| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * CAAM/SEC 4.x QI transport/backend driver |
| * Queue Interface backend functionality |
| * |
| * Copyright 2013-2016 Freescale Semiconductor, Inc. |
| * Copyright 2016-2017, 2019-2020 NXP |
| */ |
| |
| #include <linux/cpumask.h> |
| #include <linux/kthread.h> |
| #include <soc/fsl/qman.h> |
| |
| #include "regs.h" |
| #include "qi.h" |
| #include "desc.h" |
| #include "intern.h" |
| #include "desc_constr.h" |
| |
| #define PREHDR_RSLS_SHIFT 31 |
| #define PREHDR_ABS BIT(25) |
| |
| /* |
| * Use a reasonable backlog of frames (per CPU) as congestion threshold, |
| * so that resources used by the in-flight buffers do not become a memory hog. |
| */ |
| #define MAX_RSP_FQ_BACKLOG_PER_CPU 256 |
| |
| #define CAAM_QI_ENQUEUE_RETRIES 10000 |
| |
| #define CAAM_NAPI_WEIGHT 63 |
| |
| /* |
| * caam_napi - struct holding CAAM NAPI-related params |
| * @irqtask: IRQ task for QI backend |
| * @p: QMan portal |
| */ |
| struct caam_napi { |
| struct napi_struct irqtask; |
| struct qman_portal *p; |
| }; |
| |
| /* |
| * caam_qi_pcpu_priv - percpu private data structure to main list of pending |
| * responses expected on each cpu. |
| * @caam_napi: CAAM NAPI params |
| * @net_dev: netdev used by NAPI |
| * @rsp_fq: response FQ from CAAM |
| */ |
| struct caam_qi_pcpu_priv { |
| struct caam_napi caam_napi; |
| struct net_device net_dev; |
| struct qman_fq *rsp_fq; |
| } ____cacheline_aligned; |
| |
| static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv); |
| static DEFINE_PER_CPU(int, last_cpu); |
| |
| /* |
| * caam_qi_priv - CAAM QI backend private params |
| * @cgr: QMan congestion group |
| */ |
| struct caam_qi_priv { |
| struct qman_cgr cgr; |
| }; |
| |
| static struct caam_qi_priv qipriv ____cacheline_aligned; |
| |
| /* |
| * This is written by only one core - the one that initialized the CGR - and |
| * read by multiple cores (all the others). |
| */ |
| bool caam_congested __read_mostly; |
| EXPORT_SYMBOL(caam_congested); |
| |
| #ifdef CONFIG_DEBUG_FS |
| /* |
| * This is a counter for the number of times the congestion group (where all |
| * the request and response queueus are) reached congestion. Incremented |
| * each time the congestion callback is called with congested == true. |
| */ |
| static u64 times_congested; |
| #endif |
| |
| /* |
| * This is a a cache of buffers, from which the users of CAAM QI driver |
| * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than |
| * doing malloc on the hotpath. |
| * NOTE: A more elegant solution would be to have some headroom in the frames |
| * being processed. This could be added by the dpaa-ethernet driver. |
| * This would pose a problem for userspace application processing which |
| * cannot know of this limitation. So for now, this will work. |
| * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here |
| */ |
| static struct kmem_cache *qi_cache; |
| |
| static void *caam_iova_to_virt(struct iommu_domain *domain, |
| dma_addr_t iova_addr) |
| { |
| phys_addr_t phys_addr; |
| |
| phys_addr = domain ? iommu_iova_to_phys(domain, iova_addr) : iova_addr; |
| |
| return phys_to_virt(phys_addr); |
| } |
| |
| int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req) |
| { |
| struct qm_fd fd; |
| dma_addr_t addr; |
| int ret; |
| int num_retries = 0; |
| |
| qm_fd_clear_fd(&fd); |
| qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1])); |
| |
| addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt), |
| DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(qidev, addr)) { |
| dev_err(qidev, "DMA mapping error for QI enqueue request\n"); |
| return -EIO; |
| } |
| qm_fd_addr_set64(&fd, addr); |
| |
| do { |
| ret = qman_enqueue(req->drv_ctx->req_fq, &fd); |
| if (likely(!ret)) { |
| refcount_inc(&req->drv_ctx->refcnt); |
| return 0; |
| } |
| |
| if (ret != -EBUSY) |
| break; |
| num_retries++; |
| } while (num_retries < CAAM_QI_ENQUEUE_RETRIES); |
| |
| dev_err(qidev, "qman_enqueue failed: %d\n", ret); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(caam_qi_enqueue); |
| |
| static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq, |
| const union qm_mr_entry *msg) |
| { |
| const struct qm_fd *fd; |
| struct caam_drv_req *drv_req; |
| struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); |
| struct caam_drv_private *priv = dev_get_drvdata(qidev); |
| |
| fd = &msg->ern.fd; |
| |
| drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); |
| if (!drv_req) { |
| dev_err(qidev, |
| "Can't find original request for CAAM response\n"); |
| return; |
| } |
| |
| refcount_dec(&drv_req->drv_ctx->refcnt); |
| |
| if (qm_fd_get_format(fd) != qm_fd_compound) { |
| dev_err(qidev, "Non-compound FD from CAAM\n"); |
| return; |
| } |
| |
| dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), |
| sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); |
| |
| if (fd->status) |
| drv_req->cbk(drv_req, be32_to_cpu(fd->status)); |
| else |
| drv_req->cbk(drv_req, JRSTA_SSRC_QI); |
| } |
| |
| static struct qman_fq *create_caam_req_fq(struct device *qidev, |
| struct qman_fq *rsp_fq, |
| dma_addr_t hwdesc, |
| int fq_sched_flag) |
| { |
| int ret; |
| struct qman_fq *req_fq; |
| struct qm_mcc_initfq opts; |
| |
| req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC); |
| if (!req_fq) |
| return ERR_PTR(-ENOMEM); |
| |
| req_fq->cb.ern = caam_fq_ern_cb; |
| req_fq->cb.fqs = NULL; |
| |
| ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID | |
| QMAN_FQ_FLAG_TO_DCPORTAL, req_fq); |
| if (ret) { |
| dev_err(qidev, "Failed to create session req FQ\n"); |
| goto create_req_fq_fail; |
| } |
| |
| memset(&opts, 0, sizeof(opts)); |
| opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | |
| QM_INITFQ_WE_CONTEXTB | |
| QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); |
| opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); |
| qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2); |
| opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq)); |
| qm_fqd_context_a_set64(&opts.fqd, hwdesc); |
| opts.fqd.cgid = qipriv.cgr.cgrid; |
| |
| ret = qman_init_fq(req_fq, fq_sched_flag, &opts); |
| if (ret) { |
| dev_err(qidev, "Failed to init session req FQ\n"); |
| goto init_req_fq_fail; |
| } |
| |
| dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid, |
| smp_processor_id()); |
| return req_fq; |
| |
| init_req_fq_fail: |
| qman_destroy_fq(req_fq); |
| create_req_fq_fail: |
| kfree(req_fq); |
| return ERR_PTR(ret); |
| } |
| |
| static int empty_retired_fq(struct device *qidev, struct qman_fq *fq) |
| { |
| int ret; |
| |
| ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT | |
| QMAN_VOLATILE_FLAG_FINISH, |
| QM_VDQCR_PRECEDENCE_VDQCR | |
| QM_VDQCR_NUMFRAMES_TILLEMPTY); |
| if (ret) { |
| dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid); |
| return ret; |
| } |
| |
| do { |
| struct qman_portal *p; |
| |
| p = qman_get_affine_portal(smp_processor_id()); |
| qman_p_poll_dqrr(p, 16); |
| } while (fq->flags & QMAN_FQ_STATE_NE); |
| |
| return 0; |
| } |
| |
| static int kill_fq(struct device *qidev, struct qman_fq *fq) |
| { |
| u32 flags; |
| int ret; |
| |
| ret = qman_retire_fq(fq, &flags); |
| if (ret < 0) { |
| dev_err(qidev, "qman_retire_fq failed: %d\n", ret); |
| return ret; |
| } |
| |
| if (!ret) |
| goto empty_fq; |
| |
| /* Async FQ retirement condition */ |
| if (ret == 1) { |
| /* Retry till FQ gets in retired state */ |
| do { |
| msleep(20); |
| } while (fq->state != qman_fq_state_retired); |
| |
| WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS); |
| WARN_ON(fq->flags & QMAN_FQ_STATE_ORL); |
| } |
| |
| empty_fq: |
| if (fq->flags & QMAN_FQ_STATE_NE) { |
| ret = empty_retired_fq(qidev, fq); |
| if (ret) { |
| dev_err(qidev, "empty_retired_fq fail for FQ: %u\n", |
| fq->fqid); |
| return ret; |
| } |
| } |
| |
| ret = qman_oos_fq(fq); |
| if (ret) |
| dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid); |
| |
| qman_destroy_fq(fq); |
| kfree(fq); |
| |
| return ret; |
| } |
| |
| static int empty_caam_fq(struct qman_fq *fq, struct caam_drv_ctx *drv_ctx) |
| { |
| int ret; |
| int retries = 10; |
| struct qm_mcr_queryfq_np np; |
| |
| /* Wait till the older CAAM FQ get empty */ |
| do { |
| ret = qman_query_fq_np(fq, &np); |
| if (ret) |
| return ret; |
| |
| if (!qm_mcr_np_get(&np, frm_cnt)) |
| break; |
| |
| msleep(20); |
| } while (1); |
| |
| /* Wait until pending jobs from this FQ are processed by CAAM */ |
| do { |
| if (refcount_read(&drv_ctx->refcnt) == 1) |
| break; |
| |
| msleep(20); |
| } while (--retries); |
| |
| if (!retries) |
| dev_warn_once(drv_ctx->qidev, "%d frames from FQID %u still pending in CAAM\n", |
| refcount_read(&drv_ctx->refcnt), fq->fqid); |
| |
| return 0; |
| } |
| |
| int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc) |
| { |
| int ret; |
| u32 num_words; |
| struct qman_fq *new_fq, *old_fq; |
| struct device *qidev = drv_ctx->qidev; |
| |
| num_words = desc_len(sh_desc); |
| if (num_words > MAX_SDLEN) { |
| dev_err(qidev, "Invalid descriptor len: %d words\n", num_words); |
| return -EINVAL; |
| } |
| |
| /* Note down older req FQ */ |
| old_fq = drv_ctx->req_fq; |
| |
| /* Create a new req FQ in parked state */ |
| new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq, |
| drv_ctx->context_a, 0); |
| if (IS_ERR(new_fq)) { |
| dev_err(qidev, "FQ allocation for shdesc update failed\n"); |
| return PTR_ERR(new_fq); |
| } |
| |
| /* Hook up new FQ to context so that new requests keep queuing */ |
| drv_ctx->req_fq = new_fq; |
| |
| /* Empty and remove the older FQ */ |
| ret = empty_caam_fq(old_fq, drv_ctx); |
| if (ret) { |
| dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret); |
| |
| /* We can revert to older FQ */ |
| drv_ctx->req_fq = old_fq; |
| |
| if (kill_fq(qidev, new_fq)) |
| dev_warn(qidev, "New CAAM FQ kill failed\n"); |
| |
| return ret; |
| } |
| |
| /* |
| * Re-initialise pre-header. Set RSLS and SDLEN. |
| * Update the shared descriptor for driver context. |
| */ |
| drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | |
| num_words); |
| drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); |
| memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); |
| dma_sync_single_for_device(qidev, drv_ctx->context_a, |
| sizeof(drv_ctx->sh_desc) + |
| sizeof(drv_ctx->prehdr), |
| DMA_BIDIRECTIONAL); |
| |
| /* Put the new FQ in scheduled state */ |
| ret = qman_schedule_fq(new_fq); |
| if (ret) { |
| dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret); |
| |
| /* |
| * We can kill new FQ and revert to old FQ. |
| * Since the desc is already modified, it is success case |
| */ |
| |
| drv_ctx->req_fq = old_fq; |
| |
| if (kill_fq(qidev, new_fq)) |
| dev_warn(qidev, "New CAAM FQ kill failed\n"); |
| } else if (kill_fq(qidev, old_fq)) { |
| dev_warn(qidev, "Old CAAM FQ kill failed\n"); |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(caam_drv_ctx_update); |
| |
| struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev, |
| int *cpu, |
| u32 *sh_desc) |
| { |
| size_t size; |
| u32 num_words; |
| dma_addr_t hwdesc; |
| struct caam_drv_ctx *drv_ctx; |
| const cpumask_t *cpus = qman_affine_cpus(); |
| |
| num_words = desc_len(sh_desc); |
| if (num_words > MAX_SDLEN) { |
| dev_err(qidev, "Invalid descriptor len: %d words\n", |
| num_words); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC); |
| if (!drv_ctx) |
| return ERR_PTR(-ENOMEM); |
| |
| /* |
| * Initialise pre-header - set RSLS and SDLEN - and shared descriptor |
| * and dma-map them. |
| */ |
| drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) | |
| num_words); |
| drv_ctx->prehdr[1] = cpu_to_caam32(PREHDR_ABS); |
| memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc)); |
| size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc); |
| hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size, |
| DMA_BIDIRECTIONAL); |
| if (dma_mapping_error(qidev, hwdesc)) { |
| dev_err(qidev, "DMA map error for preheader + shdesc\n"); |
| kfree(drv_ctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| drv_ctx->context_a = hwdesc; |
| |
| /* If given CPU does not own the portal, choose another one that does */ |
| if (!cpumask_test_cpu(*cpu, cpus)) { |
| int *pcpu = &get_cpu_var(last_cpu); |
| |
| *pcpu = cpumask_next(*pcpu, cpus); |
| if (*pcpu >= nr_cpu_ids) |
| *pcpu = cpumask_first(cpus); |
| *cpu = *pcpu; |
| |
| put_cpu_var(last_cpu); |
| } |
| drv_ctx->cpu = *cpu; |
| |
| /* Find response FQ hooked with this CPU */ |
| drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu); |
| |
| /* Attach request FQ */ |
| drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc, |
| QMAN_INITFQ_FLAG_SCHED); |
| if (IS_ERR(drv_ctx->req_fq)) { |
| dev_err(qidev, "create_caam_req_fq failed\n"); |
| dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL); |
| kfree(drv_ctx); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* init reference counter used to track references to request FQ */ |
| refcount_set(&drv_ctx->refcnt, 1); |
| |
| drv_ctx->qidev = qidev; |
| return drv_ctx; |
| } |
| EXPORT_SYMBOL(caam_drv_ctx_init); |
| |
| void *qi_cache_alloc(gfp_t flags) |
| { |
| return kmem_cache_alloc(qi_cache, flags); |
| } |
| EXPORT_SYMBOL(qi_cache_alloc); |
| |
| void qi_cache_free(void *obj) |
| { |
| kmem_cache_free(qi_cache, obj); |
| } |
| EXPORT_SYMBOL(qi_cache_free); |
| |
| static int caam_qi_poll(struct napi_struct *napi, int budget) |
| { |
| struct caam_napi *np = container_of(napi, struct caam_napi, irqtask); |
| |
| int cleaned = qman_p_poll_dqrr(np->p, budget); |
| |
| if (cleaned < budget) { |
| napi_complete(napi); |
| qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); |
| } |
| |
| return cleaned; |
| } |
| |
| void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx) |
| { |
| if (IS_ERR_OR_NULL(drv_ctx)) |
| return; |
| |
| /* Remove request FQ */ |
| if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq)) |
| dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n"); |
| |
| dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a, |
| sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr), |
| DMA_BIDIRECTIONAL); |
| kfree(drv_ctx); |
| } |
| EXPORT_SYMBOL(caam_drv_ctx_rel); |
| |
| static void caam_qi_shutdown(void *data) |
| { |
| int i; |
| struct device *qidev = data; |
| struct caam_qi_priv *priv = &qipriv; |
| const cpumask_t *cpus = qman_affine_cpus(); |
| |
| for_each_cpu(i, cpus) { |
| struct napi_struct *irqtask; |
| |
| irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask; |
| napi_disable(irqtask); |
| netif_napi_del(irqtask); |
| |
| if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i))) |
| dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i); |
| } |
| |
| qman_delete_cgr_safe(&priv->cgr); |
| qman_release_cgrid(priv->cgr.cgrid); |
| |
| kmem_cache_destroy(qi_cache); |
| } |
| |
| static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested) |
| { |
| caam_congested = congested; |
| |
| if (congested) { |
| #ifdef CONFIG_DEBUG_FS |
| times_congested++; |
| #endif |
| pr_debug_ratelimited("CAAM entered congestion\n"); |
| |
| } else { |
| pr_debug_ratelimited("CAAM exited congestion\n"); |
| } |
| } |
| |
| static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np) |
| { |
| /* |
| * In case of threaded ISR, for RT kernels in_irq() does not return |
| * appropriate value, so use in_serving_softirq to distinguish between |
| * softirq and irq contexts. |
| */ |
| if (unlikely(in_irq() || !in_serving_softirq())) { |
| /* Disable QMan IRQ source and invoke NAPI */ |
| qman_p_irqsource_remove(p, QM_PIRQ_DQRI); |
| np->p = p; |
| napi_schedule(&np->irqtask); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p, |
| struct qman_fq *rsp_fq, |
| const struct qm_dqrr_entry *dqrr) |
| { |
| struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi); |
| struct caam_drv_req *drv_req; |
| const struct qm_fd *fd; |
| struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev); |
| struct caam_drv_private *priv = dev_get_drvdata(qidev); |
| u32 status; |
| |
| if (caam_qi_napi_schedule(p, caam_napi)) |
| return qman_cb_dqrr_stop; |
| |
| fd = &dqrr->fd; |
| |
| drv_req = caam_iova_to_virt(priv->domain, qm_fd_addr_get64(fd)); |
| if (unlikely(!drv_req)) { |
| dev_err(qidev, |
| "Can't find original request for caam response\n"); |
| return qman_cb_dqrr_consume; |
| } |
| |
| refcount_dec(&drv_req->drv_ctx->refcnt); |
| |
| status = be32_to_cpu(fd->status); |
| if (unlikely(status)) { |
| u32 ssrc = status & JRSTA_SSRC_MASK; |
| u8 err_id = status & JRSTA_CCBERR_ERRID_MASK; |
| |
| if (ssrc != JRSTA_SSRC_CCB_ERROR || |
| err_id != JRSTA_CCBERR_ERRID_ICVCHK) |
| dev_err_ratelimited(qidev, |
| "Error: %#x in CAAM response FD\n", |
| status); |
| } |
| |
| if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) { |
| dev_err(qidev, "Non-compound FD from CAAM\n"); |
| return qman_cb_dqrr_consume; |
| } |
| |
| dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd), |
| sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL); |
| |
| drv_req->cbk(drv_req, status); |
| return qman_cb_dqrr_consume; |
| } |
| |
| static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu) |
| { |
| struct qm_mcc_initfq opts; |
| struct qman_fq *fq; |
| int ret; |
| |
| fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA); |
| if (!fq) |
| return -ENOMEM; |
| |
| fq->cb.dqrr = caam_rsp_fq_dqrr_cb; |
| |
| ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE | |
| QMAN_FQ_FLAG_DYNAMIC_FQID, fq); |
| if (ret) { |
| dev_err(qidev, "Rsp FQ create failed\n"); |
| kfree(fq); |
| return -ENODEV; |
| } |
| |
| memset(&opts, 0, sizeof(opts)); |
| opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ | |
| QM_INITFQ_WE_CONTEXTB | |
| QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID); |
| opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING | |
| QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE); |
| qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3); |
| opts.fqd.cgid = qipriv.cgr.cgrid; |
| opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX | |
| QM_STASHING_EXCL_DATA; |
| qm_fqd_set_stashing(&opts.fqd, 0, 1, 1); |
| |
| ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts); |
| if (ret) { |
| dev_err(qidev, "Rsp FQ init failed\n"); |
| kfree(fq); |
| return -ENODEV; |
| } |
| |
| per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq; |
| |
| dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu); |
| return 0; |
| } |
| |
| static int init_cgr(struct device *qidev) |
| { |
| int ret; |
| struct qm_mcc_initcgr opts; |
| const u64 val = (u64)cpumask_weight(qman_affine_cpus()) * |
| MAX_RSP_FQ_BACKLOG_PER_CPU; |
| |
| ret = qman_alloc_cgrid(&qipriv.cgr.cgrid); |
| if (ret) { |
| dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret); |
| return ret; |
| } |
| |
| qipriv.cgr.cb = cgr_cb; |
| memset(&opts, 0, sizeof(opts)); |
| opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES | |
| QM_CGR_WE_MODE); |
| opts.cgr.cscn_en = QM_CGR_EN; |
| opts.cgr.mode = QMAN_CGR_MODE_FRAME; |
| qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1); |
| |
| ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts); |
| if (ret) { |
| dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret, |
| qipriv.cgr.cgrid); |
| return ret; |
| } |
| |
| dev_dbg(qidev, "Congestion threshold set to %llu\n", val); |
| return 0; |
| } |
| |
| static int alloc_rsp_fqs(struct device *qidev) |
| { |
| int ret, i; |
| const cpumask_t *cpus = qman_affine_cpus(); |
| |
| /*Now create response FQs*/ |
| for_each_cpu(i, cpus) { |
| ret = alloc_rsp_fq_cpu(qidev, i); |
| if (ret) { |
| dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void free_rsp_fqs(void) |
| { |
| int i; |
| const cpumask_t *cpus = qman_affine_cpus(); |
| |
| for_each_cpu(i, cpus) |
| kfree(per_cpu(pcpu_qipriv.rsp_fq, i)); |
| } |
| |
| int caam_qi_init(struct platform_device *caam_pdev) |
| { |
| int err, i; |
| struct device *ctrldev = &caam_pdev->dev, *qidev; |
| struct caam_drv_private *ctrlpriv; |
| const cpumask_t *cpus = qman_affine_cpus(); |
| |
| ctrlpriv = dev_get_drvdata(ctrldev); |
| qidev = ctrldev; |
| |
| /* Initialize the congestion detection */ |
| err = init_cgr(qidev); |
| if (err) { |
| dev_err(qidev, "CGR initialization failed: %d\n", err); |
| return err; |
| } |
| |
| /* Initialise response FQs */ |
| err = alloc_rsp_fqs(qidev); |
| if (err) { |
| dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err); |
| free_rsp_fqs(); |
| return err; |
| } |
| |
| /* |
| * Enable the NAPI contexts on each of the core which has an affine |
| * portal. |
| */ |
| for_each_cpu(i, cpus) { |
| struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i); |
| struct caam_napi *caam_napi = &priv->caam_napi; |
| struct napi_struct *irqtask = &caam_napi->irqtask; |
| struct net_device *net_dev = &priv->net_dev; |
| |
| net_dev->dev = *qidev; |
| INIT_LIST_HEAD(&net_dev->napi_list); |
| |
| netif_napi_add(net_dev, irqtask, caam_qi_poll, |
| CAAM_NAPI_WEIGHT); |
| |
| napi_enable(irqtask); |
| } |
| |
| qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0, |
| SLAB_CACHE_DMA, NULL); |
| if (!qi_cache) { |
| dev_err(qidev, "Can't allocate CAAM cache\n"); |
| free_rsp_fqs(); |
| return -ENOMEM; |
| } |
| |
| #ifdef CONFIG_DEBUG_FS |
| debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl, |
| ×_congested, &caam_fops_u64_ro); |
| #endif |
| |
| err = devm_add_action_or_reset(qidev, caam_qi_shutdown, ctrlpriv); |
| if (err) |
| return err; |
| |
| dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n"); |
| return 0; |
| } |