait_die) |
| return false; |
| |
| if (waiter->ww_ctx->acquired > 0 && __ww_ctx_less(waiter->ww_ctx, ww_ctx)) { |
| #ifndef WW_RT |
| debug_mutex_wake_waiter(lock, waiter); |
| #endif |
| wake_up_process(waiter->task); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Wound-Wait; wound a lesser @hold_ctx if it holds the lock. |
| * |
| * Wound the lock holder if there are waiters with more important transactions |
| * than the lock holders. Even if multiple waiters may wound the lock holder, |
| * it's sufficient that only one does. |
| */ |
| static bool __ww_mutex_wound(struct MUTEX *lock, |
| struct ww_acquire_ctx *ww_ctx, |
| struct ww_acquire_ctx *hold_ctx) |
| { |
| struct task_struct *owner = __ww_mutex_owner(lock); |
| |
| lockdep_assert_wait_lock_held(lock); |
| |
| /* |
| * Possible through __ww_mutex_add_waiter() when we race with |
| * ww_mutex_set_context_fastpath(). In that case we'll get here again |
| * through __ww_mutex_check_waiters(). |
| */ |
| if (!hold_ctx) |
| return false; |
| |
| /* |
| * Can have !owner because of __mutex_unlock_slowpath(), but if owner, |
| * it cannot go away because we'll have FLAG_WAITERS set and hold |
| * wait_lock. |
| */ |
| if (!owner) |
| return false; |
| |
| if (ww_ctx->acquired > 0 && __ww_ctx_less(hold_ctx, ww_ctx)) { |
| hold_ctx->wounded = 1; |
| |
| /* |
| * wake_up_process() paired with set_current_state() |
| * inserts sufficient barriers to make sure @owner either sees |
| * it's wounded in __ww_mutex_check_kill() or has a |
| * wakeup pending to re-read the wounded state. |
| */ |
| if (owner != current) |
| wake_up_process(owner); |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * We just acquired @lock under @ww_ctx, if there are more important contexts |
| * waiting behind us on the wait-list, check if they need to die, or wound us. |
| * |
| * See __ww_mutex_add_waiter() for the list-order construction; basically the |
| * list is ordered by stamp, smallest (oldest) first. |
| * |
| * This relies on never mixing wait-die/wound-wait on the same wait-list; |
| * which is currently ensured by that being a ww_class property. |
| * |
| * The current task must not be on the wait list. |
| */ |
| static void |
| __ww_mutex_check_waiters(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx) |
| { |
| struct MUTEX_WAITER *cur; |
| |
| lockdep_assert_wait_lock_held(lock); |
| |
| for (cur = __ww_waiter_first(lock); cur; |
| cur = __ww_waiter_next(lock, cur)) { |
| |
| if (!cur->ww_ctx) |
| continue; |
| |
| if (__ww_mutex_die(lock, cur, ww_ctx) || |
| __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx)) |
| break; |
| } |
| } |
| |
| /* |
| * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx |
| * and wake up any waiters so they can recheck. |
| */ |
| static __always_inline void |
| ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) |
| { |
| ww_mutex_lock_acquired(lock, ctx); |
| |
| /* |
| * The lock->ctx update should be visible on all cores before |
| * the WAITERS check is done, otherwise contended waiters might be |
| * missed. The contended waiters will either see ww_ctx == NULL |
| * and keep spinning, or it will acquire wait_lock, add itself |
| * to waiter list and sleep. |
| */ |
| smp_mb(); /* See comments above and below. */ |
| |
| /* |
| * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS |
| * MB MB |
| * [R] MUTEX_FLAG_WAITERS [R] ww->ctx |
| * |
| * The memory barrier above pairs with the memory barrier in |
| * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx |
| * and/or !empty list. |
| */ |
| if (likely(!__ww_mutex_has_waiters(&lock->base))) |
| return; |
| |
| /* |
| * Uh oh, we raced in fastpath, check if any of the waiters need to |
| * die or wound us. |
| */ |
| lock_wait_lock(&lock->base); |
| __ww_mutex_check_waiters(&lock->base, ctx); |
| unlock_wait_lock(&lock->base); |
| } |
| |
| static __always_inline int |
| __ww_mutex_kill(struct MUTEX *lock, struct ww_acquire_ctx *ww_ctx) |
| { |
| if (ww_ctx->acquired > 0) { |
| #ifdef DEBUG_WW_MUTEXES |
| struct ww_mutex *ww; |
| |
| ww = container_of(lock, struct ww_mutex, base); |
| DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); |
| ww_ctx->contending_lock = ww; |
| #endif |
| return -EDEADLK; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check the wound condition for the current lock acquire. |
| * |
| * Wound-Wait: If we're wounded, kill ourself. |
| * |
| * Wait-Die: If we're trying to acquire a lock already held by an older |
| * context, kill ourselves. |
| * |
| * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to |
| * look at waiters before us in the wait-list. |
| */ |
| static inline int |
| __ww_mutex_check_kill(struct MUTEX *lock, struct MUTEX_WAITER *waiter, |
| struct ww_acquire_ctx *ctx) |
| { |
| struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); |
| struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); |
| struct MUTEX_WAITER *cur; |
| |
| if (ctx->acquired == 0) |
| return 0; |
| |
| if (!ctx->is_wait_die) { |
| if (ctx->wounded) |
| return __ww_mutex_kill(lock, ctx); |
| |
| return 0; |
| } |
| |
| if (hold_ctx && __ww_ctx_less(ctx, hold_ctx)) |
| return __ww_mutex_kill(lock, ctx); |
| |
| /* |
| * If there is a waiter in front of us that has a context, then its |
| * stamp is earlier than ours and we must kill ourself. |
| */ |
| for (cur = __ww_waiter_prev(lock, waiter); cur; |
| cur = __ww_waiter_prev(lock, cur)) { |
| |
| if (!cur->ww_ctx) |
| continue; |
| |
| return __ww_mutex_kill(lock, ctx); |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest |
| * first. Such that older contexts are preferred to acquire the lock over |
| * younger contexts. |
| * |
| * Waiters without context are interspersed in FIFO order. |
| * |
| * Furthermore, for Wait-Die kill ourself immediately when possible (there are |
| * older contexts already waiting) to avoid unnecessary waiting and for |
| * Wound-Wait ensure we wound the owning context when it is younger. |
| */ |
| static inline int |
| __ww_mutex_add_waiter(struct MUTEX_WAITER *waiter, |
| struct MUTEX *lock, |
| struct ww_acquire_ctx *ww_ctx) |
| { |
| struct MUTEX_WAITER *cur, *pos = NULL; |
| bool is_wait_die; |
| |
| if (!ww_ctx) { |
| __ww_waiter_add(lock, waiter, NULL); |
| return 0; |
| } |
| |
| is_wait_die = ww_ctx->is_wait_die; |
| |
| /* |
| * Add the waiter before the first waiter with a higher stamp. |
| * Waiters without a context are skipped to avoid starving |
| * them. Wait-Die waiters may die here. Wound-Wait waiters |
| * never die here, but they are sorted in stamp order and |
| * may wound the lock holder. |
| */ |
| for (cur = __ww_waiter_last(lock); cur; |
| cur = __ww_waiter_prev(lock, cur)) { |
| |
| if (!cur->ww_ctx) |
| continue; |
| |
| if (__ww_ctx_less(ww_ctx, cur->ww_ctx)) { |
| /* |
| * Wait-Die: if we find an older context waiting, there |
| * is no point in queueing behind it, as we'd have to |
| * die the moment it would acquire the lock. |
| */ |
| if (is_wait_die) { |
| int ret = __ww_mutex_kill(lock, ww_ctx); |
| |
| if (ret) |
| return ret; |
| } |
| |
| break; |
| } |
| |
| pos = cur; |
| |
| /* Wait-Die: ensure younger waiters die. */ |
| __ww_mutex_die(lock, cur, ww_ctx); |
| } |
| |
| __ww_waiter_add(lock, waiter, pos); |
| |
| /* |
| * Wound-Wait: if we're blocking on a mutex owned by a younger context, |
| * wound that such that we might proceed. |
| */ |
| if (!is_wait_die) { |
| struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); |
| |
| /* |
| * See ww_mutex_set_context_fastpath(). Orders setting |
| * MUTEX_FLAG_WAITERS vs the ww->ctx load, |
| * such that either we or the fastpath will wound @ww->ctx. |
| */ |
| smp_mb(); |
| __ww_mutex_wound(lock, ww_ctx, ww->ctx); |
| } |
| |
| return 0; |
| } |
| |
| static inline void __ww_mutex_unlock(struct ww_mutex *lock) |
| { |
| if (lock->ctx) { |
| #ifdef DEBUG_WW_MUTEXES |
| DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); |
| #endif |
| if (lock->ctx->acquired > 0) |
| lock->ctx->acquired--; |
| lock->ctx = NULL; |
| } |
| } |