blob: b425cd3da6829c669e63dfafee4f622c13791a0b [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_governor.c
*
* CPUFREQ governors common code
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/slab.h>
#include "cpufreq_governor.h"
DEFINE_MUTEX(dbs_data_mutex);
EXPORT_SYMBOL_GPL(dbs_data_mutex);
static struct attribute_group *get_sysfs_attr(struct dbs_governor *gov)
{
return have_governor_per_policy() ?
gov->attr_group_gov_pol : gov->attr_group_gov_sys;
}
void dbs_check_cpu(struct cpufreq_policy *policy, int cpu)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
struct dbs_data *dbs_data = policy->governor_data;
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int sampling_rate;
unsigned int max_load = 0;
unsigned int ignore_nice;
unsigned int j;
if (gov->governor == GOV_ONDEMAND) {
struct od_cpu_dbs_info_s *od_dbs_info =
gov->get_cpu_dbs_info_s(cpu);
/*
* Sometimes, the ondemand governor uses an additional
* multiplier to give long delays. So apply this multiplier to
* the 'sampling_rate', so as to keep the wake-up-from-idle
* detection logic a bit conservative.
*/
sampling_rate = od_tuners->sampling_rate;
sampling_rate *= od_dbs_info->rate_mult;
ignore_nice = od_tuners->ignore_nice_load;
} else {
sampling_rate = cs_tuners->sampling_rate;
ignore_nice = cs_tuners->ignore_nice_load;
}
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs;
u64 cur_wall_time, cur_idle_time;
unsigned int idle_time, wall_time;
unsigned int load;
int io_busy = 0;
j_cdbs = gov->get_cpu_cdbs(j);
/*
* For the purpose of ondemand, waiting for disk IO is
* an indication that you're performance critical, and
* not that the system is actually idle. So do not add
* the iowait time to the cpu idle time.
*/
if (gov->governor == GOV_ONDEMAND)
io_busy = od_tuners->io_is_busy;
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
wall_time = (unsigned int)
(cur_wall_time - j_cdbs->prev_cpu_wall);
j_cdbs->prev_cpu_wall = cur_wall_time;
if (cur_idle_time < j_cdbs->prev_cpu_idle)
cur_idle_time = j_cdbs->prev_cpu_idle;
idle_time = (unsigned int)
(cur_idle_time - j_cdbs->prev_cpu_idle);
j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
cdbs->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
cdbs->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
if (unlikely(!wall_time || wall_time < idle_time))
continue;
/*
* If the CPU had gone completely idle, and a task just woke up
* on this CPU now, it would be unfair to calculate 'load' the
* usual way for this elapsed time-window, because it will show
* near-zero load, irrespective of how CPU intensive that task
* actually is. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, we reuse the 'load' from the previous
* time-window and give this task a chance to start with a
* reasonably high CPU frequency. (However, we shouldn't over-do
* this copy, lest we get stuck at a high load (high frequency)
* for too long, even when the current system load has actually
* dropped down. So we perform the copy only once, upon the
* first wake-up from idle.)
*
* Detecting this situation is easy: the governor's utilization
* update handler would not have run during CPU-idle periods.
* Hence, an unusually large 'wall_time' (as compared to the
* sampling rate) indicates this scenario.
*
* prev_load can be zero in two cases and we must recalculate it
* for both cases:
* - during long idle intervals
* - explicitly set to zero
*/
if (unlikely(wall_time > (2 * sampling_rate) &&
j_cdbs->prev_load)) {
load = j_cdbs->prev_load;
/*
* Perform a destructive copy, to ensure that we copy
* the previous load only once, upon the first wake-up
* from idle.
*/
j_cdbs->prev_load = 0;
} else {
load = 100 * (wall_time - idle_time) / wall_time;
j_cdbs->prev_load = load;
}
if (load > max_load)
max_load = load;
}
gov->gov_check_cpu(cpu, max_load);
}
EXPORT_SYMBOL_GPL(dbs_check_cpu);
void gov_set_update_util(struct policy_dbs_info *policy_dbs,
unsigned int delay_us)
{
struct cpufreq_policy *policy = policy_dbs->policy;
struct dbs_governor *gov = dbs_governor_of(policy);
int cpu;
gov_update_sample_delay(policy_dbs, delay_us);
policy_dbs->last_sample_time = 0;
for_each_cpu(cpu, policy->cpus) {
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
cpufreq_set_update_util_data(cpu, &cdbs->update_util);
}
}
EXPORT_SYMBOL_GPL(gov_set_update_util);
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_set_update_util_data(i, NULL);
synchronize_rcu();
}
static void gov_cancel_work(struct policy_dbs_info *policy_dbs)
{
/* Tell dbs_update_util_handler() to skip queuing up work items. */
atomic_inc(&policy_dbs->skip_work);
/*
* If dbs_update_util_handler() is already running, it may not notice
* the incremented skip_work, so wait for it to complete to prevent its
* work item from being queued up after the cancel_work_sync() below.
*/
gov_clear_update_util(policy_dbs->policy);
irq_work_sync(&policy_dbs->irq_work);
cancel_work_sync(&policy_dbs->work);
atomic_set(&policy_dbs->skip_work, 0);
}
static void dbs_work_handler(struct work_struct *work)
{
struct policy_dbs_info *policy_dbs;
struct cpufreq_policy *policy;
struct dbs_governor *gov;
unsigned int delay;
policy_dbs = container_of(work, struct policy_dbs_info, work);
policy = policy_dbs->policy;
gov = dbs_governor_of(policy);
/*
* Make sure cpufreq_governor_limits() isn't evaluating load or the
* ondemand governor isn't updating the sampling rate in parallel.
*/
mutex_lock(&policy_dbs->timer_mutex);
delay = gov->gov_dbs_timer(policy);
policy_dbs->sample_delay_ns = jiffies_to_nsecs(delay);
mutex_unlock(&policy_dbs->timer_mutex);
/*
* If the atomic operation below is reordered with respect to the
* sample delay modification, the utilization update handler may end
* up using a stale sample delay value.
*/
smp_mb__before_atomic();
atomic_dec(&policy_dbs->skip_work);
}
static void dbs_irq_work(struct irq_work *irq_work)
{
struct policy_dbs_info *policy_dbs;
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
schedule_work(&policy_dbs->work);
}
static inline void gov_queue_irq_work(struct policy_dbs_info *policy_dbs)
{
#ifdef CONFIG_SMP
irq_work_queue_on(&policy_dbs->irq_work, smp_processor_id());
#else
irq_work_queue(&policy_dbs->irq_work);
#endif
}
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
unsigned long util, unsigned long max)
{
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
/*
* The work may not be allowed to be queued up right now.
* Possible reasons:
* - Work has already been queued up or is in progress.
* - The governor is being stopped.
* - It is too early (too little time from the previous sample).
*/
if (atomic_inc_return(&policy_dbs->skip_work) == 1) {
u64 delta_ns;
delta_ns = time - policy_dbs->last_sample_time;
if ((s64)delta_ns >= policy_dbs->sample_delay_ns) {
policy_dbs->last_sample_time = time;
gov_queue_irq_work(policy_dbs);
return;
}
}
atomic_dec(&policy_dbs->skip_work);
}
static void set_sampling_rate(struct dbs_data *dbs_data,
struct dbs_governor *gov,
unsigned int sampling_rate)
{
if (gov->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
cs_tuners->sampling_rate = sampling_rate;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
od_tuners->sampling_rate = sampling_rate;
}
}
static int alloc_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
struct policy_dbs_info *policy_dbs;
int j;
/* Allocate memory for the common information for policy->cpus */
policy_dbs = kzalloc(sizeof(*policy_dbs), GFP_KERNEL);
if (!policy_dbs)
return -ENOMEM;
/* Set policy_dbs for all CPUs, online+offline */
for_each_cpu(j, policy->related_cpus)
gov->get_cpu_cdbs(j)->policy_dbs = policy_dbs;
mutex_init(&policy_dbs->timer_mutex);
atomic_set(&policy_dbs->skip_work, 0);
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
INIT_WORK(&policy_dbs->work, dbs_work_handler);
return 0;
}
static void free_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
int j;
mutex_destroy(&policy_dbs->timer_mutex);
for_each_cpu(j, policy->cpus)
gov->get_cpu_cdbs(j)->policy_dbs = NULL;
kfree(policy_dbs);
}
static int cpufreq_governor_init(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct dbs_data *dbs_data = gov->gdbs_data;
unsigned int latency;
int ret;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
if (dbs_data) {
if (WARN_ON(have_governor_per_policy()))
return -EINVAL;
ret = alloc_policy_dbs_info(policy, gov);
if (ret)
return ret;
dbs_data->usage_count++;
policy->governor_data = dbs_data;
return 0;
}
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
if (!dbs_data)
return -ENOMEM;
ret = alloc_policy_dbs_info(policy, gov);
if (ret)
goto free_dbs_data;
dbs_data->usage_count = 1;
ret = gov->init(dbs_data, !policy->governor->initialized);
if (ret)
goto free_policy_dbs_info;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
set_sampling_rate(dbs_data, gov, max(dbs_data->min_sampling_rate,
latency * LATENCY_MULTIPLIER));
if (!have_governor_per_policy())
gov->gdbs_data = dbs_data;
policy->governor_data = dbs_data;
ret = sysfs_create_group(get_governor_parent_kobj(policy),
get_sysfs_attr(gov));
if (ret)
goto reset_gdbs_data;
return 0;
reset_gdbs_data:
policy->governor_data = NULL;
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data, !policy->governor->initialized);
free_policy_dbs_info:
free_policy_dbs_info(policy, gov);
free_dbs_data:
kfree(dbs_data);
return ret;
}
static int cpufreq_governor_exit(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct dbs_data *dbs_data = policy->governor_data;
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
/* State should be equivalent to INIT */
if (!cdbs->policy_dbs || cdbs->policy_dbs->policy)
return -EBUSY;
if (!--dbs_data->usage_count) {
sysfs_remove_group(get_governor_parent_kobj(policy),
get_sysfs_attr(gov));
policy->governor_data = NULL;
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data, policy->governor->initialized == 1);
kfree(dbs_data);
} else {
policy->governor_data = NULL;
}
free_policy_dbs_info(policy, gov);
return 0;
}
static int cpufreq_governor_start(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct dbs_data *dbs_data = policy->governor_data;
unsigned int sampling_rate, ignore_nice, j, cpu = policy->cpu;
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
int io_busy = 0;
if (!policy->cur)
return -EINVAL;
/* State should be equivalent to INIT */
if (!policy_dbs || policy_dbs->policy)
return -EBUSY;
if (gov->governor == GOV_CONSERVATIVE) {
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
sampling_rate = cs_tuners->sampling_rate;
ignore_nice = cs_tuners->ignore_nice_load;
} else {
struct od_dbs_tuners *od_tuners = dbs_data->tuners;
sampling_rate = od_tuners->sampling_rate;
ignore_nice = od_tuners->ignore_nice_load;
io_busy = od_tuners->io_is_busy;
}
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = gov->get_cpu_cdbs(j);
unsigned int prev_load;
j_cdbs->prev_cpu_idle =
get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
prev_load = (unsigned int)(j_cdbs->prev_cpu_wall -
j_cdbs->prev_cpu_idle);
j_cdbs->prev_load = 100 * prev_load /
(unsigned int)j_cdbs->prev_cpu_wall;
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
j_cdbs->update_util.func = dbs_update_util_handler;
}
policy_dbs->policy = policy;
if (gov->governor == GOV_CONSERVATIVE) {
struct cs_cpu_dbs_info_s *cs_dbs_info =
gov->get_cpu_dbs_info_s(cpu);
cs_dbs_info->down_skip = 0;
cs_dbs_info->requested_freq = policy->cur;
} else {
struct od_ops *od_ops = gov->gov_ops;
struct od_cpu_dbs_info_s *od_dbs_info = gov->get_cpu_dbs_info_s(cpu);
od_dbs_info->rate_mult = 1;
od_dbs_info->sample_type = OD_NORMAL_SAMPLE;
od_ops->powersave_bias_init_cpu(cpu);
}
gov_set_update_util(policy_dbs, sampling_rate);
return 0;
}
static int cpufreq_governor_stop(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(policy->cpu);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
/* State should be equivalent to START */
if (!policy_dbs || !policy_dbs->policy)
return -EBUSY;
gov_cancel_work(policy_dbs);
policy_dbs->policy = NULL;
return 0;
}
static int cpufreq_governor_limits(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
unsigned int cpu = policy->cpu;
struct cpu_dbs_info *cdbs = gov->get_cpu_cdbs(cpu);
/* State should be equivalent to START */
if (!cdbs->policy_dbs || !cdbs->policy_dbs->policy)
return -EBUSY;
mutex_lock(&cdbs->policy_dbs->timer_mutex);
if (policy->max < cdbs->policy_dbs->policy->cur)
__cpufreq_driver_target(cdbs->policy_dbs->policy, policy->max,
CPUFREQ_RELATION_H);
else if (policy->min > cdbs->policy_dbs->policy->cur)
__cpufreq_driver_target(cdbs->policy_dbs->policy, policy->min,
CPUFREQ_RELATION_L);
dbs_check_cpu(policy, cpu);
mutex_unlock(&cdbs->policy_dbs->timer_mutex);
return 0;
}
int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
{
int ret = -EINVAL;
/* Lock governor to block concurrent initialization of governor */
mutex_lock(&dbs_data_mutex);
if (event == CPUFREQ_GOV_POLICY_INIT) {
ret = cpufreq_governor_init(policy);
} else if (policy->governor_data) {
switch (event) {
case CPUFREQ_GOV_POLICY_EXIT:
ret = cpufreq_governor_exit(policy);
break;
case CPUFREQ_GOV_START:
ret = cpufreq_governor_start(policy);
break;
case CPUFREQ_GOV_STOP:
ret = cpufreq_governor_stop(policy);
break;
case CPUFREQ_GOV_LIMITS:
ret = cpufreq_governor_limits(policy);
break;
}
}
mutex_unlock(&dbs_data_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);