blob: e06aafa5726af7ed821956b8a3c7604dccd9d26c [file] [log] [blame]
/***********************license start***************
* Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Networks nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export
* control laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
* OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-usbnx-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon usbnx.
*
*/
#ifndef __CVMX_USBNX_TYPEDEFS_H__
#define __CVMX_USBNX_TYPEDEFS_H__
#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
#define CVMX_USBNXREG1(reg, bid) \
(CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
#define CVMX_USBNXREG2(reg, bid) \
(CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
#define CVMX_USBNX_CLK_CTL(bid) CVMX_USBNXREG1(0x10, bid)
#define CVMX_USBNX_DMA0_INB_CHN0(bid) CVMX_USBNXREG2(0x818, bid)
#define CVMX_USBNX_DMA0_OUTB_CHN0(bid) CVMX_USBNXREG2(0x858, bid)
#define CVMX_USBNX_USBP_CTL_STATUS(bid) CVMX_USBNXREG1(0x18, bid)
/**
* cvmx_usbn#_clk_ctl
*
* USBN_CLK_CTL = USBN's Clock Control
*
* This register is used to control the frequency of the hclk and the
* hreset and phy_rst signals.
*/
union cvmx_usbnx_clk_ctl {
uint64_t u64;
/**
* struct cvmx_usbnx_clk_ctl_s
* @divide2: The 'hclk' used by the USB subsystem is derived
* from the eclk.
* Also see the field DIVIDE. DIVIDE2<1> must currently
* be zero because it is not implemented, so the maximum
* ratio of eclk/hclk is currently 16.
* The actual divide number for hclk is:
* (DIVIDE2 + 1) * (DIVIDE + 1)
* @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
* generate the hclk in the USB Subsystem is held
* in reset. This bit must be set to '0' before
* changing the value os DIVIDE in this register.
* The reset to the HCLK_DIVIDERis also asserted
* when core reset is asserted.
* @p_x_on: Force USB-PHY on during suspend.
* '1' USB-PHY XO block is powered-down during
* suspend.
* '0' USB-PHY XO block is powered-up during
* suspend.
* The value of this field must be set while POR is
* active.
* @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
* remain powered in Suspend Mode.
* '1' The USB-PHY XO Bias, Bandgap and PLL are
* powered down in suspend mode.
* The value of this field must be set while POR is
* active.
* @p_c_sel: Phy clock speed select.
* Selects the reference clock / crystal frequency.
* '11': Reserved
* '10': 48 MHz (reserved when a crystal is used)
* '01': 24 MHz (reserved when a crystal is used)
* '00': 12 MHz
* The value of this field must be set while POR is
* active.
* NOTE: if a crystal is used as a reference clock,
* this field must be set to 12 MHz.
* @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
* @sd_mode: Scaledown mode for the USBC. Control timing events
* in the USBC, for normal operation this must be '0'.
* @s_bist: Starts bist on the hclk memories, during the '0'
* to '1' transition.
* @por: Power On Reset for the PHY.
* Resets all the PHYS registers and state machines.
* @enable: When '1' allows the generation of the hclk. When
* '0' the hclk will not be generated. SEE DIVIDE
* field of this register.
* @prst: When this field is '0' the reset associated with
* the phy_clk functionality in the USB Subsystem is
* help in reset. This bit should not be set to '1'
* until the time it takes 6 clocks (hclk or phy_clk,
* whichever is slower) has passed. Under normal
* operation once this bit is set to '1' it should not
* be set to '0'.
* @hrst: When this field is '0' the reset associated with
* the hclk functioanlity in the USB Subsystem is
* held in reset.This bit should not be set to '1'
* until 12ms after phy_clk is stable. Under normal
* operation, once this bit is set to '1' it should
* not be set to '0'.
* @divide: The frequency of 'hclk' used by the USB subsystem
* is the eclk frequency divided by the value of
* (DIVIDE2 + 1) * (DIVIDE + 1), also see the field
* DIVIDE2 of this register.
* The hclk frequency should be less than 125Mhz.
* After writing a value to this field the SW should
* read the field for the value written.
* The ENABLE field of this register should not be set
* until AFTER this field is set and then read.
*/
struct cvmx_usbnx_clk_ctl_s {
uint64_t reserved_20_63 : 44;
uint64_t divide2 : 2;
uint64_t hclk_rst : 1;
uint64_t p_x_on : 1;
uint64_t reserved_14_15 : 2;
uint64_t p_com_on : 1;
uint64_t p_c_sel : 2;
uint64_t cdiv_byp : 1;
uint64_t sd_mode : 2;
uint64_t s_bist : 1;
uint64_t por : 1;
uint64_t enable : 1;
uint64_t prst : 1;
uint64_t hrst : 1;
uint64_t divide : 3;
} s;
/**
* struct cvmx_usbnx_clk_ctl_cn30xx
* @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
* generate the hclk in the USB Subsystem is held
* in reset. This bit must be set to '0' before
* changing the value os DIVIDE in this register.
* The reset to the HCLK_DIVIDERis also asserted
* when core reset is asserted.
* @p_x_on: Force USB-PHY on during suspend.
* '1' USB-PHY XO block is powered-down during
* suspend.
* '0' USB-PHY XO block is powered-up during
* suspend.
* The value of this field must be set while POR is
* active.
* @p_rclk: Phy refrence clock enable.
* '1' The PHY PLL uses the XO block output as a
* reference.
* '0' Reserved.
* @p_xenbn: Phy external clock enable.
* '1' The XO block uses the clock from a crystal.
* '0' The XO block uses an external clock supplied
* on the XO pin. USB_XI should be tied to
* ground for this usage.
* @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
* remain powered in Suspend Mode.
* '1' The USB-PHY XO Bias, Bandgap and PLL are
* powered down in suspend mode.
* The value of this field must be set while POR is
* active.
* @p_c_sel: Phy clock speed select.
* Selects the reference clock / crystal frequency.
* '11': Reserved
* '10': 48 MHz
* '01': 24 MHz
* '00': 12 MHz
* The value of this field must be set while POR is
* active.
* @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
* @sd_mode: Scaledown mode for the USBC. Control timing events
* in the USBC, for normal operation this must be '0'.
* @s_bist: Starts bist on the hclk memories, during the '0'
* to '1' transition.
* @por: Power On Reset for the PHY.
* Resets all the PHYS registers and state machines.
* @enable: When '1' allows the generation of the hclk. When
* '0' the hclk will not be generated.
* @prst: When this field is '0' the reset associated with
* the phy_clk functionality in the USB Subsystem is
* help in reset. This bit should not be set to '1'
* until the time it takes 6 clocks (hclk or phy_clk,
* whichever is slower) has passed. Under normal
* operation once this bit is set to '1' it should not
* be set to '0'.
* @hrst: When this field is '0' the reset associated with
* the hclk functioanlity in the USB Subsystem is
* held in reset.This bit should not be set to '1'
* until 12ms after phy_clk is stable. Under normal
* operation, once this bit is set to '1' it should
* not be set to '0'.
* @divide: The 'hclk' used by the USB subsystem is derived
* from the eclk. The eclk will be divided by the
* value of this field +1 to determine the hclk
* frequency. (Also see HRST of this register).
* The hclk frequency must be less than 125 MHz.
*/
struct cvmx_usbnx_clk_ctl_cn30xx {
uint64_t reserved_18_63 : 46;
uint64_t hclk_rst : 1;
uint64_t p_x_on : 1;
uint64_t p_rclk : 1;
uint64_t p_xenbn : 1;
uint64_t p_com_on : 1;
uint64_t p_c_sel : 2;
uint64_t cdiv_byp : 1;
uint64_t sd_mode : 2;
uint64_t s_bist : 1;
uint64_t por : 1;
uint64_t enable : 1;
uint64_t prst : 1;
uint64_t hrst : 1;
uint64_t divide : 3;
} cn30xx;
struct cvmx_usbnx_clk_ctl_cn30xx cn31xx;
/**
* struct cvmx_usbnx_clk_ctl_cn50xx
* @divide2: The 'hclk' used by the USB subsystem is derived
* from the eclk.
* Also see the field DIVIDE. DIVIDE2<1> must currently
* be zero because it is not implemented, so the maximum
* ratio of eclk/hclk is currently 16.
* The actual divide number for hclk is:
* (DIVIDE2 + 1) * (DIVIDE + 1)
* @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
* generate the hclk in the USB Subsystem is held
* in reset. This bit must be set to '0' before
* changing the value os DIVIDE in this register.
* The reset to the HCLK_DIVIDERis also asserted
* when core reset is asserted.
* @p_rtype: PHY reference clock type
* '0' The USB-PHY uses a 12MHz crystal as a clock
* source at the USB_XO and USB_XI pins
* '1' Reserved
* '2' The USB_PHY uses 12/24/48MHz 2.5V board clock
* at the USB_XO pin. USB_XI should be tied to
* ground in this case.
* '3' Reserved
* (bit 14 was P_XENBN on 3xxx)
* (bit 15 was P_RCLK on 3xxx)
* @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
* remain powered in Suspend Mode.
* '1' The USB-PHY XO Bias, Bandgap and PLL are
* powered down in suspend mode.
* The value of this field must be set while POR is
* active.
* @p_c_sel: Phy clock speed select.
* Selects the reference clock / crystal frequency.
* '11': Reserved
* '10': 48 MHz (reserved when a crystal is used)
* '01': 24 MHz (reserved when a crystal is used)
* '00': 12 MHz
* The value of this field must be set while POR is
* active.
* NOTE: if a crystal is used as a reference clock,
* this field must be set to 12 MHz.
* @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
* @sd_mode: Scaledown mode for the USBC. Control timing events
* in the USBC, for normal operation this must be '0'.
* @s_bist: Starts bist on the hclk memories, during the '0'
* to '1' transition.
* @por: Power On Reset for the PHY.
* Resets all the PHYS registers and state machines.
* @enable: When '1' allows the generation of the hclk. When
* '0' the hclk will not be generated. SEE DIVIDE
* field of this register.
* @prst: When this field is '0' the reset associated with
* the phy_clk functionality in the USB Subsystem is
* help in reset. This bit should not be set to '1'
* until the time it takes 6 clocks (hclk or phy_clk,
* whichever is slower) has passed. Under normal
* operation once this bit is set to '1' it should not
* be set to '0'.
* @hrst: When this field is '0' the reset associated with
* the hclk functioanlity in the USB Subsystem is
* held in reset.This bit should not be set to '1'
* until 12ms after phy_clk is stable. Under normal
* operation, once this bit is set to '1' it should
* not be set to '0'.
* @divide: The frequency of 'hclk' used by the USB subsystem
* is the eclk frequency divided by the value of
* (DIVIDE2 + 1) * (DIVIDE + 1), also see the field
* DIVIDE2 of this register.
* The hclk frequency should be less than 125Mhz.
* After writing a value to this field the SW should
* read the field for the value written.
* The ENABLE field of this register should not be set
* until AFTER this field is set and then read.
*/
struct cvmx_usbnx_clk_ctl_cn50xx {
uint64_t reserved_20_63 : 44;
uint64_t divide2 : 2;
uint64_t hclk_rst : 1;
uint64_t reserved_16_16 : 1;
uint64_t p_rtype : 2;
uint64_t p_com_on : 1;
uint64_t p_c_sel : 2;
uint64_t cdiv_byp : 1;
uint64_t sd_mode : 2;
uint64_t s_bist : 1;
uint64_t por : 1;
uint64_t enable : 1;
uint64_t prst : 1;
uint64_t hrst : 1;
uint64_t divide : 3;
} cn50xx;
struct cvmx_usbnx_clk_ctl_cn50xx cn52xx;
struct cvmx_usbnx_clk_ctl_cn50xx cn56xx;
};
/**
* cvmx_usbn#_usbp_ctl_status
*
* USBN_USBP_CTL_STATUS = USBP Control And Status Register
*
* Contains general control and status information for the USBN block.
*/
union cvmx_usbnx_usbp_ctl_status {
uint64_t u64;
/**
* struct cvmx_usbnx_usbp_ctl_status_s
* @txrisetune: HS Transmitter Rise/Fall Time Adjustment
* @txvreftune: HS DC Voltage Level Adjustment
* @txfslstune: FS/LS Source Impedence Adjustment
* @txhsxvtune: Transmitter High-Speed Crossover Adjustment
* @sqrxtune: Squelch Threshold Adjustment
* @compdistune: Disconnect Threshold Adjustment
* @otgtune: VBUS Valid Threshold Adjustment
* @otgdisable: OTG Block Disable
* @portreset: Per_Port Reset
* @drvvbus: Drive VBUS
* @lsbist: Low-Speed BIST Enable.
* @fsbist: Full-Speed BIST Enable.
* @hsbist: High-Speed BIST Enable.
* @bist_done: PHY Bist Done.
* Asserted at the end of the PHY BIST sequence.
* @bist_err: PHY Bist Error.
* Indicates an internal error was detected during
* the BIST sequence.
* @tdata_out: PHY Test Data Out.
* Presents either internaly generated signals or
* test register contents, based upon the value of
* test_data_out_sel.
* @siddq: Drives the USBP (USB-PHY) SIDDQ input.
* Normally should be set to zero.
* When customers have no intent to use USB PHY
* interface, they should:
* - still provide 3.3V to USB_VDD33, and
* - tie USB_REXT to 3.3V supply, and
* - set USBN*_USBP_CTL_STATUS[SIDDQ]=1
* @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
* @dma_bmode: When set to 1 the L2C DMA address will be updated
* with byte-counts between packets. When set to 0
* the L2C DMA address is incremented to the next
* 4-byte aligned address after adding byte-count.
* @usbc_end: Bigendian input to the USB Core. This should be
* set to '0' for operation.
* @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
* @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
* @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D+ line. '1' pull down-resistance is connected
* to D+/ '0' pull down resistance is not connected
* to D+. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D- line. '1' pull down-resistance is connected
* to D-. '0' pull down resistance is not connected
* to D-. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @hst_mode: When '0' the USB is acting as HOST, when '1'
* USB is acting as device. This field needs to be
* set while the USB is in reset.
* @tuning: Transmitter Tuning for High-Speed Operation.
* Tunes the current supply and rise/fall output
* times for high-speed operation.
* [20:19] == 11: Current supply increased
* approximately 9%
* [20:19] == 10: Current supply increased
* approximately 4.5%
* [20:19] == 01: Design default.
* [20:19] == 00: Current supply decreased
* approximately 4.5%
* [22:21] == 11: Rise and fall times are increased.
* [22:21] == 10: Design default.
* [22:21] == 01: Rise and fall times are decreased.
* [22:21] == 00: Rise and fall times are decreased
* further as compared to the 01 setting.
* @tx_bs_enh: Transmit Bit Stuffing on [15:8].
* Enables or disables bit stuffing on data[15:8]
* when bit-stuffing is enabled.
* @tx_bs_en: Transmit Bit Stuffing on [7:0].
* Enables or disables bit stuffing on data[7:0]
* when bit-stuffing is enabled.
* @loop_enb: PHY Loopback Test Enable.
* '1': During data transmission the receive is
* enabled.
* '0': During data transmission the receive is
* disabled.
* Must be '0' for normal operation.
* @vtest_enb: Analog Test Pin Enable.
* '1' The PHY's analog_test pin is enabled for the
* input and output of applicable analog test signals.
* '0' THe analog_test pin is disabled.
* @bist_enb: Built-In Self Test Enable.
* Used to activate BIST in the PHY.
* @tdata_sel: Test Data Out Select.
* '1' test_data_out[3:0] (PHY) register contents
* are output. '0' internaly generated signals are
* output.
* @taddr_in: Mode Address for Test Interface.
* Specifies the register address for writing to or
* reading from the PHY test interface register.
* @tdata_in: Internal Testing Register Input Data and Select
* This is a test bus. Data is present on [3:0],
* and its corresponding select (enable) is present
* on bits [7:4].
* @ate_reset: Reset input from automatic test equipment.
* This is a test signal. When the USB Core is
* powered up (not in Susned Mode), an automatic
* tester can use this to disable phy_clock and
* free_clk, then re-eanable them with an aligned
* phase.
* '1': The phy_clk and free_clk outputs are
* disabled. "0": The phy_clock and free_clk outputs
* are available within a specific period after the
* de-assertion.
*/
struct cvmx_usbnx_usbp_ctl_status_s {
uint64_t txrisetune : 1;
uint64_t txvreftune : 4;
uint64_t txfslstune : 4;
uint64_t txhsxvtune : 2;
uint64_t sqrxtune : 3;
uint64_t compdistune : 3;
uint64_t otgtune : 3;
uint64_t otgdisable : 1;
uint64_t portreset : 1;
uint64_t drvvbus : 1;
uint64_t lsbist : 1;
uint64_t fsbist : 1;
uint64_t hsbist : 1;
uint64_t bist_done : 1;
uint64_t bist_err : 1;
uint64_t tdata_out : 4;
uint64_t siddq : 1;
uint64_t txpreemphasistune : 1;
uint64_t dma_bmode : 1;
uint64_t usbc_end : 1;
uint64_t usbp_bist : 1;
uint64_t tclk : 1;
uint64_t dp_pulld : 1;
uint64_t dm_pulld : 1;
uint64_t hst_mode : 1;
uint64_t tuning : 4;
uint64_t tx_bs_enh : 1;
uint64_t tx_bs_en : 1;
uint64_t loop_enb : 1;
uint64_t vtest_enb : 1;
uint64_t bist_enb : 1;
uint64_t tdata_sel : 1;
uint64_t taddr_in : 4;
uint64_t tdata_in : 8;
uint64_t ate_reset : 1;
} s;
/**
* struct cvmx_usbnx_usbp_ctl_status_cn30xx
* @bist_done: PHY Bist Done.
* Asserted at the end of the PHY BIST sequence.
* @bist_err: PHY Bist Error.
* Indicates an internal error was detected during
* the BIST sequence.
* @tdata_out: PHY Test Data Out.
* Presents either internaly generated signals or
* test register contents, based upon the value of
* test_data_out_sel.
* @dma_bmode: When set to 1 the L2C DMA address will be updated
* with byte-counts between packets. When set to 0
* the L2C DMA address is incremented to the next
* 4-byte aligned address after adding byte-count.
* @usbc_end: Bigendian input to the USB Core. This should be
* set to '0' for operation.
* @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
* @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
* @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D+ line. '1' pull down-resistance is connected
* to D+/ '0' pull down resistance is not connected
* to D+. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D- line. '1' pull down-resistance is connected
* to D-. '0' pull down resistance is not connected
* to D-. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @hst_mode: When '0' the USB is acting as HOST, when '1'
* USB is acting as device. This field needs to be
* set while the USB is in reset.
* @tuning: Transmitter Tuning for High-Speed Operation.
* Tunes the current supply and rise/fall output
* times for high-speed operation.
* [20:19] == 11: Current supply increased
* approximately 9%
* [20:19] == 10: Current supply increased
* approximately 4.5%
* [20:19] == 01: Design default.
* [20:19] == 00: Current supply decreased
* approximately 4.5%
* [22:21] == 11: Rise and fall times are increased.
* [22:21] == 10: Design default.
* [22:21] == 01: Rise and fall times are decreased.
* [22:21] == 00: Rise and fall times are decreased
* further as compared to the 01 setting.
* @tx_bs_enh: Transmit Bit Stuffing on [15:8].
* Enables or disables bit stuffing on data[15:8]
* when bit-stuffing is enabled.
* @tx_bs_en: Transmit Bit Stuffing on [7:0].
* Enables or disables bit stuffing on data[7:0]
* when bit-stuffing is enabled.
* @loop_enb: PHY Loopback Test Enable.
* '1': During data transmission the receive is
* enabled.
* '0': During data transmission the receive is
* disabled.
* Must be '0' for normal operation.
* @vtest_enb: Analog Test Pin Enable.
* '1' The PHY's analog_test pin is enabled for the
* input and output of applicable analog test signals.
* '0' THe analog_test pin is disabled.
* @bist_enb: Built-In Self Test Enable.
* Used to activate BIST in the PHY.
* @tdata_sel: Test Data Out Select.
* '1' test_data_out[3:0] (PHY) register contents
* are output. '0' internaly generated signals are
* output.
* @taddr_in: Mode Address for Test Interface.
* Specifies the register address for writing to or
* reading from the PHY test interface register.
* @tdata_in: Internal Testing Register Input Data and Select
* This is a test bus. Data is present on [3:0],
* and its corresponding select (enable) is present
* on bits [7:4].
* @ate_reset: Reset input from automatic test equipment.
* This is a test signal. When the USB Core is
* powered up (not in Susned Mode), an automatic
* tester can use this to disable phy_clock and
* free_clk, then re-eanable them with an aligned
* phase.
* '1': The phy_clk and free_clk outputs are
* disabled. "0": The phy_clock and free_clk outputs
* are available within a specific period after the
* de-assertion.
*/
struct cvmx_usbnx_usbp_ctl_status_cn30xx {
uint64_t reserved_38_63 : 26;
uint64_t bist_done : 1;
uint64_t bist_err : 1;
uint64_t tdata_out : 4;
uint64_t reserved_30_31 : 2;
uint64_t dma_bmode : 1;
uint64_t usbc_end : 1;
uint64_t usbp_bist : 1;
uint64_t tclk : 1;
uint64_t dp_pulld : 1;
uint64_t dm_pulld : 1;
uint64_t hst_mode : 1;
uint64_t tuning : 4;
uint64_t tx_bs_enh : 1;
uint64_t tx_bs_en : 1;
uint64_t loop_enb : 1;
uint64_t vtest_enb : 1;
uint64_t bist_enb : 1;
uint64_t tdata_sel : 1;
uint64_t taddr_in : 4;
uint64_t tdata_in : 8;
uint64_t ate_reset : 1;
} cn30xx;
/**
* struct cvmx_usbnx_usbp_ctl_status_cn50xx
* @txrisetune: HS Transmitter Rise/Fall Time Adjustment
* @txvreftune: HS DC Voltage Level Adjustment
* @txfslstune: FS/LS Source Impedence Adjustment
* @txhsxvtune: Transmitter High-Speed Crossover Adjustment
* @sqrxtune: Squelch Threshold Adjustment
* @compdistune: Disconnect Threshold Adjustment
* @otgtune: VBUS Valid Threshold Adjustment
* @otgdisable: OTG Block Disable
* @portreset: Per_Port Reset
* @drvvbus: Drive VBUS
* @lsbist: Low-Speed BIST Enable.
* @fsbist: Full-Speed BIST Enable.
* @hsbist: High-Speed BIST Enable.
* @bist_done: PHY Bist Done.
* Asserted at the end of the PHY BIST sequence.
* @bist_err: PHY Bist Error.
* Indicates an internal error was detected during
* the BIST sequence.
* @tdata_out: PHY Test Data Out.
* Presents either internaly generated signals or
* test register contents, based upon the value of
* test_data_out_sel.
* @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
* @dma_bmode: When set to 1 the L2C DMA address will be updated
* with byte-counts between packets. When set to 0
* the L2C DMA address is incremented to the next
* 4-byte aligned address after adding byte-count.
* @usbc_end: Bigendian input to the USB Core. This should be
* set to '0' for operation.
* @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
* @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
* @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D+ line. '1' pull down-resistance is connected
* to D+/ '0' pull down resistance is not connected
* to D+. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D- line. '1' pull down-resistance is connected
* to D-. '0' pull down resistance is not connected
* to D-. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @hst_mode: When '0' the USB is acting as HOST, when '1'
* USB is acting as device. This field needs to be
* set while the USB is in reset.
* @tx_bs_enh: Transmit Bit Stuffing on [15:8].
* Enables or disables bit stuffing on data[15:8]
* when bit-stuffing is enabled.
* @tx_bs_en: Transmit Bit Stuffing on [7:0].
* Enables or disables bit stuffing on data[7:0]
* when bit-stuffing is enabled.
* @loop_enb: PHY Loopback Test Enable.
* '1': During data transmission the receive is
* enabled.
* '0': During data transmission the receive is
* disabled.
* Must be '0' for normal operation.
* @vtest_enb: Analog Test Pin Enable.
* '1' The PHY's analog_test pin is enabled for the
* input and output of applicable analog test signals.
* '0' THe analog_test pin is disabled.
* @bist_enb: Built-In Self Test Enable.
* Used to activate BIST in the PHY.
* @tdata_sel: Test Data Out Select.
* '1' test_data_out[3:0] (PHY) register contents
* are output. '0' internaly generated signals are
* output.
* @taddr_in: Mode Address for Test Interface.
* Specifies the register address for writing to or
* reading from the PHY test interface register.
* @tdata_in: Internal Testing Register Input Data and Select
* This is a test bus. Data is present on [3:0],
* and its corresponding select (enable) is present
* on bits [7:4].
* @ate_reset: Reset input from automatic test equipment.
* This is a test signal. When the USB Core is
* powered up (not in Susned Mode), an automatic
* tester can use this to disable phy_clock and
* free_clk, then re-eanable them with an aligned
* phase.
* '1': The phy_clk and free_clk outputs are
* disabled. "0": The phy_clock and free_clk outputs
* are available within a specific period after the
* de-assertion.
*/
struct cvmx_usbnx_usbp_ctl_status_cn50xx {
uint64_t txrisetune : 1;
uint64_t txvreftune : 4;
uint64_t txfslstune : 4;
uint64_t txhsxvtune : 2;
uint64_t sqrxtune : 3;
uint64_t compdistune : 3;
uint64_t otgtune : 3;
uint64_t otgdisable : 1;
uint64_t portreset : 1;
uint64_t drvvbus : 1;
uint64_t lsbist : 1;
uint64_t fsbist : 1;
uint64_t hsbist : 1;
uint64_t bist_done : 1;
uint64_t bist_err : 1;
uint64_t tdata_out : 4;
uint64_t reserved_31_31 : 1;
uint64_t txpreemphasistune : 1;
uint64_t dma_bmode : 1;
uint64_t usbc_end : 1;
uint64_t usbp_bist : 1;
uint64_t tclk : 1;
uint64_t dp_pulld : 1;
uint64_t dm_pulld : 1;
uint64_t hst_mode : 1;
uint64_t reserved_19_22 : 4;
uint64_t tx_bs_enh : 1;
uint64_t tx_bs_en : 1;
uint64_t loop_enb : 1;
uint64_t vtest_enb : 1;
uint64_t bist_enb : 1;
uint64_t tdata_sel : 1;
uint64_t taddr_in : 4;
uint64_t tdata_in : 8;
uint64_t ate_reset : 1;
} cn50xx;
/**
* struct cvmx_usbnx_usbp_ctl_status_cn52xx
* @txrisetune: HS Transmitter Rise/Fall Time Adjustment
* @txvreftune: HS DC Voltage Level Adjustment
* @txfslstune: FS/LS Source Impedence Adjustment
* @txhsxvtune: Transmitter High-Speed Crossover Adjustment
* @sqrxtune: Squelch Threshold Adjustment
* @compdistune: Disconnect Threshold Adjustment
* @otgtune: VBUS Valid Threshold Adjustment
* @otgdisable: OTG Block Disable
* @portreset: Per_Port Reset
* @drvvbus: Drive VBUS
* @lsbist: Low-Speed BIST Enable.
* @fsbist: Full-Speed BIST Enable.
* @hsbist: High-Speed BIST Enable.
* @bist_done: PHY Bist Done.
* Asserted at the end of the PHY BIST sequence.
* @bist_err: PHY Bist Error.
* Indicates an internal error was detected during
* the BIST sequence.
* @tdata_out: PHY Test Data Out.
* Presents either internaly generated signals or
* test register contents, based upon the value of
* test_data_out_sel.
* @siddq: Drives the USBP (USB-PHY) SIDDQ input.
* Normally should be set to zero.
* When customers have no intent to use USB PHY
* interface, they should:
* - still provide 3.3V to USB_VDD33, and
* - tie USB_REXT to 3.3V supply, and
* - set USBN*_USBP_CTL_STATUS[SIDDQ]=1
* @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
* @dma_bmode: When set to 1 the L2C DMA address will be updated
* with byte-counts between packets. When set to 0
* the L2C DMA address is incremented to the next
* 4-byte aligned address after adding byte-count.
* @usbc_end: Bigendian input to the USB Core. This should be
* set to '0' for operation.
* @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
* @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
* @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D+ line. '1' pull down-resistance is connected
* to D+/ '0' pull down resistance is not connected
* to D+. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
* This signal enables the pull-down resistance on
* the D- line. '1' pull down-resistance is connected
* to D-. '0' pull down resistance is not connected
* to D-. When an A/B device is acting as a host
* (downstream-facing port), dp_pulldown and
* dm_pulldown are enabled. This must not toggle
* during normal opeartion.
* @hst_mode: When '0' the USB is acting as HOST, when '1'
* USB is acting as device. This field needs to be
* set while the USB is in reset.
* @tx_bs_enh: Transmit Bit Stuffing on [15:8].
* Enables or disables bit stuffing on data[15:8]
* when bit-stuffing is enabled.
* @tx_bs_en: Transmit Bit Stuffing on [7:0].
* Enables or disables bit stuffing on data[7:0]
* when bit-stuffing is enabled.
* @loop_enb: PHY Loopback Test Enable.
* '1': During data transmission the receive is
* enabled.
* '0': During data transmission the receive is
* disabled.
* Must be '0' for normal operation.
* @vtest_enb: Analog Test Pin Enable.
* '1' The PHY's analog_test pin is enabled for the
* input and output of applicable analog test signals.
* '0' THe analog_test pin is disabled.
* @bist_enb: Built-In Self Test Enable.
* Used to activate BIST in the PHY.
* @tdata_sel: Test Data Out Select.
* '1' test_data_out[3:0] (PHY) register contents
* are output. '0' internaly generated signals are
* output.
* @taddr_in: Mode Address for Test Interface.
* Specifies the register address for writing to or
* reading from the PHY test interface register.
* @tdata_in: Internal Testing Register Input Data and Select
* This is a test bus. Data is present on [3:0],
* and its corresponding select (enable) is present
* on bits [7:4].
* @ate_reset: Reset input from automatic test equipment.
* This is a test signal. When the USB Core is
* powered up (not in Susned Mode), an automatic
* tester can use this to disable phy_clock and
* free_clk, then re-eanable them with an aligned
* phase.
* '1': The phy_clk and free_clk outputs are
* disabled. "0": The phy_clock and free_clk outputs
* are available within a specific period after the
* de-assertion.
*/
struct cvmx_usbnx_usbp_ctl_status_cn52xx {
uint64_t txrisetune : 1;
uint64_t txvreftune : 4;
uint64_t txfslstune : 4;
uint64_t txhsxvtune : 2;
uint64_t sqrxtune : 3;
uint64_t compdistune : 3;
uint64_t otgtune : 3;
uint64_t otgdisable : 1;
uint64_t portreset : 1;
uint64_t drvvbus : 1;
uint64_t lsbist : 1;
uint64_t fsbist : 1;
uint64_t hsbist : 1;
uint64_t bist_done : 1;
uint64_t bist_err : 1;
uint64_t tdata_out : 4;
uint64_t siddq : 1;
uint64_t txpreemphasistune : 1;
uint64_t dma_bmode : 1;
uint64_t usbc_end : 1;
uint64_t usbp_bist : 1;
uint64_t tclk : 1;
uint64_t dp_pulld : 1;
uint64_t dm_pulld : 1;
uint64_t hst_mode : 1;
uint64_t reserved_19_22 : 4;
uint64_t tx_bs_enh : 1;
uint64_t tx_bs_en : 1;
uint64_t loop_enb : 1;
uint64_t vtest_enb : 1;
uint64_t bist_enb : 1;
uint64_t tdata_sel : 1;
uint64_t taddr_in : 4;
uint64_t tdata_in : 8;
uint64_t ate_reset : 1;
} cn52xx;
};
#endif