| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * bpf_jit_comp.c: BPF JIT compiler |
| * |
| * Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com) |
| * Internal BPF Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com |
| */ |
| #include <linux/netdevice.h> |
| #include <linux/filter.h> |
| #include <linux/if_vlan.h> |
| #include <linux/bpf.h> |
| #include <linux/memory.h> |
| #include <linux/sort.h> |
| #include <asm/extable.h> |
| #include <asm/set_memory.h> |
| #include <asm/nospec-branch.h> |
| #include <asm/text-patching.h> |
| |
| static u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len) |
| { |
| if (len == 1) |
| *ptr = bytes; |
| else if (len == 2) |
| *(u16 *)ptr = bytes; |
| else { |
| *(u32 *)ptr = bytes; |
| barrier(); |
| } |
| return ptr + len; |
| } |
| |
| #define EMIT(bytes, len) \ |
| do { prog = emit_code(prog, bytes, len); } while (0) |
| |
| #define EMIT1(b1) EMIT(b1, 1) |
| #define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2) |
| #define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3) |
| #define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4) |
| |
| #define EMIT1_off32(b1, off) \ |
| do { EMIT1(b1); EMIT(off, 4); } while (0) |
| #define EMIT2_off32(b1, b2, off) \ |
| do { EMIT2(b1, b2); EMIT(off, 4); } while (0) |
| #define EMIT3_off32(b1, b2, b3, off) \ |
| do { EMIT3(b1, b2, b3); EMIT(off, 4); } while (0) |
| #define EMIT4_off32(b1, b2, b3, b4, off) \ |
| do { EMIT4(b1, b2, b3, b4); EMIT(off, 4); } while (0) |
| |
| static bool is_imm8(int value) |
| { |
| return value <= 127 && value >= -128; |
| } |
| |
| static bool is_simm32(s64 value) |
| { |
| return value == (s64)(s32)value; |
| } |
| |
| static bool is_uimm32(u64 value) |
| { |
| return value == (u64)(u32)value; |
| } |
| |
| /* mov dst, src */ |
| #define EMIT_mov(DST, SRC) \ |
| do { \ |
| if (DST != SRC) \ |
| EMIT3(add_2mod(0x48, DST, SRC), 0x89, add_2reg(0xC0, DST, SRC)); \ |
| } while (0) |
| |
| static int bpf_size_to_x86_bytes(int bpf_size) |
| { |
| if (bpf_size == BPF_W) |
| return 4; |
| else if (bpf_size == BPF_H) |
| return 2; |
| else if (bpf_size == BPF_B) |
| return 1; |
| else if (bpf_size == BPF_DW) |
| return 4; /* imm32 */ |
| else |
| return 0; |
| } |
| |
| /* |
| * List of x86 cond jumps opcodes (. + s8) |
| * Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32) |
| */ |
| #define X86_JB 0x72 |
| #define X86_JAE 0x73 |
| #define X86_JE 0x74 |
| #define X86_JNE 0x75 |
| #define X86_JBE 0x76 |
| #define X86_JA 0x77 |
| #define X86_JL 0x7C |
| #define X86_JGE 0x7D |
| #define X86_JLE 0x7E |
| #define X86_JG 0x7F |
| |
| /* Pick a register outside of BPF range for JIT internal work */ |
| #define AUX_REG (MAX_BPF_JIT_REG + 1) |
| #define X86_REG_R9 (MAX_BPF_JIT_REG + 2) |
| |
| /* |
| * The following table maps BPF registers to x86-64 registers. |
| * |
| * x86-64 register R12 is unused, since if used as base address |
| * register in load/store instructions, it always needs an |
| * extra byte of encoding and is callee saved. |
| * |
| * x86-64 register R9 is not used by BPF programs, but can be used by BPF |
| * trampoline. x86-64 register R10 is used for blinding (if enabled). |
| */ |
| static const int reg2hex[] = { |
| [BPF_REG_0] = 0, /* RAX */ |
| [BPF_REG_1] = 7, /* RDI */ |
| [BPF_REG_2] = 6, /* RSI */ |
| [BPF_REG_3] = 2, /* RDX */ |
| [BPF_REG_4] = 1, /* RCX */ |
| [BPF_REG_5] = 0, /* R8 */ |
| [BPF_REG_6] = 3, /* RBX callee saved */ |
| [BPF_REG_7] = 5, /* R13 callee saved */ |
| [BPF_REG_8] = 6, /* R14 callee saved */ |
| [BPF_REG_9] = 7, /* R15 callee saved */ |
| [BPF_REG_FP] = 5, /* RBP readonly */ |
| [BPF_REG_AX] = 2, /* R10 temp register */ |
| [AUX_REG] = 3, /* R11 temp register */ |
| [X86_REG_R9] = 1, /* R9 register, 6th function argument */ |
| }; |
| |
| static const int reg2pt_regs[] = { |
| [BPF_REG_0] = offsetof(struct pt_regs, ax), |
| [BPF_REG_1] = offsetof(struct pt_regs, di), |
| [BPF_REG_2] = offsetof(struct pt_regs, si), |
| [BPF_REG_3] = offsetof(struct pt_regs, dx), |
| [BPF_REG_4] = offsetof(struct pt_regs, cx), |
| [BPF_REG_5] = offsetof(struct pt_regs, r8), |
| [BPF_REG_6] = offsetof(struct pt_regs, bx), |
| [BPF_REG_7] = offsetof(struct pt_regs, r13), |
| [BPF_REG_8] = offsetof(struct pt_regs, r14), |
| [BPF_REG_9] = offsetof(struct pt_regs, r15), |
| }; |
| |
| /* |
| * is_ereg() == true if BPF register 'reg' maps to x86-64 r8..r15 |
| * which need extra byte of encoding. |
| * rax,rcx,...,rbp have simpler encoding |
| */ |
| static bool is_ereg(u32 reg) |
| { |
| return (1 << reg) & (BIT(BPF_REG_5) | |
| BIT(AUX_REG) | |
| BIT(BPF_REG_7) | |
| BIT(BPF_REG_8) | |
| BIT(BPF_REG_9) | |
| BIT(X86_REG_R9) | |
| BIT(BPF_REG_AX)); |
| } |
| |
| /* |
| * is_ereg_8l() == true if BPF register 'reg' is mapped to access x86-64 |
| * lower 8-bit registers dil,sil,bpl,spl,r8b..r15b, which need extra byte |
| * of encoding. al,cl,dl,bl have simpler encoding. |
| */ |
| static bool is_ereg_8l(u32 reg) |
| { |
| return is_ereg(reg) || |
| (1 << reg) & (BIT(BPF_REG_1) | |
| BIT(BPF_REG_2) | |
| BIT(BPF_REG_FP)); |
| } |
| |
| static bool is_axreg(u32 reg) |
| { |
| return reg == BPF_REG_0; |
| } |
| |
| /* Add modifiers if 'reg' maps to x86-64 registers R8..R15 */ |
| static u8 add_1mod(u8 byte, u32 reg) |
| { |
| if (is_ereg(reg)) |
| byte |= 1; |
| return byte; |
| } |
| |
| static u8 add_2mod(u8 byte, u32 r1, u32 r2) |
| { |
| if (is_ereg(r1)) |
| byte |= 1; |
| if (is_ereg(r2)) |
| byte |= 4; |
| return byte; |
| } |
| |
| /* Encode 'dst_reg' register into x86-64 opcode 'byte' */ |
| static u8 add_1reg(u8 byte, u32 dst_reg) |
| { |
| return byte + reg2hex[dst_reg]; |
| } |
| |
| /* Encode 'dst_reg' and 'src_reg' registers into x86-64 opcode 'byte' */ |
| static u8 add_2reg(u8 byte, u32 dst_reg, u32 src_reg) |
| { |
| return byte + reg2hex[dst_reg] + (reg2hex[src_reg] << 3); |
| } |
| |
| /* Some 1-byte opcodes for binary ALU operations */ |
| static u8 simple_alu_opcodes[] = { |
| [BPF_ADD] = 0x01, |
| [BPF_SUB] = 0x29, |
| [BPF_AND] = 0x21, |
| [BPF_OR] = 0x09, |
| [BPF_XOR] = 0x31, |
| [BPF_LSH] = 0xE0, |
| [BPF_RSH] = 0xE8, |
| [BPF_ARSH] = 0xF8, |
| }; |
| |
| static void jit_fill_hole(void *area, unsigned int size) |
| { |
| /* Fill whole space with INT3 instructions */ |
| memset(area, 0xcc, size); |
| } |
| |
| struct jit_context { |
| int cleanup_addr; /* Epilogue code offset */ |
| |
| /* |
| * Program specific offsets of labels in the code; these rely on the |
| * JIT doing at least 2 passes, recording the position on the first |
| * pass, only to generate the correct offset on the second pass. |
| */ |
| int tail_call_direct_label; |
| int tail_call_indirect_label; |
| }; |
| |
| /* Maximum number of bytes emitted while JITing one eBPF insn */ |
| #define BPF_MAX_INSN_SIZE 128 |
| #define BPF_INSN_SAFETY 64 |
| |
| /* Number of bytes emit_patch() needs to generate instructions */ |
| #define X86_PATCH_SIZE 5 |
| /* Number of bytes that will be skipped on tailcall */ |
| #define X86_TAIL_CALL_OFFSET 11 |
| |
| static void push_callee_regs(u8 **pprog, bool *callee_regs_used) |
| { |
| u8 *prog = *pprog; |
| |
| if (callee_regs_used[0]) |
| EMIT1(0x53); /* push rbx */ |
| if (callee_regs_used[1]) |
| EMIT2(0x41, 0x55); /* push r13 */ |
| if (callee_regs_used[2]) |
| EMIT2(0x41, 0x56); /* push r14 */ |
| if (callee_regs_used[3]) |
| EMIT2(0x41, 0x57); /* push r15 */ |
| *pprog = prog; |
| } |
| |
| static void pop_callee_regs(u8 **pprog, bool *callee_regs_used) |
| { |
| u8 *prog = *pprog; |
| |
| if (callee_regs_used[3]) |
| EMIT2(0x41, 0x5F); /* pop r15 */ |
| if (callee_regs_used[2]) |
| EMIT2(0x41, 0x5E); /* pop r14 */ |
| if (callee_regs_used[1]) |
| EMIT2(0x41, 0x5D); /* pop r13 */ |
| if (callee_regs_used[0]) |
| EMIT1(0x5B); /* pop rbx */ |
| *pprog = prog; |
| } |
| |
| /* |
| * Emit x86-64 prologue code for BPF program. |
| * bpf_tail_call helper will skip the first X86_TAIL_CALL_OFFSET bytes |
| * while jumping to another program |
| */ |
| static void emit_prologue(u8 **pprog, u32 stack_depth, bool ebpf_from_cbpf, |
| bool tail_call_reachable, bool is_subprog) |
| { |
| u8 *prog = *pprog; |
| |
| /* BPF trampoline can be made to work without these nops, |
| * but let's waste 5 bytes for now and optimize later |
| */ |
| memcpy(prog, x86_nops[5], X86_PATCH_SIZE); |
| prog += X86_PATCH_SIZE; |
| if (!ebpf_from_cbpf) { |
| if (tail_call_reachable && !is_subprog) |
| EMIT2(0x31, 0xC0); /* xor eax, eax */ |
| else |
| EMIT2(0x66, 0x90); /* nop2 */ |
| } |
| EMIT1(0x55); /* push rbp */ |
| EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ |
| /* sub rsp, rounded_stack_depth */ |
| if (stack_depth) |
| EMIT3_off32(0x48, 0x81, 0xEC, round_up(stack_depth, 8)); |
| if (tail_call_reachable) |
| EMIT1(0x50); /* push rax */ |
| *pprog = prog; |
| } |
| |
| static int emit_patch(u8 **pprog, void *func, void *ip, u8 opcode) |
| { |
| u8 *prog = *pprog; |
| s64 offset; |
| |
| offset = func - (ip + X86_PATCH_SIZE); |
| if (!is_simm32(offset)) { |
| pr_err("Target call %p is out of range\n", func); |
| return -ERANGE; |
| } |
| EMIT1_off32(opcode, offset); |
| *pprog = prog; |
| return 0; |
| } |
| |
| static int emit_call(u8 **pprog, void *func, void *ip) |
| { |
| return emit_patch(pprog, func, ip, 0xE8); |
| } |
| |
| static int emit_jump(u8 **pprog, void *func, void *ip) |
| { |
| return emit_patch(pprog, func, ip, 0xE9); |
| } |
| |
| static int __bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, |
| void *old_addr, void *new_addr, |
| const bool text_live) |
| { |
| const u8 *nop_insn = x86_nops[5]; |
| u8 old_insn[X86_PATCH_SIZE]; |
| u8 new_insn[X86_PATCH_SIZE]; |
| u8 *prog; |
| int ret; |
| |
| memcpy(old_insn, nop_insn, X86_PATCH_SIZE); |
| if (old_addr) { |
| prog = old_insn; |
| ret = t == BPF_MOD_CALL ? |
| emit_call(&prog, old_addr, ip) : |
| emit_jump(&prog, old_addr, ip); |
| if (ret) |
| return ret; |
| } |
| |
| memcpy(new_insn, nop_insn, X86_PATCH_SIZE); |
| if (new_addr) { |
| prog = new_insn; |
| ret = t == BPF_MOD_CALL ? |
| emit_call(&prog, new_addr, ip) : |
| emit_jump(&prog, new_addr, ip); |
| if (ret) |
| return ret; |
| } |
| |
| ret = -EBUSY; |
| mutex_lock(&text_mutex); |
| if (memcmp(ip, old_insn, X86_PATCH_SIZE)) |
| goto out; |
| ret = 1; |
| if (memcmp(ip, new_insn, X86_PATCH_SIZE)) { |
| if (text_live) |
| text_poke_bp(ip, new_insn, X86_PATCH_SIZE, NULL); |
| else |
| memcpy(ip, new_insn, X86_PATCH_SIZE); |
| ret = 0; |
| } |
| out: |
| mutex_unlock(&text_mutex); |
| return ret; |
| } |
| |
| int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t, |
| void *old_addr, void *new_addr) |
| { |
| if (!is_kernel_text((long)ip) && |
| !is_bpf_text_address((long)ip)) |
| /* BPF poking in modules is not supported */ |
| return -EINVAL; |
| |
| return __bpf_arch_text_poke(ip, t, old_addr, new_addr, true); |
| } |
| |
| #define EMIT_LFENCE() EMIT3(0x0F, 0xAE, 0xE8) |
| |
| static void emit_indirect_jump(u8 **pprog, int reg, u8 *ip) |
| { |
| u8 *prog = *pprog; |
| |
| #ifdef CONFIG_RETPOLINE |
| if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_AMD)) { |
| EMIT_LFENCE(); |
| EMIT2(0xFF, 0xE0 + reg); |
| } else if (cpu_feature_enabled(X86_FEATURE_RETPOLINE)) { |
| emit_jump(&prog, &__x86_indirect_thunk_array[reg], ip); |
| } else |
| #endif |
| EMIT2(0xFF, 0xE0 + reg); |
| |
| *pprog = prog; |
| } |
| |
| /* |
| * Generate the following code: |
| * |
| * ... bpf_tail_call(void *ctx, struct bpf_array *array, u64 index) ... |
| * if (index >= array->map.max_entries) |
| * goto out; |
| * if (++tail_call_cnt > MAX_TAIL_CALL_CNT) |
| * goto out; |
| * prog = array->ptrs[index]; |
| * if (prog == NULL) |
| * goto out; |
| * goto *(prog->bpf_func + prologue_size); |
| * out: |
| */ |
| static void emit_bpf_tail_call_indirect(u8 **pprog, bool *callee_regs_used, |
| u32 stack_depth, u8 *ip, |
| struct jit_context *ctx) |
| { |
| int tcc_off = -4 - round_up(stack_depth, 8); |
| u8 *prog = *pprog, *start = *pprog; |
| int offset; |
| |
| /* |
| * rdi - pointer to ctx |
| * rsi - pointer to bpf_array |
| * rdx - index in bpf_array |
| */ |
| |
| /* |
| * if (index >= array->map.max_entries) |
| * goto out; |
| */ |
| EMIT2(0x89, 0xD2); /* mov edx, edx */ |
| EMIT3(0x39, 0x56, /* cmp dword ptr [rsi + 16], edx */ |
| offsetof(struct bpf_array, map.max_entries)); |
| |
| offset = ctx->tail_call_indirect_label - (prog + 2 - start); |
| EMIT2(X86_JBE, offset); /* jbe out */ |
| |
| /* |
| * if (tail_call_cnt > MAX_TAIL_CALL_CNT) |
| * goto out; |
| */ |
| EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ |
| EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ |
| |
| offset = ctx->tail_call_indirect_label - (prog + 2 - start); |
| EMIT2(X86_JA, offset); /* ja out */ |
| EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ |
| EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ |
| |
| /* prog = array->ptrs[index]; */ |
| EMIT4_off32(0x48, 0x8B, 0x8C, 0xD6, /* mov rcx, [rsi + rdx * 8 + offsetof(...)] */ |
| offsetof(struct bpf_array, ptrs)); |
| |
| /* |
| * if (prog == NULL) |
| * goto out; |
| */ |
| EMIT3(0x48, 0x85, 0xC9); /* test rcx,rcx */ |
| |
| offset = ctx->tail_call_indirect_label - (prog + 2 - start); |
| EMIT2(X86_JE, offset); /* je out */ |
| |
| pop_callee_regs(&prog, callee_regs_used); |
| |
| EMIT1(0x58); /* pop rax */ |
| if (stack_depth) |
| EMIT3_off32(0x48, 0x81, 0xC4, /* add rsp, sd */ |
| round_up(stack_depth, 8)); |
| |
| /* goto *(prog->bpf_func + X86_TAIL_CALL_OFFSET); */ |
| EMIT4(0x48, 0x8B, 0x49, /* mov rcx, qword ptr [rcx + 32] */ |
| offsetof(struct bpf_prog, bpf_func)); |
| EMIT4(0x48, 0x83, 0xC1, /* add rcx, X86_TAIL_CALL_OFFSET */ |
| X86_TAIL_CALL_OFFSET); |
| /* |
| * Now we're ready to jump into next BPF program |
| * rdi == ctx (1st arg) |
| * rcx == prog->bpf_func + X86_TAIL_CALL_OFFSET |
| */ |
| emit_indirect_jump(&prog, 1 /* rcx */, ip + (prog - start)); |
| |
| /* out: */ |
| ctx->tail_call_indirect_label = prog - start; |
| *pprog = prog; |
| } |
| |
| static void emit_bpf_tail_call_direct(struct bpf_jit_poke_descriptor *poke, |
| u8 **pprog, u8 *ip, |
| bool *callee_regs_used, u32 stack_depth, |
| struct jit_context *ctx) |
| { |
| int tcc_off = -4 - round_up(stack_depth, 8); |
| u8 *prog = *pprog, *start = *pprog; |
| int offset; |
| |
| /* |
| * if (tail_call_cnt > MAX_TAIL_CALL_CNT) |
| * goto out; |
| */ |
| EMIT2_off32(0x8B, 0x85, tcc_off); /* mov eax, dword ptr [rbp - tcc_off] */ |
| EMIT3(0x83, 0xF8, MAX_TAIL_CALL_CNT); /* cmp eax, MAX_TAIL_CALL_CNT */ |
| |
| offset = ctx->tail_call_direct_label - (prog + 2 - start); |
| EMIT2(X86_JA, offset); /* ja out */ |
| EMIT3(0x83, 0xC0, 0x01); /* add eax, 1 */ |
| EMIT2_off32(0x89, 0x85, tcc_off); /* mov dword ptr [rbp - tcc_off], eax */ |
| |
| poke->tailcall_bypass = ip + (prog - start); |
| poke->adj_off = X86_TAIL_CALL_OFFSET; |
| poke->tailcall_target = ip + ctx->tail_call_direct_label - X86_PATCH_SIZE; |
| poke->bypass_addr = (u8 *)poke->tailcall_target + X86_PATCH_SIZE; |
| |
| emit_jump(&prog, (u8 *)poke->tailcall_target + X86_PATCH_SIZE, |
| poke->tailcall_bypass); |
| |
| pop_callee_regs(&prog, callee_regs_used); |
| EMIT1(0x58); /* pop rax */ |
| if (stack_depth) |
| EMIT3_off32(0x48, 0x81, 0xC4, round_up(stack_depth, 8)); |
| |
| memcpy(prog, x86_nops[5], X86_PATCH_SIZE); |
| prog += X86_PATCH_SIZE; |
| |
| /* out: */ |
| ctx->tail_call_direct_label = prog - start; |
| |
| *pprog = prog; |
| } |
| |
| static void bpf_tail_call_direct_fixup(struct bpf_prog *prog) |
| { |
| struct bpf_jit_poke_descriptor *poke; |
| struct bpf_array *array; |
| struct bpf_prog *target; |
| int i, ret; |
| |
| for (i = 0; i < prog->aux->size_poke_tab; i++) { |
| poke = &prog->aux->poke_tab[i]; |
| if (poke->aux && poke->aux != prog->aux) |
| continue; |
| |
| WARN_ON_ONCE(READ_ONCE(poke->tailcall_target_stable)); |
| |
| if (poke->reason != BPF_POKE_REASON_TAIL_CALL) |
| continue; |
| |
| array = container_of(poke->tail_call.map, struct bpf_array, map); |
| mutex_lock(&array->aux->poke_mutex); |
| target = array->ptrs[poke->tail_call.key]; |
| if (target) { |
| /* Plain memcpy is used when image is not live yet |
| * and still not locked as read-only. Once poke |
| * location is active (poke->tailcall_target_stable), |
| * any parallel bpf_arch_text_poke() might occur |
| * still on the read-write image until we finally |
| * locked it as read-only. Both modifications on |
| * the given image are under text_mutex to avoid |
| * interference. |
| */ |
| ret = __bpf_arch_text_poke(poke->tailcall_target, |
| BPF_MOD_JUMP, NULL, |
| (u8 *)target->bpf_func + |
| poke->adj_off, false); |
| BUG_ON(ret < 0); |
| ret = __bpf_arch_text_poke(poke->tailcall_bypass, |
| BPF_MOD_JUMP, |
| (u8 *)poke->tailcall_target + |
| X86_PATCH_SIZE, NULL, false); |
| BUG_ON(ret < 0); |
| } |
| WRITE_ONCE(poke->tailcall_target_stable, true); |
| mutex_unlock(&array->aux->poke_mutex); |
| } |
| } |
| |
| static void emit_mov_imm32(u8 **pprog, bool sign_propagate, |
| u32 dst_reg, const u32 imm32) |
| { |
| u8 *prog = *pprog; |
| u8 b1, b2, b3; |
| |
| /* |
| * Optimization: if imm32 is positive, use 'mov %eax, imm32' |
| * (which zero-extends imm32) to save 2 bytes. |
| */ |
| if (sign_propagate && (s32)imm32 < 0) { |
| /* 'mov %rax, imm32' sign extends imm32 */ |
| b1 = add_1mod(0x48, dst_reg); |
| b2 = 0xC7; |
| b3 = 0xC0; |
| EMIT3_off32(b1, b2, add_1reg(b3, dst_reg), imm32); |
| goto done; |
| } |
| |
| /* |
| * Optimization: if imm32 is zero, use 'xor %eax, %eax' |
| * to save 3 bytes. |
| */ |
| if (imm32 == 0) { |
| if (is_ereg(dst_reg)) |
| EMIT1(add_2mod(0x40, dst_reg, dst_reg)); |
| b2 = 0x31; /* xor */ |
| b3 = 0xC0; |
| EMIT2(b2, add_2reg(b3, dst_reg, dst_reg)); |
| goto done; |
| } |
| |
| /* mov %eax, imm32 */ |
| if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| EMIT1_off32(add_1reg(0xB8, dst_reg), imm32); |
| done: |
| *pprog = prog; |
| } |
| |
| static void emit_mov_imm64(u8 **pprog, u32 dst_reg, |
| const u32 imm32_hi, const u32 imm32_lo) |
| { |
| u8 *prog = *pprog; |
| |
| if (is_uimm32(((u64)imm32_hi << 32) | (u32)imm32_lo)) { |
| /* |
| * For emitting plain u32, where sign bit must not be |
| * propagated LLVM tends to load imm64 over mov32 |
| * directly, so save couple of bytes by just doing |
| * 'mov %eax, imm32' instead. |
| */ |
| emit_mov_imm32(&prog, false, dst_reg, imm32_lo); |
| } else { |
| /* movabsq %rax, imm64 */ |
| EMIT2(add_1mod(0x48, dst_reg), add_1reg(0xB8, dst_reg)); |
| EMIT(imm32_lo, 4); |
| EMIT(imm32_hi, 4); |
| } |
| |
| *pprog = prog; |
| } |
| |
| static void emit_mov_reg(u8 **pprog, bool is64, u32 dst_reg, u32 src_reg) |
| { |
| u8 *prog = *pprog; |
| |
| if (is64) { |
| /* mov dst, src */ |
| EMIT_mov(dst_reg, src_reg); |
| } else { |
| /* mov32 dst, src */ |
| if (is_ereg(dst_reg) || is_ereg(src_reg)) |
| EMIT1(add_2mod(0x40, dst_reg, src_reg)); |
| EMIT2(0x89, add_2reg(0xC0, dst_reg, src_reg)); |
| } |
| |
| *pprog = prog; |
| } |
| |
| /* Emit the suffix (ModR/M etc) for addressing *(ptr_reg + off) and val_reg */ |
| static void emit_insn_suffix(u8 **pprog, u32 ptr_reg, u32 val_reg, int off) |
| { |
| u8 *prog = *pprog; |
| |
| if (is_imm8(off)) { |
| /* 1-byte signed displacement. |
| * |
| * If off == 0 we could skip this and save one extra byte, but |
| * special case of x86 R13 which always needs an offset is not |
| * worth the hassle |
| */ |
| EMIT2(add_2reg(0x40, ptr_reg, val_reg), off); |
| } else { |
| /* 4-byte signed displacement */ |
| EMIT1_off32(add_2reg(0x80, ptr_reg, val_reg), off); |
| } |
| *pprog = prog; |
| } |
| |
| /* |
| * Emit a REX byte if it will be necessary to address these registers |
| */ |
| static void maybe_emit_mod(u8 **pprog, u32 dst_reg, u32 src_reg, bool is64) |
| { |
| u8 *prog = *pprog; |
| |
| if (is64) |
| EMIT1(add_2mod(0x48, dst_reg, src_reg)); |
| else if (is_ereg(dst_reg) || is_ereg(src_reg)) |
| EMIT1(add_2mod(0x40, dst_reg, src_reg)); |
| *pprog = prog; |
| } |
| |
| /* LDX: dst_reg = *(u8*)(src_reg + off) */ |
| static void emit_ldx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) |
| { |
| u8 *prog = *pprog; |
| |
| switch (size) { |
| case BPF_B: |
| /* Emit 'movzx rax, byte ptr [rax + off]' */ |
| EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB6); |
| break; |
| case BPF_H: |
| /* Emit 'movzx rax, word ptr [rax + off]' */ |
| EMIT3(add_2mod(0x48, src_reg, dst_reg), 0x0F, 0xB7); |
| break; |
| case BPF_W: |
| /* Emit 'mov eax, dword ptr [rax+0x14]' */ |
| if (is_ereg(dst_reg) || is_ereg(src_reg)) |
| EMIT2(add_2mod(0x40, src_reg, dst_reg), 0x8B); |
| else |
| EMIT1(0x8B); |
| break; |
| case BPF_DW: |
| /* Emit 'mov rax, qword ptr [rax+0x14]' */ |
| EMIT2(add_2mod(0x48, src_reg, dst_reg), 0x8B); |
| break; |
| } |
| emit_insn_suffix(&prog, src_reg, dst_reg, off); |
| *pprog = prog; |
| } |
| |
| /* STX: *(u8*)(dst_reg + off) = src_reg */ |
| static void emit_stx(u8 **pprog, u32 size, u32 dst_reg, u32 src_reg, int off) |
| { |
| u8 *prog = *pprog; |
| |
| switch (size) { |
| case BPF_B: |
| /* Emit 'mov byte ptr [rax + off], al' */ |
| if (is_ereg(dst_reg) || is_ereg_8l(src_reg)) |
| /* Add extra byte for eregs or SIL,DIL,BPL in src_reg */ |
| EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x88); |
| else |
| EMIT1(0x88); |
| break; |
| case BPF_H: |
| if (is_ereg(dst_reg) || is_ereg(src_reg)) |
| EMIT3(0x66, add_2mod(0x40, dst_reg, src_reg), 0x89); |
| else |
| EMIT2(0x66, 0x89); |
| break; |
| case BPF_W: |
| if (is_ereg(dst_reg) || is_ereg(src_reg)) |
| EMIT2(add_2mod(0x40, dst_reg, src_reg), 0x89); |
| else |
| EMIT1(0x89); |
| break; |
| case BPF_DW: |
| EMIT2(add_2mod(0x48, dst_reg, src_reg), 0x89); |
| break; |
| } |
| emit_insn_suffix(&prog, dst_reg, src_reg, off); |
| *pprog = prog; |
| } |
| |
| static int emit_atomic(u8 **pprog, u8 atomic_op, |
| u32 dst_reg, u32 src_reg, s16 off, u8 bpf_size) |
| { |
| u8 *prog = *pprog; |
| |
| EMIT1(0xF0); /* lock prefix */ |
| |
| maybe_emit_mod(&prog, dst_reg, src_reg, bpf_size == BPF_DW); |
| |
| /* emit opcode */ |
| switch (atomic_op) { |
| case BPF_ADD: |
| case BPF_SUB: |
| case BPF_AND: |
| case BPF_OR: |
| case BPF_XOR: |
| /* lock *(u32/u64*)(dst_reg + off) <op>= src_reg */ |
| EMIT1(simple_alu_opcodes[atomic_op]); |
| break; |
| case BPF_ADD | BPF_FETCH: |
| /* src_reg = atomic_fetch_add(dst_reg + off, src_reg); */ |
| EMIT2(0x0F, 0xC1); |
| break; |
| case BPF_XCHG: |
| /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ |
| EMIT1(0x87); |
| break; |
| case BPF_CMPXCHG: |
| /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ |
| EMIT2(0x0F, 0xB1); |
| break; |
| default: |
| pr_err("bpf_jit: unknown atomic opcode %02x\n", atomic_op); |
| return -EFAULT; |
| } |
| |
| emit_insn_suffix(&prog, dst_reg, src_reg, off); |
| |
| *pprog = prog; |
| return 0; |
| } |
| |
| bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs) |
| { |
| u32 reg = x->fixup >> 8; |
| |
| /* jump over faulting load and clear dest register */ |
| *(unsigned long *)((void *)regs + reg) = 0; |
| regs->ip += x->fixup & 0xff; |
| return true; |
| } |
| |
| static void detect_reg_usage(struct bpf_insn *insn, int insn_cnt, |
| bool *regs_used, bool *tail_call_seen) |
| { |
| int i; |
| |
| for (i = 1; i <= insn_cnt; i++, insn++) { |
| if (insn->code == (BPF_JMP | BPF_TAIL_CALL)) |
| *tail_call_seen = true; |
| if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) |
| regs_used[0] = true; |
| if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) |
| regs_used[1] = true; |
| if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) |
| regs_used[2] = true; |
| if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) |
| regs_used[3] = true; |
| } |
| } |
| |
| static void emit_nops(u8 **pprog, int len) |
| { |
| u8 *prog = *pprog; |
| int i, noplen; |
| |
| while (len > 0) { |
| noplen = len; |
| |
| if (noplen > ASM_NOP_MAX) |
| noplen = ASM_NOP_MAX; |
| |
| for (i = 0; i < noplen; i++) |
| EMIT1(x86_nops[noplen][i]); |
| len -= noplen; |
| } |
| |
| *pprog = prog; |
| } |
| |
| #define INSN_SZ_DIFF (((addrs[i] - addrs[i - 1]) - (prog - temp))) |
| |
| static int do_jit(struct bpf_prog *bpf_prog, int *addrs, u8 *image, |
| int oldproglen, struct jit_context *ctx, bool jmp_padding) |
| { |
| bool tail_call_reachable = bpf_prog->aux->tail_call_reachable; |
| struct bpf_insn *insn = bpf_prog->insnsi; |
| bool callee_regs_used[4] = {}; |
| int insn_cnt = bpf_prog->len; |
| bool tail_call_seen = false; |
| bool seen_exit = false; |
| u8 temp[BPF_MAX_INSN_SIZE + BPF_INSN_SAFETY]; |
| int i, excnt = 0; |
| int ilen, proglen = 0; |
| u8 *prog = temp; |
| int err; |
| |
| detect_reg_usage(insn, insn_cnt, callee_regs_used, |
| &tail_call_seen); |
| |
| /* tail call's presence in current prog implies it is reachable */ |
| tail_call_reachable |= tail_call_seen; |
| |
| emit_prologue(&prog, bpf_prog->aux->stack_depth, |
| bpf_prog_was_classic(bpf_prog), tail_call_reachable, |
| bpf_prog->aux->func_idx != 0); |
| push_callee_regs(&prog, callee_regs_used); |
| |
| ilen = prog - temp; |
| if (image) |
| memcpy(image + proglen, temp, ilen); |
| proglen += ilen; |
| addrs[0] = proglen; |
| prog = temp; |
| |
| for (i = 1; i <= insn_cnt; i++, insn++) { |
| const s32 imm32 = insn->imm; |
| u32 dst_reg = insn->dst_reg; |
| u32 src_reg = insn->src_reg; |
| u8 b2 = 0, b3 = 0; |
| u8 *start_of_ldx; |
| s64 jmp_offset; |
| u8 jmp_cond; |
| u8 *func; |
| int nops; |
| |
| switch (insn->code) { |
| /* ALU */ |
| case BPF_ALU | BPF_ADD | BPF_X: |
| case BPF_ALU | BPF_SUB | BPF_X: |
| case BPF_ALU | BPF_AND | BPF_X: |
| case BPF_ALU | BPF_OR | BPF_X: |
| case BPF_ALU | BPF_XOR | BPF_X: |
| case BPF_ALU64 | BPF_ADD | BPF_X: |
| case BPF_ALU64 | BPF_SUB | BPF_X: |
| case BPF_ALU64 | BPF_AND | BPF_X: |
| case BPF_ALU64 | BPF_OR | BPF_X: |
| case BPF_ALU64 | BPF_XOR | BPF_X: |
| maybe_emit_mod(&prog, dst_reg, src_reg, |
| BPF_CLASS(insn->code) == BPF_ALU64); |
| b2 = simple_alu_opcodes[BPF_OP(insn->code)]; |
| EMIT2(b2, add_2reg(0xC0, dst_reg, src_reg)); |
| break; |
| |
| case BPF_ALU64 | BPF_MOV | BPF_X: |
| case BPF_ALU | BPF_MOV | BPF_X: |
| emit_mov_reg(&prog, |
| BPF_CLASS(insn->code) == BPF_ALU64, |
| dst_reg, src_reg); |
| break; |
| |
| /* neg dst */ |
| case BPF_ALU | BPF_NEG: |
| case BPF_ALU64 | BPF_NEG: |
| if (BPF_CLASS(insn->code) == BPF_ALU64) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| EMIT2(0xF7, add_1reg(0xD8, dst_reg)); |
| break; |
| |
| case BPF_ALU | BPF_ADD | BPF_K: |
| case BPF_ALU | BPF_SUB | BPF_K: |
| case BPF_ALU | BPF_AND | BPF_K: |
| case BPF_ALU | BPF_OR | BPF_K: |
| case BPF_ALU | BPF_XOR | BPF_K: |
| case BPF_ALU64 | BPF_ADD | BPF_K: |
| case BPF_ALU64 | BPF_SUB | BPF_K: |
| case BPF_ALU64 | BPF_AND | BPF_K: |
| case BPF_ALU64 | BPF_OR | BPF_K: |
| case BPF_ALU64 | BPF_XOR | BPF_K: |
| if (BPF_CLASS(insn->code) == BPF_ALU64) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| |
| /* |
| * b3 holds 'normal' opcode, b2 short form only valid |
| * in case dst is eax/rax. |
| */ |
| switch (BPF_OP(insn->code)) { |
| case BPF_ADD: |
| b3 = 0xC0; |
| b2 = 0x05; |
| break; |
| case BPF_SUB: |
| b3 = 0xE8; |
| b2 = 0x2D; |
| break; |
| case BPF_AND: |
| b3 = 0xE0; |
| b2 = 0x25; |
| break; |
| case BPF_OR: |
| b3 = 0xC8; |
| b2 = 0x0D; |
| break; |
| case BPF_XOR: |
| b3 = 0xF0; |
| b2 = 0x35; |
| break; |
| } |
| |
| if (is_imm8(imm32)) |
| EMIT3(0x83, add_1reg(b3, dst_reg), imm32); |
| else if (is_axreg(dst_reg)) |
| EMIT1_off32(b2, imm32); |
| else |
| EMIT2_off32(0x81, add_1reg(b3, dst_reg), imm32); |
| break; |
| |
| case BPF_ALU64 | BPF_MOV | BPF_K: |
| case BPF_ALU | BPF_MOV | BPF_K: |
| emit_mov_imm32(&prog, BPF_CLASS(insn->code) == BPF_ALU64, |
| dst_reg, imm32); |
| break; |
| |
| case BPF_LD | BPF_IMM | BPF_DW: |
| emit_mov_imm64(&prog, dst_reg, insn[1].imm, insn[0].imm); |
| insn++; |
| i++; |
| break; |
| |
| /* dst %= src, dst /= src, dst %= imm32, dst /= imm32 */ |
| case BPF_ALU | BPF_MOD | BPF_X: |
| case BPF_ALU | BPF_DIV | BPF_X: |
| case BPF_ALU | BPF_MOD | BPF_K: |
| case BPF_ALU | BPF_DIV | BPF_K: |
| case BPF_ALU64 | BPF_MOD | BPF_X: |
| case BPF_ALU64 | BPF_DIV | BPF_X: |
| case BPF_ALU64 | BPF_MOD | BPF_K: |
| case BPF_ALU64 | BPF_DIV | BPF_K: |
| EMIT1(0x50); /* push rax */ |
| EMIT1(0x52); /* push rdx */ |
| |
| if (BPF_SRC(insn->code) == BPF_X) |
| /* mov r11, src_reg */ |
| EMIT_mov(AUX_REG, src_reg); |
| else |
| /* mov r11, imm32 */ |
| EMIT3_off32(0x49, 0xC7, 0xC3, imm32); |
| |
| /* mov rax, dst_reg */ |
| EMIT_mov(BPF_REG_0, dst_reg); |
| |
| /* |
| * xor edx, edx |
| * equivalent to 'xor rdx, rdx', but one byte less |
| */ |
| EMIT2(0x31, 0xd2); |
| |
| if (BPF_CLASS(insn->code) == BPF_ALU64) |
| /* div r11 */ |
| EMIT3(0x49, 0xF7, 0xF3); |
| else |
| /* div r11d */ |
| EMIT3(0x41, 0xF7, 0xF3); |
| |
| if (BPF_OP(insn->code) == BPF_MOD) |
| /* mov r11, rdx */ |
| EMIT3(0x49, 0x89, 0xD3); |
| else |
| /* mov r11, rax */ |
| EMIT3(0x49, 0x89, 0xC3); |
| |
| EMIT1(0x5A); /* pop rdx */ |
| EMIT1(0x58); /* pop rax */ |
| |
| /* mov dst_reg, r11 */ |
| EMIT_mov(dst_reg, AUX_REG); |
| break; |
| |
| case BPF_ALU | BPF_MUL | BPF_K: |
| case BPF_ALU | BPF_MUL | BPF_X: |
| case BPF_ALU64 | BPF_MUL | BPF_K: |
| case BPF_ALU64 | BPF_MUL | BPF_X: |
| { |
| bool is64 = BPF_CLASS(insn->code) == BPF_ALU64; |
| |
| if (dst_reg != BPF_REG_0) |
| EMIT1(0x50); /* push rax */ |
| if (dst_reg != BPF_REG_3) |
| EMIT1(0x52); /* push rdx */ |
| |
| /* mov r11, dst_reg */ |
| EMIT_mov(AUX_REG, dst_reg); |
| |
| if (BPF_SRC(insn->code) == BPF_X) |
| emit_mov_reg(&prog, is64, BPF_REG_0, src_reg); |
| else |
| emit_mov_imm32(&prog, is64, BPF_REG_0, imm32); |
| |
| if (is64) |
| EMIT1(add_1mod(0x48, AUX_REG)); |
| else if (is_ereg(AUX_REG)) |
| EMIT1(add_1mod(0x40, AUX_REG)); |
| /* mul(q) r11 */ |
| EMIT2(0xF7, add_1reg(0xE0, AUX_REG)); |
| |
| if (dst_reg != BPF_REG_3) |
| EMIT1(0x5A); /* pop rdx */ |
| if (dst_reg != BPF_REG_0) { |
| /* mov dst_reg, rax */ |
| EMIT_mov(dst_reg, BPF_REG_0); |
| EMIT1(0x58); /* pop rax */ |
| } |
| break; |
| } |
| /* Shifts */ |
| case BPF_ALU | BPF_LSH | BPF_K: |
| case BPF_ALU | BPF_RSH | BPF_K: |
| case BPF_ALU | BPF_ARSH | BPF_K: |
| case BPF_ALU64 | BPF_LSH | BPF_K: |
| case BPF_ALU64 | BPF_RSH | BPF_K: |
| case BPF_ALU64 | BPF_ARSH | BPF_K: |
| if (BPF_CLASS(insn->code) == BPF_ALU64) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| |
| b3 = simple_alu_opcodes[BPF_OP(insn->code)]; |
| if (imm32 == 1) |
| EMIT2(0xD1, add_1reg(b3, dst_reg)); |
| else |
| EMIT3(0xC1, add_1reg(b3, dst_reg), imm32); |
| break; |
| |
| case BPF_ALU | BPF_LSH | BPF_X: |
| case BPF_ALU | BPF_RSH | BPF_X: |
| case BPF_ALU | BPF_ARSH | BPF_X: |
| case BPF_ALU64 | BPF_LSH | BPF_X: |
| case BPF_ALU64 | BPF_RSH | BPF_X: |
| case BPF_ALU64 | BPF_ARSH | BPF_X: |
| |
| /* Check for bad case when dst_reg == rcx */ |
| if (dst_reg == BPF_REG_4) { |
| /* mov r11, dst_reg */ |
| EMIT_mov(AUX_REG, dst_reg); |
| dst_reg = AUX_REG; |
| } |
| |
| if (src_reg != BPF_REG_4) { /* common case */ |
| EMIT1(0x51); /* push rcx */ |
| |
| /* mov rcx, src_reg */ |
| EMIT_mov(BPF_REG_4, src_reg); |
| } |
| |
| /* shl %rax, %cl | shr %rax, %cl | sar %rax, %cl */ |
| if (BPF_CLASS(insn->code) == BPF_ALU64) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| |
| b3 = simple_alu_opcodes[BPF_OP(insn->code)]; |
| EMIT2(0xD3, add_1reg(b3, dst_reg)); |
| |
| if (src_reg != BPF_REG_4) |
| EMIT1(0x59); /* pop rcx */ |
| |
| if (insn->dst_reg == BPF_REG_4) |
| /* mov dst_reg, r11 */ |
| EMIT_mov(insn->dst_reg, AUX_REG); |
| break; |
| |
| case BPF_ALU | BPF_END | BPF_FROM_BE: |
| switch (imm32) { |
| case 16: |
| /* Emit 'ror %ax, 8' to swap lower 2 bytes */ |
| EMIT1(0x66); |
| if (is_ereg(dst_reg)) |
| EMIT1(0x41); |
| EMIT3(0xC1, add_1reg(0xC8, dst_reg), 8); |
| |
| /* Emit 'movzwl eax, ax' */ |
| if (is_ereg(dst_reg)) |
| EMIT3(0x45, 0x0F, 0xB7); |
| else |
| EMIT2(0x0F, 0xB7); |
| EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); |
| break; |
| case 32: |
| /* Emit 'bswap eax' to swap lower 4 bytes */ |
| if (is_ereg(dst_reg)) |
| EMIT2(0x41, 0x0F); |
| else |
| EMIT1(0x0F); |
| EMIT1(add_1reg(0xC8, dst_reg)); |
| break; |
| case 64: |
| /* Emit 'bswap rax' to swap 8 bytes */ |
| EMIT3(add_1mod(0x48, dst_reg), 0x0F, |
| add_1reg(0xC8, dst_reg)); |
| break; |
| } |
| break; |
| |
| case BPF_ALU | BPF_END | BPF_FROM_LE: |
| switch (imm32) { |
| case 16: |
| /* |
| * Emit 'movzwl eax, ax' to zero extend 16-bit |
| * into 64 bit |
| */ |
| if (is_ereg(dst_reg)) |
| EMIT3(0x45, 0x0F, 0xB7); |
| else |
| EMIT2(0x0F, 0xB7); |
| EMIT1(add_2reg(0xC0, dst_reg, dst_reg)); |
| break; |
| case 32: |
| /* Emit 'mov eax, eax' to clear upper 32-bits */ |
| if (is_ereg(dst_reg)) |
| EMIT1(0x45); |
| EMIT2(0x89, add_2reg(0xC0, dst_reg, dst_reg)); |
| break; |
| case 64: |
| /* nop */ |
| break; |
| } |
| break; |
| |
| /* speculation barrier */ |
| case BPF_ST | BPF_NOSPEC: |
| if (boot_cpu_has(X86_FEATURE_XMM2)) |
| EMIT_LFENCE(); |
| break; |
| |
| /* ST: *(u8*)(dst_reg + off) = imm */ |
| case BPF_ST | BPF_MEM | BPF_B: |
| if (is_ereg(dst_reg)) |
| EMIT2(0x41, 0xC6); |
| else |
| EMIT1(0xC6); |
| goto st; |
| case BPF_ST | BPF_MEM | BPF_H: |
| if (is_ereg(dst_reg)) |
| EMIT3(0x66, 0x41, 0xC7); |
| else |
| EMIT2(0x66, 0xC7); |
| goto st; |
| case BPF_ST | BPF_MEM | BPF_W: |
| if (is_ereg(dst_reg)) |
| EMIT2(0x41, 0xC7); |
| else |
| EMIT1(0xC7); |
| goto st; |
| case BPF_ST | BPF_MEM | BPF_DW: |
| EMIT2(add_1mod(0x48, dst_reg), 0xC7); |
| |
| st: if (is_imm8(insn->off)) |
| EMIT2(add_1reg(0x40, dst_reg), insn->off); |
| else |
| EMIT1_off32(add_1reg(0x80, dst_reg), insn->off); |
| |
| EMIT(imm32, bpf_size_to_x86_bytes(BPF_SIZE(insn->code))); |
| break; |
| |
| /* STX: *(u8*)(dst_reg + off) = src_reg */ |
| case BPF_STX | BPF_MEM | BPF_B: |
| case BPF_STX | BPF_MEM | BPF_H: |
| case BPF_STX | BPF_MEM | BPF_W: |
| case BPF_STX | BPF_MEM | BPF_DW: |
| emit_stx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); |
| break; |
| |
| /* LDX: dst_reg = *(u8*)(src_reg + off) */ |
| case BPF_LDX | BPF_MEM | BPF_B: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_B: |
| case BPF_LDX | BPF_MEM | BPF_H: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_H: |
| case BPF_LDX | BPF_MEM | BPF_W: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_W: |
| case BPF_LDX | BPF_MEM | BPF_DW: |
| case BPF_LDX | BPF_PROBE_MEM | BPF_DW: |
| if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { |
| /* test src_reg, src_reg */ |
| maybe_emit_mod(&prog, src_reg, src_reg, true); /* always 1 byte */ |
| EMIT2(0x85, add_2reg(0xC0, src_reg, src_reg)); |
| /* jne start_of_ldx */ |
| EMIT2(X86_JNE, 0); |
| /* xor dst_reg, dst_reg */ |
| emit_mov_imm32(&prog, false, dst_reg, 0); |
| /* jmp byte_after_ldx */ |
| EMIT2(0xEB, 0); |
| |
| /* populate jmp_offset for JNE above */ |
| temp[4] = prog - temp - 5 /* sizeof(test + jne) */; |
| start_of_ldx = prog; |
| } |
| emit_ldx(&prog, BPF_SIZE(insn->code), dst_reg, src_reg, insn->off); |
| if (BPF_MODE(insn->code) == BPF_PROBE_MEM) { |
| struct exception_table_entry *ex; |
| u8 *_insn = image + proglen + (start_of_ldx - temp); |
| s64 delta; |
| |
| /* populate jmp_offset for JMP above */ |
| start_of_ldx[-1] = prog - start_of_ldx; |
| |
| if (!bpf_prog->aux->extable) |
| break; |
| |
| if (excnt >= bpf_prog->aux->num_exentries) { |
| pr_err("ex gen bug\n"); |
| return -EFAULT; |
| } |
| ex = &bpf_prog->aux->extable[excnt++]; |
| |
| delta = _insn - (u8 *)&ex->insn; |
| if (!is_simm32(delta)) { |
| pr_err("extable->insn doesn't fit into 32-bit\n"); |
| return -EFAULT; |
| } |
| ex->insn = delta; |
| |
| ex->type = EX_TYPE_BPF; |
| |
| if (dst_reg > BPF_REG_9) { |
| pr_err("verifier error\n"); |
| return -EFAULT; |
| } |
| /* |
| * Compute size of x86 insn and its target dest x86 register. |
| * ex_handler_bpf() will use lower 8 bits to adjust |
| * pt_regs->ip to jump over this x86 instruction |
| * and upper bits to figure out which pt_regs to zero out. |
| * End result: x86 insn "mov rbx, qword ptr [rax+0x14]" |
| * of 4 bytes will be ignored and rbx will be zero inited. |
| */ |
| ex->fixup = (prog - temp) | (reg2pt_regs[dst_reg] << 8); |
| } |
| break; |
| |
| case BPF_STX | BPF_ATOMIC | BPF_W: |
| case BPF_STX | BPF_ATOMIC | BPF_DW: |
| if (insn->imm == (BPF_AND | BPF_FETCH) || |
| insn->imm == (BPF_OR | BPF_FETCH) || |
| insn->imm == (BPF_XOR | BPF_FETCH)) { |
| bool is64 = BPF_SIZE(insn->code) == BPF_DW; |
| u32 real_src_reg = src_reg; |
| u32 real_dst_reg = dst_reg; |
| u8 *branch_target; |
| |
| /* |
| * Can't be implemented with a single x86 insn. |
| * Need to do a CMPXCHG loop. |
| */ |
| |
| /* Will need RAX as a CMPXCHG operand so save R0 */ |
| emit_mov_reg(&prog, true, BPF_REG_AX, BPF_REG_0); |
| if (src_reg == BPF_REG_0) |
| real_src_reg = BPF_REG_AX; |
| if (dst_reg == BPF_REG_0) |
| real_dst_reg = BPF_REG_AX; |
| |
| branch_target = prog; |
| /* Load old value */ |
| emit_ldx(&prog, BPF_SIZE(insn->code), |
| BPF_REG_0, real_dst_reg, insn->off); |
| /* |
| * Perform the (commutative) operation locally, |
| * put the result in the AUX_REG. |
| */ |
| emit_mov_reg(&prog, is64, AUX_REG, BPF_REG_0); |
| maybe_emit_mod(&prog, AUX_REG, real_src_reg, is64); |
| EMIT2(simple_alu_opcodes[BPF_OP(insn->imm)], |
| add_2reg(0xC0, AUX_REG, real_src_reg)); |
| /* Attempt to swap in new value */ |
| err = emit_atomic(&prog, BPF_CMPXCHG, |
| real_dst_reg, AUX_REG, |
| insn->off, |
| BPF_SIZE(insn->code)); |
| if (WARN_ON(err)) |
| return err; |
| /* |
| * ZF tells us whether we won the race. If it's |
| * cleared we need to try again. |
| */ |
| EMIT2(X86_JNE, -(prog - branch_target) - 2); |
| /* Return the pre-modification value */ |
| emit_mov_reg(&prog, is64, real_src_reg, BPF_REG_0); |
| /* Restore R0 after clobbering RAX */ |
| emit_mov_reg(&prog, true, BPF_REG_0, BPF_REG_AX); |
| break; |
| } |
| |
| err = emit_atomic(&prog, insn->imm, dst_reg, src_reg, |
| insn->off, BPF_SIZE(insn->code)); |
| if (err) |
| return err; |
| break; |
| |
| /* call */ |
| case BPF_JMP | BPF_CALL: |
| func = (u8 *) __bpf_call_base + imm32; |
| if (tail_call_reachable) { |
| EMIT3_off32(0x48, 0x8B, 0x85, |
| -(bpf_prog->aux->stack_depth + 8)); |
| if (!imm32 || emit_call(&prog, func, image + addrs[i - 1] + 7)) |
| return -EINVAL; |
| } else { |
| if (!imm32 || emit_call(&prog, func, image + addrs[i - 1])) |
| return -EINVAL; |
| } |
| break; |
| |
| case BPF_JMP | BPF_TAIL_CALL: |
| if (imm32) |
| emit_bpf_tail_call_direct(&bpf_prog->aux->poke_tab[imm32 - 1], |
| &prog, image + addrs[i - 1], |
| callee_regs_used, |
| bpf_prog->aux->stack_depth, |
| ctx); |
| else |
| emit_bpf_tail_call_indirect(&prog, |
| callee_regs_used, |
| bpf_prog->aux->stack_depth, |
| image + addrs[i - 1], |
| ctx); |
| break; |
| |
| /* cond jump */ |
| case BPF_JMP | BPF_JEQ | BPF_X: |
| case BPF_JMP | BPF_JNE | BPF_X: |
| case BPF_JMP | BPF_JGT | BPF_X: |
| case BPF_JMP | BPF_JLT | BPF_X: |
| case BPF_JMP | BPF_JGE | BPF_X: |
| case BPF_JMP | BPF_JLE | BPF_X: |
| case BPF_JMP | BPF_JSGT | BPF_X: |
| case BPF_JMP | BPF_JSLT | BPF_X: |
| case BPF_JMP | BPF_JSGE | BPF_X: |
| case BPF_JMP | BPF_JSLE | BPF_X: |
| case BPF_JMP32 | BPF_JEQ | BPF_X: |
| case BPF_JMP32 | BPF_JNE | BPF_X: |
| case BPF_JMP32 | BPF_JGT | BPF_X: |
| case BPF_JMP32 | BPF_JLT | BPF_X: |
| case BPF_JMP32 | BPF_JGE | BPF_X: |
| case BPF_JMP32 | BPF_JLE | BPF_X: |
| case BPF_JMP32 | BPF_JSGT | BPF_X: |
| case BPF_JMP32 | BPF_JSLT | BPF_X: |
| case BPF_JMP32 | BPF_JSGE | BPF_X: |
| case BPF_JMP32 | BPF_JSLE | BPF_X: |
| /* cmp dst_reg, src_reg */ |
| maybe_emit_mod(&prog, dst_reg, src_reg, |
| BPF_CLASS(insn->code) == BPF_JMP); |
| EMIT2(0x39, add_2reg(0xC0, dst_reg, src_reg)); |
| goto emit_cond_jmp; |
| |
| case BPF_JMP | BPF_JSET | BPF_X: |
| case BPF_JMP32 | BPF_JSET | BPF_X: |
| /* test dst_reg, src_reg */ |
| maybe_emit_mod(&prog, dst_reg, src_reg, |
| BPF_CLASS(insn->code) == BPF_JMP); |
| EMIT2(0x85, add_2reg(0xC0, dst_reg, src_reg)); |
| goto emit_cond_jmp; |
| |
| case BPF_JMP | BPF_JSET | BPF_K: |
| case BPF_JMP32 | BPF_JSET | BPF_K: |
| /* test dst_reg, imm32 */ |
| if (BPF_CLASS(insn->code) == BPF_JMP) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| EMIT2_off32(0xF7, add_1reg(0xC0, dst_reg), imm32); |
| goto emit_cond_jmp; |
| |
| case BPF_JMP | BPF_JEQ | BPF_K: |
| case BPF_JMP | BPF_JNE | BPF_K: |
| case BPF_JMP | BPF_JGT | BPF_K: |
| case BPF_JMP | BPF_JLT | BPF_K: |
| case BPF_JMP | BPF_JGE | BPF_K: |
| case BPF_JMP | BPF_JLE | BPF_K: |
| case BPF_JMP | BPF_JSGT | BPF_K: |
| case BPF_JMP | BPF_JSLT | BPF_K: |
| case BPF_JMP | BPF_JSGE | BPF_K: |
| case BPF_JMP | BPF_JSLE | BPF_K: |
| case BPF_JMP32 | BPF_JEQ | BPF_K: |
| case BPF_JMP32 | BPF_JNE | BPF_K: |
| case BPF_JMP32 | BPF_JGT | BPF_K: |
| case BPF_JMP32 | BPF_JLT | BPF_K: |
| case BPF_JMP32 | BPF_JGE | BPF_K: |
| case BPF_JMP32 | BPF_JLE | BPF_K: |
| case BPF_JMP32 | BPF_JSGT | BPF_K: |
| case BPF_JMP32 | BPF_JSLT | BPF_K: |
| case BPF_JMP32 | BPF_JSGE | BPF_K: |
| case BPF_JMP32 | BPF_JSLE | BPF_K: |
| /* test dst_reg, dst_reg to save one extra byte */ |
| if (imm32 == 0) { |
| maybe_emit_mod(&prog, dst_reg, dst_reg, |
| BPF_CLASS(insn->code) == BPF_JMP); |
| EMIT2(0x85, add_2reg(0xC0, dst_reg, dst_reg)); |
| goto emit_cond_jmp; |
| } |
| |
| /* cmp dst_reg, imm8/32 */ |
| if (BPF_CLASS(insn->code) == BPF_JMP) |
| EMIT1(add_1mod(0x48, dst_reg)); |
| else if (is_ereg(dst_reg)) |
| EMIT1(add_1mod(0x40, dst_reg)); |
| |
| if (is_imm8(imm32)) |
| EMIT3(0x83, add_1reg(0xF8, dst_reg), imm32); |
| else |
| EMIT2_off32(0x81, add_1reg(0xF8, dst_reg), imm32); |
| |
| emit_cond_jmp: /* Convert BPF opcode to x86 */ |
| switch (BPF_OP(insn->code)) { |
| case BPF_JEQ: |
| jmp_cond = X86_JE; |
| break; |
| case BPF_JSET: |
| case BPF_JNE: |
| jmp_cond = X86_JNE; |
| break; |
| case BPF_JGT: |
| /* GT is unsigned '>', JA in x86 */ |
| jmp_cond = X86_JA; |
| break; |
| case BPF_JLT: |
| /* LT is unsigned '<', JB in x86 */ |
| jmp_cond = X86_JB; |
| break; |
| case BPF_JGE: |
| /* GE is unsigned '>=', JAE in x86 */ |
| jmp_cond = X86_JAE; |
| break; |
| case BPF_JLE: |
| /* LE is unsigned '<=', JBE in x86 */ |
| jmp_cond = X86_JBE; |
| break; |
| case BPF_JSGT: |
| /* Signed '>', GT in x86 */ |
| jmp_cond = X86_JG; |
| break; |
| case BPF_JSLT: |
| /* Signed '<', LT in x86 */ |
| jmp_cond = X86_JL; |
| break; |
| case BPF_JSGE: |
| /* Signed '>=', GE in x86 */ |
| jmp_cond = X86_JGE; |
| break; |
| case BPF_JSLE: |
| /* Signed '<=', LE in x86 */ |
| jmp_cond = X86_JLE; |
| break; |
| default: /* to silence GCC warning */ |
| return -EFAULT; |
| } |
| jmp_offset = addrs[i + insn->off] - addrs[i]; |
| if (is_imm8(jmp_offset)) { |
| if (jmp_padding) { |
| /* To keep the jmp_offset valid, the extra bytes are |
| * padded before the jump insn, so we subtract the |
| * 2 bytes of jmp_cond insn from INSN_SZ_DIFF. |
| * |
| * If the previous pass already emits an imm8 |
| * jmp_cond, then this BPF insn won't shrink, so |
| * "nops" is 0. |
| * |
| * On the other hand, if the previous pass emits an |
| * imm32 jmp_cond, the extra 4 bytes(*) is padded to |
| * keep the image from shrinking further. |
| * |
| * (*) imm32 jmp_cond is 6 bytes, and imm8 jmp_cond |
| * is 2 bytes, so the size difference is 4 bytes. |
| */ |
| nops = INSN_SZ_DIFF - 2; |
| if (nops != 0 && nops != 4) { |
| pr_err("unexpected jmp_cond padding: %d bytes\n", |
| nops); |
| return -EFAULT; |
| } |
| emit_nops(&prog, nops); |
| } |
| EMIT2(jmp_cond, jmp_offset); |
| } else if (is_simm32(jmp_offset)) { |
| EMIT2_off32(0x0F, jmp_cond + 0x10, jmp_offset); |
| } else { |
| pr_err("cond_jmp gen bug %llx\n", jmp_offset); |
| return -EFAULT; |
| } |
| |
| break; |
| |
| case BPF_JMP | BPF_JA: |
| if (insn->off == -1) |
| /* -1 jmp instructions will always jump |
| * backwards two bytes. Explicitly handling |
| * this case avoids wasting too many passes |
| * when there are long sequences of replaced |
| * dead code. |
| */ |
| jmp_offset = -2; |
| else |
| jmp_offset = addrs[i + insn->off] - addrs[i]; |
| |
| if (!jmp_offset) { |
| /* |
| * If jmp_padding is enabled, the extra nops will |
| * be inserted. Otherwise, optimize out nop jumps. |
| */ |
| if (jmp_padding) { |
| /* There are 3 possible conditions. |
| * (1) This BPF_JA is already optimized out in |
| * the previous run, so there is no need |
| * to pad any extra byte (0 byte). |
| * (2) The previous pass emits an imm8 jmp, |
| * so we pad 2 bytes to match the previous |
| * insn size. |
| * (3) Similarly, the previous pass emits an |
| * imm32 jmp, and 5 bytes is padded. |
| */ |
| nops = INSN_SZ_DIFF; |
| if (nops != 0 && nops != 2 && nops != 5) { |
| pr_err("unexpected nop jump padding: %d bytes\n", |
| nops); |
| return -EFAULT; |
| } |
| emit_nops(&prog, nops); |
| } |
| break; |
| } |
| emit_jmp: |
| if (is_imm8(jmp_offset)) { |
| if (jmp_padding) { |
| /* To avoid breaking jmp_offset, the extra bytes |
| * are padded before the actual jmp insn, so |
| * 2 bytes is subtracted from INSN_SZ_DIFF. |
| * |
| * If the previous pass already emits an imm8 |
| * jmp, there is nothing to pad (0 byte). |
| * |
| * If it emits an imm32 jmp (5 bytes) previously |
| * and now an imm8 jmp (2 bytes), then we pad |
| * (5 - 2 = 3) bytes to stop the image from |
| * shrinking further. |
| */ |
| nops = INSN_SZ_DIFF - 2; |
| if (nops != 0 && nops != 3) { |
| pr_err("unexpected jump padding: %d bytes\n", |
| nops); |
| return -EFAULT; |
| } |
| emit_nops(&prog, INSN_SZ_DIFF - 2); |
| } |
| EMIT2(0xEB, jmp_offset); |
| } else if (is_simm32(jmp_offset)) { |
| EMIT1_off32(0xE9, jmp_offset); |
| } else { |
| pr_err("jmp gen bug %llx\n", jmp_offset); |
| return -EFAULT; |
| } |
| break; |
| |
| case BPF_JMP | BPF_EXIT: |
| if (seen_exit) { |
| jmp_offset = ctx->cleanup_addr - addrs[i]; |
| goto emit_jmp; |
| } |
| seen_exit = true; |
| /* Update cleanup_addr */ |
| ctx->cleanup_addr = proglen; |
| pop_callee_regs(&prog, callee_regs_used); |
| EMIT1(0xC9); /* leave */ |
| EMIT1(0xC3); /* ret */ |
| break; |
| |
| default: |
| /* |
| * By design x86-64 JIT should support all BPF instructions. |
| * This error will be seen if new instruction was added |
| * to the interpreter, but not to the JIT, or if there is |
| * junk in bpf_prog. |
| */ |
| pr_err("bpf_jit: unknown opcode %02x\n", insn->code); |
| return -EINVAL; |
| } |
| |
| ilen = prog - temp; |
| if (ilen > BPF_MAX_INSN_SIZE) { |
| pr_err("bpf_jit: fatal insn size error\n"); |
| return -EFAULT; |
| } |
| |
| if (image) { |
| /* |
| * When populating the image, assert that: |
| * |
| * i) We do not write beyond the allocated space, and |
| * ii) addrs[i] did not change from the prior run, in order |
| * to validate assumptions made for computing branch |
| * displacements. |
| */ |
| if (unlikely(proglen + ilen > oldproglen || |
| proglen + ilen != addrs[i])) { |
| pr_err("bpf_jit: fatal error\n"); |
| return -EFAULT; |
| } |
| memcpy(image + proglen, temp, ilen); |
| } |
| proglen += ilen; |
| addrs[i] = proglen; |
| prog = temp; |
| } |
| |
| if (image && excnt != bpf_prog->aux->num_exentries) { |
| pr_err("extable is not populated\n"); |
| return -EFAULT; |
| } |
| return proglen; |
| } |
| |
| static void save_regs(const struct btf_func_model *m, u8 **prog, int nr_args, |
| int stack_size) |
| { |
| int i; |
| /* Store function arguments to stack. |
| * For a function that accepts two pointers the sequence will be: |
| * mov QWORD PTR [rbp-0x10],rdi |
| * mov QWORD PTR [rbp-0x8],rsi |
| */ |
| for (i = 0; i < min(nr_args, 6); i++) |
| emit_stx(prog, bytes_to_bpf_size(m->arg_size[i]), |
| BPF_REG_FP, |
| i == 5 ? X86_REG_R9 : BPF_REG_1 + i, |
| -(stack_size - i * 8)); |
| } |
| |
| static void restore_regs(const struct btf_func_model *m, u8 **prog, int nr_args, |
| int stack_size) |
| { |
| int i; |
| |
| /* Restore function arguments from stack. |
| * For a function that accepts two pointers the sequence will be: |
| * EMIT4(0x48, 0x8B, 0x7D, 0xF0); mov rdi,QWORD PTR [rbp-0x10] |
| * EMIT4(0x48, 0x8B, 0x75, 0xF8); mov rsi,QWORD PTR [rbp-0x8] |
| */ |
| for (i = 0; i < min(nr_args, 6); i++) |
| emit_ldx(prog, bytes_to_bpf_size(m->arg_size[i]), |
| i == 5 ? X86_REG_R9 : BPF_REG_1 + i, |
| BPF_REG_FP, |
| -(stack_size - i * 8)); |
| } |
| |
| static int invoke_bpf_prog(const struct btf_func_model *m, u8 **pprog, |
| struct bpf_prog *p, int stack_size, bool save_ret) |
| { |
| u8 *prog = *pprog; |
| u8 *jmp_insn; |
| |
| /* arg1: mov rdi, progs[i] */ |
| emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); |
| if (emit_call(&prog, |
| p->aux->sleepable ? __bpf_prog_enter_sleepable : |
| __bpf_prog_enter, prog)) |
| return -EINVAL; |
| /* remember prog start time returned by __bpf_prog_enter */ |
| emit_mov_reg(&prog, true, BPF_REG_6, BPF_REG_0); |
| |
| /* if (__bpf_prog_enter*(prog) == 0) |
| * goto skip_exec_of_prog; |
| */ |
| EMIT3(0x48, 0x85, 0xC0); /* test rax,rax */ |
| /* emit 2 nops that will be replaced with JE insn */ |
| jmp_insn = prog; |
| emit_nops(&prog, 2); |
| |
| /* arg1: lea rdi, [rbp - stack_size] */ |
| EMIT4(0x48, 0x8D, 0x7D, -stack_size); |
| /* arg2: progs[i]->insnsi for interpreter */ |
| if (!p->jited) |
| emit_mov_imm64(&prog, BPF_REG_2, |
| (long) p->insnsi >> 32, |
| (u32) (long) p->insnsi); |
| /* call JITed bpf program or interpreter */ |
| if (emit_call(&prog, p->bpf_func, prog)) |
| return -EINVAL; |
| |
| /* |
| * BPF_TRAMP_MODIFY_RETURN trampolines can modify the return |
| * of the previous call which is then passed on the stack to |
| * the next BPF program. |
| * |
| * BPF_TRAMP_FENTRY trampoline may need to return the return |
| * value of BPF_PROG_TYPE_STRUCT_OPS prog. |
| */ |
| if (save_ret) |
| emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); |
| |
| /* replace 2 nops with JE insn, since jmp target is known */ |
| jmp_insn[0] = X86_JE; |
| jmp_insn[1] = prog - jmp_insn - 2; |
| |
| /* arg1: mov rdi, progs[i] */ |
| emit_mov_imm64(&prog, BPF_REG_1, (long) p >> 32, (u32) (long) p); |
| /* arg2: mov rsi, rbx <- start time in nsec */ |
| emit_mov_reg(&prog, true, BPF_REG_2, BPF_REG_6); |
| if (emit_call(&prog, |
| p->aux->sleepable ? __bpf_prog_exit_sleepable : |
| __bpf_prog_exit, prog)) |
| return -EINVAL; |
| |
| *pprog = prog; |
| return 0; |
| } |
| |
| static void emit_align(u8 **pprog, u32 align) |
| { |
| u8 *target, *prog = *pprog; |
| |
| target = PTR_ALIGN(prog, align); |
| if (target != prog) |
| emit_nops(&prog, target - prog); |
| |
| *pprog = prog; |
| } |
| |
| static int emit_cond_near_jump(u8 **pprog, void *func, void *ip, u8 jmp_cond) |
| { |
| u8 *prog = *pprog; |
| s64 offset; |
| |
| offset = func - (ip + 2 + 4); |
| if (!is_simm32(offset)) { |
| pr_err("Target %p is out of range\n", func); |
| return -EINVAL; |
| } |
| EMIT2_off32(0x0F, jmp_cond + 0x10, offset); |
| *pprog = prog; |
| return 0; |
| } |
| |
| static int invoke_bpf(const struct btf_func_model *m, u8 **pprog, |
| struct bpf_tramp_progs *tp, int stack_size, |
| bool save_ret) |
| { |
| int i; |
| u8 *prog = *pprog; |
| |
| for (i = 0; i < tp->nr_progs; i++) { |
| if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, |
| save_ret)) |
| return -EINVAL; |
| } |
| *pprog = prog; |
| return 0; |
| } |
| |
| static int invoke_bpf_mod_ret(const struct btf_func_model *m, u8 **pprog, |
| struct bpf_tramp_progs *tp, int stack_size, |
| u8 **branches) |
| { |
| u8 *prog = *pprog; |
| int i; |
| |
| /* The first fmod_ret program will receive a garbage return value. |
| * Set this to 0 to avoid confusing the program. |
| */ |
| emit_mov_imm32(&prog, false, BPF_REG_0, 0); |
| emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); |
| for (i = 0; i < tp->nr_progs; i++) { |
| if (invoke_bpf_prog(m, &prog, tp->progs[i], stack_size, true)) |
| return -EINVAL; |
| |
| /* mod_ret prog stored return value into [rbp - 8]. Emit: |
| * if (*(u64 *)(rbp - 8) != 0) |
| * goto do_fexit; |
| */ |
| /* cmp QWORD PTR [rbp - 0x8], 0x0 */ |
| EMIT4(0x48, 0x83, 0x7d, 0xf8); EMIT1(0x00); |
| |
| /* Save the location of the branch and Generate 6 nops |
| * (4 bytes for an offset and 2 bytes for the jump) These nops |
| * are replaced with a conditional jump once do_fexit (i.e. the |
| * start of the fexit invocation) is finalized. |
| */ |
| branches[i] = prog; |
| emit_nops(&prog, 4 + 2); |
| } |
| |
| *pprog = prog; |
| return 0; |
| } |
| |
| static bool is_valid_bpf_tramp_flags(unsigned int flags) |
| { |
| if ((flags & BPF_TRAMP_F_RESTORE_REGS) && |
| (flags & BPF_TRAMP_F_SKIP_FRAME)) |
| return false; |
| |
| /* |
| * BPF_TRAMP_F_RET_FENTRY_RET is only used by bpf_struct_ops, |
| * and it must be used alone. |
| */ |
| if ((flags & BPF_TRAMP_F_RET_FENTRY_RET) && |
| (flags & ~BPF_TRAMP_F_RET_FENTRY_RET)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Example: |
| * __be16 eth_type_trans(struct sk_buff *skb, struct net_device *dev); |
| * its 'struct btf_func_model' will be nr_args=2 |
| * The assembly code when eth_type_trans is executing after trampoline: |
| * |
| * push rbp |
| * mov rbp, rsp |
| * sub rsp, 16 // space for skb and dev |
| * push rbx // temp regs to pass start time |
| * mov qword ptr [rbp - 16], rdi // save skb pointer to stack |
| * mov qword ptr [rbp - 8], rsi // save dev pointer to stack |
| * call __bpf_prog_enter // rcu_read_lock and preempt_disable |
| * mov rbx, rax // remember start time in bpf stats are enabled |
| * lea rdi, [rbp - 16] // R1==ctx of bpf prog |
| * call addr_of_jited_FENTRY_prog |
| * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off |
| * mov rsi, rbx // prog start time |
| * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math |
| * mov rdi, qword ptr [rbp - 16] // restore skb pointer from stack |
| * mov rsi, qword ptr [rbp - 8] // restore dev pointer from stack |
| * pop rbx |
| * leave |
| * ret |
| * |
| * eth_type_trans has 5 byte nop at the beginning. These 5 bytes will be |
| * replaced with 'call generated_bpf_trampoline'. When it returns |
| * eth_type_trans will continue executing with original skb and dev pointers. |
| * |
| * The assembly code when eth_type_trans is called from trampoline: |
| * |
| * push rbp |
| * mov rbp, rsp |
| * sub rsp, 24 // space for skb, dev, return value |
| * push rbx // temp regs to pass start time |
| * mov qword ptr [rbp - 24], rdi // save skb pointer to stack |
| * mov qword ptr [rbp - 16], rsi // save dev pointer to stack |
| * call __bpf_prog_enter // rcu_read_lock and preempt_disable |
| * mov rbx, rax // remember start time if bpf stats are enabled |
| * lea rdi, [rbp - 24] // R1==ctx of bpf prog |
| * call addr_of_jited_FENTRY_prog // bpf prog can access skb and dev |
| * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off |
| * mov rsi, rbx // prog start time |
| * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math |
| * mov rdi, qword ptr [rbp - 24] // restore skb pointer from stack |
| * mov rsi, qword ptr [rbp - 16] // restore dev pointer from stack |
| * call eth_type_trans+5 // execute body of eth_type_trans |
| * mov qword ptr [rbp - 8], rax // save return value |
| * call __bpf_prog_enter // rcu_read_lock and preempt_disable |
| * mov rbx, rax // remember start time in bpf stats are enabled |
| * lea rdi, [rbp - 24] // R1==ctx of bpf prog |
| * call addr_of_jited_FEXIT_prog // bpf prog can access skb, dev, return value |
| * movabsq rdi, 64bit_addr_of_struct_bpf_prog // unused if bpf stats are off |
| * mov rsi, rbx // prog start time |
| * call __bpf_prog_exit // rcu_read_unlock, preempt_enable and stats math |
| * mov rax, qword ptr [rbp - 8] // restore eth_type_trans's return value |
| * pop rbx |
| * leave |
| * add rsp, 8 // skip eth_type_trans's frame |
| * ret // return to its caller |
| */ |
| int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end, |
| const struct btf_func_model *m, u32 flags, |
| struct bpf_tramp_progs *tprogs, |
| void *orig_call) |
| { |
| int ret, i, nr_args = m->nr_args; |
| int stack_size = nr_args * 8; |
| struct bpf_tramp_progs *fentry = &tprogs[BPF_TRAMP_FENTRY]; |
| struct bpf_tramp_progs *fexit = &tprogs[BPF_TRAMP_FEXIT]; |
| struct bpf_tramp_progs *fmod_ret = &tprogs[BPF_TRAMP_MODIFY_RETURN]; |
| u8 **branches = NULL; |
| u8 *prog; |
| bool save_ret; |
| |
| /* x86-64 supports up to 6 arguments. 7+ can be added in the future */ |
| if (nr_args > 6) |
| return -ENOTSUPP; |
| |
| if (!is_valid_bpf_tramp_flags(flags)) |
| return -EINVAL; |
| |
| /* room for return value of orig_call or fentry prog */ |
| save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); |
| if (save_ret) |
| stack_size += 8; |
| |
| if (flags & BPF_TRAMP_F_IP_ARG) |
| stack_size += 8; /* room for IP address argument */ |
| |
| if (flags & BPF_TRAMP_F_SKIP_FRAME) |
| /* skip patched call instruction and point orig_call to actual |
| * body of the kernel function. |
| */ |
| orig_call += X86_PATCH_SIZE; |
| |
| prog = image; |
| |
| EMIT1(0x55); /* push rbp */ |
| EMIT3(0x48, 0x89, 0xE5); /* mov rbp, rsp */ |
| EMIT4(0x48, 0x83, 0xEC, stack_size); /* sub rsp, stack_size */ |
| EMIT1(0x53); /* push rbx */ |
| |
| if (flags & BPF_TRAMP_F_IP_ARG) { |
| /* Store IP address of the traced function: |
| * mov rax, QWORD PTR [rbp + 8] |
| * sub rax, X86_PATCH_SIZE |
| * mov QWORD PTR [rbp - stack_size], rax |
| */ |
| emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, 8); |
| EMIT4(0x48, 0x83, 0xe8, X86_PATCH_SIZE); |
| emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -stack_size); |
| |
| /* Continue with stack_size for regs storage, stack will |
| * be correctly restored with 'leave' instruction. |
| */ |
| stack_size -= 8; |
| } |
| |
| save_regs(m, &prog, nr_args, stack_size); |
| |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| /* arg1: mov rdi, im */ |
| emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); |
| if (emit_call(&prog, __bpf_tramp_enter, prog)) { |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| } |
| |
| if (fentry->nr_progs) |
| if (invoke_bpf(m, &prog, fentry, stack_size, |
| flags & BPF_TRAMP_F_RET_FENTRY_RET)) |
| return -EINVAL; |
| |
| if (fmod_ret->nr_progs) { |
| branches = kcalloc(fmod_ret->nr_progs, sizeof(u8 *), |
| GFP_KERNEL); |
| if (!branches) |
| return -ENOMEM; |
| |
| if (invoke_bpf_mod_ret(m, &prog, fmod_ret, stack_size, |
| branches)) { |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| } |
| |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| restore_regs(m, &prog, nr_args, stack_size); |
| |
| /* call original function */ |
| if (emit_call(&prog, orig_call, prog)) { |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| /* remember return value in a stack for bpf prog to access */ |
| emit_stx(&prog, BPF_DW, BPF_REG_FP, BPF_REG_0, -8); |
| im->ip_after_call = prog; |
| memcpy(prog, x86_nops[5], X86_PATCH_SIZE); |
| prog += X86_PATCH_SIZE; |
| } |
| |
| if (fmod_ret->nr_progs) { |
| /* From Intel 64 and IA-32 Architectures Optimization |
| * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler |
| * Coding Rule 11: All branch targets should be 16-byte |
| * aligned. |
| */ |
| emit_align(&prog, 16); |
| /* Update the branches saved in invoke_bpf_mod_ret with the |
| * aligned address of do_fexit. |
| */ |
| for (i = 0; i < fmod_ret->nr_progs; i++) |
| emit_cond_near_jump(&branches[i], prog, branches[i], |
| X86_JNE); |
| } |
| |
| if (fexit->nr_progs) |
| if (invoke_bpf(m, &prog, fexit, stack_size, false)) { |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| |
| if (flags & BPF_TRAMP_F_RESTORE_REGS) |
| restore_regs(m, &prog, nr_args, stack_size); |
| |
| /* This needs to be done regardless. If there were fmod_ret programs, |
| * the return value is only updated on the stack and still needs to be |
| * restored to R0. |
| */ |
| if (flags & BPF_TRAMP_F_CALL_ORIG) { |
| im->ip_epilogue = prog; |
| /* arg1: mov rdi, im */ |
| emit_mov_imm64(&prog, BPF_REG_1, (long) im >> 32, (u32) (long) im); |
| if (emit_call(&prog, __bpf_tramp_exit, prog)) { |
| ret = -EINVAL; |
| goto cleanup; |
| } |
| } |
| /* restore return value of orig_call or fentry prog back into RAX */ |
| if (save_ret) |
| emit_ldx(&prog, BPF_DW, BPF_REG_0, BPF_REG_FP, -8); |
| |
| EMIT1(0x5B); /* pop rbx */ |
| EMIT1(0xC9); /* leave */ |
| if (flags & BPF_TRAMP_F_SKIP_FRAME) |
| /* skip our return address and return to parent */ |
| EMIT4(0x48, 0x83, 0xC4, 8); /* add rsp, 8 */ |
| EMIT1(0xC3); /* ret */ |
| /* Make sure the trampoline generation logic doesn't overflow */ |
| if (WARN_ON_ONCE(prog > (u8 *)image_end - BPF_INSN_SAFETY)) { |
| ret = -EFAULT; |
| goto cleanup; |
| } |
| ret = prog - (u8 *)image; |
| |
| cleanup: |
| kfree(branches); |
| return ret; |
| } |
| |
| static int emit_bpf_dispatcher(u8 **pprog, int a, int b, s64 *progs) |
| { |
| u8 *jg_reloc, *prog = *pprog; |
| int pivot, err, jg_bytes = 1; |
| s64 jg_offset; |
| |
| if (a == b) { |
| /* Leaf node of recursion, i.e. not a range of indices |
| * anymore. |
| */ |
| EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ |
| if (!is_simm32(progs[a])) |
| return -1; |
| EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), |
| progs[a]); |
| err = emit_cond_near_jump(&prog, /* je func */ |
| (void *)progs[a], prog, |
| X86_JE); |
| if (err) |
| return err; |
| |
| emit_indirect_jump(&prog, 2 /* rdx */, prog); |
| |
| *pprog = prog; |
| return 0; |
| } |
| |
| /* Not a leaf node, so we pivot, and recursively descend into |
| * the lower and upper ranges. |
| */ |
| pivot = (b - a) / 2; |
| EMIT1(add_1mod(0x48, BPF_REG_3)); /* cmp rdx,func */ |
| if (!is_simm32(progs[a + pivot])) |
| return -1; |
| EMIT2_off32(0x81, add_1reg(0xF8, BPF_REG_3), progs[a + pivot]); |
| |
| if (pivot > 2) { /* jg upper_part */ |
| /* Require near jump. */ |
| jg_bytes = 4; |
| EMIT2_off32(0x0F, X86_JG + 0x10, 0); |
| } else { |
| EMIT2(X86_JG, 0); |
| } |
| jg_reloc = prog; |
| |
| err = emit_bpf_dispatcher(&prog, a, a + pivot, /* emit lower_part */ |
| progs); |
| if (err) |
| return err; |
| |
| /* From Intel 64 and IA-32 Architectures Optimization |
| * Reference Manual, 3.4.1.4 Code Alignment, Assembly/Compiler |
| * Coding Rule 11: All branch targets should be 16-byte |
| * aligned. |
| */ |
| emit_align(&prog, 16); |
| jg_offset = prog - jg_reloc; |
| emit_code(jg_reloc - jg_bytes, jg_offset, jg_bytes); |
| |
| err = emit_bpf_dispatcher(&prog, a + pivot + 1, /* emit upper_part */ |
| b, progs); |
| if (err) |
| return err; |
| |
| *pprog = prog; |
| return 0; |
| } |
| |
| static int cmp_ips(const void *a, const void *b) |
| { |
| const s64 *ipa = a; |
| const s64 *ipb = b; |
| |
| if (*ipa > *ipb) |
| return 1; |
| if (*ipa < *ipb) |
| return -1; |
| return 0; |
| } |
| |
| int arch_prepare_bpf_dispatcher(void *image, s64 *funcs, int num_funcs) |
| { |
| u8 *prog = image; |
| |
| sort(funcs, num_funcs, sizeof(funcs[0]), cmp_ips, NULL); |
| return emit_bpf_dispatcher(&prog, 0, num_funcs - 1, funcs); |
| } |
| |
| struct x64_jit_data { |
| struct bpf_binary_header *header; |
| int *addrs; |
| u8 *image; |
| int proglen; |
| struct jit_context ctx; |
| }; |
| |
| #define MAX_PASSES 20 |
| #define PADDING_PASSES (MAX_PASSES - 5) |
| |
| struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) |
| { |
| struct bpf_binary_header *header = NULL; |
| struct bpf_prog *tmp, *orig_prog = prog; |
| struct x64_jit_data *jit_data; |
| int proglen, oldproglen = 0; |
| struct jit_context ctx = {}; |
| bool tmp_blinded = false; |
| bool extra_pass = false; |
| bool padding = false; |
| u8 *image = NULL; |
| int *addrs; |
| int pass; |
| int i; |
| |
| if (!prog->jit_requested) |
| return orig_prog; |
| |
| tmp = bpf_jit_blind_constants(prog); |
| /* |
| * If blinding was requested and we failed during blinding, |
| * we must fall back to the interpreter. |
| */ |
| if (IS_ERR(tmp)) |
| return orig_prog; |
| if (tmp != prog) { |
| tmp_blinded = true; |
| prog = tmp; |
| } |
| |
| jit_data = prog->aux->jit_data; |
| if (!jit_data) { |
| jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); |
| if (!jit_data) { |
| prog = orig_prog; |
| goto out; |
| } |
| prog->aux->jit_data = jit_data; |
| } |
| addrs = jit_data->addrs; |
| if (addrs) { |
| ctx = jit_data->ctx; |
| oldproglen = jit_data->proglen; |
| image = jit_data->image; |
| header = jit_data->header; |
| extra_pass = true; |
| padding = true; |
| goto skip_init_addrs; |
| } |
| addrs = kvmalloc_array(prog->len + 1, sizeof(*addrs), GFP_KERNEL); |
| if (!addrs) { |
| prog = orig_prog; |
| goto out_addrs; |
| } |
| |
| /* |
| * Before first pass, make a rough estimation of addrs[] |
| * each BPF instruction is translated to less than 64 bytes |
| */ |
| for (proglen = 0, i = 0; i <= prog->len; i++) { |
| proglen += 64; |
| addrs[i] = proglen; |
| } |
| ctx.cleanup_addr = proglen; |
| skip_init_addrs: |
| |
| /* |
| * JITed image shrinks with every pass and the loop iterates |
| * until the image stops shrinking. Very large BPF programs |
| * may converge on the last pass. In such case do one more |
| * pass to emit the final image. |
| */ |
| for (pass = 0; pass < MAX_PASSES || image; pass++) { |
| if (!padding && pass >= PADDING_PASSES) |
| padding = true; |
| proglen = do_jit(prog, addrs, image, oldproglen, &ctx, padding); |
| if (proglen <= 0) { |
| out_image: |
| image = NULL; |
| if (header) |
| bpf_jit_binary_free(header); |
| prog = orig_prog; |
| goto out_addrs; |
| } |
| if (image) { |
| if (proglen != oldproglen) { |
| pr_err("bpf_jit: proglen=%d != oldproglen=%d\n", |
| proglen, oldproglen); |
| goto out_image; |
| } |
| break; |
| } |
| if (proglen == oldproglen) { |
| /* |
| * The number of entries in extable is the number of BPF_LDX |
| * insns that access kernel memory via "pointer to BTF type". |
| * The verifier changed their opcode from LDX|MEM|size |
| * to LDX|PROBE_MEM|size to make JITing easier. |
| */ |
| u32 align = __alignof__(struct exception_table_entry); |
| u32 extable_size = prog->aux->num_exentries * |
| sizeof(struct exception_table_entry); |
| |
| /* allocate module memory for x86 insns and extable */ |
| header = bpf_jit_binary_alloc(roundup(proglen, align) + extable_size, |
| &image, align, jit_fill_hole); |
| if (!header) { |
| prog = orig_prog; |
| goto out_addrs; |
| } |
| prog->aux->extable = (void *) image + roundup(proglen, align); |
| } |
| oldproglen = proglen; |
| cond_resched(); |
| } |
| |
| if (bpf_jit_enable > 1) |
| bpf_jit_dump(prog->len, proglen, pass + 1, image); |
| |
| if (image) { |
| if (!prog->is_func || extra_pass) { |
| bpf_tail_call_direct_fixup(prog); |
| bpf_jit_binary_lock_ro(header); |
| } else { |
| jit_data->addrs = addrs; |
| jit_data->ctx = ctx; |
| jit_data->proglen = proglen; |
| jit_data->image = image; |
| jit_data->header = header; |
| } |
| prog->bpf_func = (void *)image; |
| prog->jited = 1; |
| prog->jited_len = proglen; |
| } else { |
| prog = orig_prog; |
| } |
| |
| if (!image || !prog->is_func || extra_pass) { |
| if (image) |
| bpf_prog_fill_jited_linfo(prog, addrs + 1); |
| out_addrs: |
| kvfree(addrs); |
| kfree(jit_data); |
| prog->aux->jit_data = NULL; |
| } |
| out: |
| if (tmp_blinded) |
| bpf_jit_prog_release_other(prog, prog == orig_prog ? |
| tmp : orig_prog); |
| return prog; |
| } |
| |
| bool bpf_jit_supports_kfunc_call(void) |
| { |
| return true; |
| } |