| /* |
| * linux/drivers/scsi/esas2r/esas2r_init.c |
| * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers |
| * |
| * Copyright (c) 2001-2013 ATTO Technology, Inc. |
| * (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * NO WARRANTY |
| * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR |
| * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT |
| * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is |
| * solely responsible for determining the appropriateness of using and |
| * distributing the Program and assumes all risks associated with its |
| * exercise of rights under this Agreement, including but not limited to |
| * the risks and costs of program errors, damage to or loss of data, |
| * programs or equipment, and unavailability or interruption of operations. |
| * |
| * DISCLAIMER OF LIABILITY |
| * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE |
| * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED |
| * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, |
| * USA. |
| */ |
| |
| #include "esas2r.h" |
| |
| static bool esas2r_initmem_alloc(struct esas2r_adapter *a, |
| struct esas2r_mem_desc *mem_desc, |
| u32 align) |
| { |
| mem_desc->esas2r_param = mem_desc->size + align; |
| mem_desc->virt_addr = NULL; |
| mem_desc->phys_addr = 0; |
| mem_desc->esas2r_data = dma_alloc_coherent(&a->pcid->dev, |
| (size_t)mem_desc-> |
| esas2r_param, |
| (dma_addr_t *)&mem_desc-> |
| phys_addr, |
| GFP_KERNEL); |
| |
| if (mem_desc->esas2r_data == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate %lu bytes of consistent memory!", |
| (long |
| unsigned |
| int)mem_desc->esas2r_param); |
| return false; |
| } |
| |
| mem_desc->virt_addr = PTR_ALIGN(mem_desc->esas2r_data, align); |
| mem_desc->phys_addr = ALIGN(mem_desc->phys_addr, align); |
| memset(mem_desc->virt_addr, 0, mem_desc->size); |
| return true; |
| } |
| |
| static void esas2r_initmem_free(struct esas2r_adapter *a, |
| struct esas2r_mem_desc *mem_desc) |
| { |
| if (mem_desc->virt_addr == NULL) |
| return; |
| |
| /* |
| * Careful! phys_addr and virt_addr may have been adjusted from the |
| * original allocation in order to return the desired alignment. That |
| * means we have to use the original address (in esas2r_data) and size |
| * (esas2r_param) and calculate the original physical address based on |
| * the difference between the requested and actual allocation size. |
| */ |
| if (mem_desc->phys_addr) { |
| int unalign = ((u8 *)mem_desc->virt_addr) - |
| ((u8 *)mem_desc->esas2r_data); |
| |
| dma_free_coherent(&a->pcid->dev, |
| (size_t)mem_desc->esas2r_param, |
| mem_desc->esas2r_data, |
| (dma_addr_t)(mem_desc->phys_addr - unalign)); |
| } else { |
| kfree(mem_desc->esas2r_data); |
| } |
| |
| mem_desc->virt_addr = NULL; |
| } |
| |
| static bool alloc_vda_req(struct esas2r_adapter *a, |
| struct esas2r_request *rq) |
| { |
| struct esas2r_mem_desc *memdesc = kzalloc( |
| sizeof(struct esas2r_mem_desc), GFP_KERNEL); |
| |
| if (memdesc == NULL) { |
| esas2r_hdebug("could not alloc mem for vda request memdesc\n"); |
| return false; |
| } |
| |
| memdesc->size = sizeof(union atto_vda_req) + |
| ESAS2R_DATA_BUF_LEN; |
| |
| if (!esas2r_initmem_alloc(a, memdesc, 256)) { |
| esas2r_hdebug("could not alloc mem for vda request\n"); |
| kfree(memdesc); |
| return false; |
| } |
| |
| a->num_vrqs++; |
| list_add(&memdesc->next_desc, &a->vrq_mds_head); |
| |
| rq->vrq_md = memdesc; |
| rq->vrq = (union atto_vda_req *)memdesc->virt_addr; |
| rq->vrq->scsi.handle = a->num_vrqs; |
| |
| return true; |
| } |
| |
| static void esas2r_unmap_regions(struct esas2r_adapter *a) |
| { |
| if (a->regs) |
| iounmap((void __iomem *)a->regs); |
| |
| a->regs = NULL; |
| |
| pci_release_region(a->pcid, 2); |
| |
| if (a->data_window) |
| iounmap((void __iomem *)a->data_window); |
| |
| a->data_window = NULL; |
| |
| pci_release_region(a->pcid, 0); |
| } |
| |
| static int esas2r_map_regions(struct esas2r_adapter *a) |
| { |
| int error; |
| |
| a->regs = NULL; |
| a->data_window = NULL; |
| |
| error = pci_request_region(a->pcid, 2, a->name); |
| if (error != 0) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "pci_request_region(2) failed, error %d", |
| error); |
| |
| return error; |
| } |
| |
| a->regs = (void __force *)ioremap(pci_resource_start(a->pcid, 2), |
| pci_resource_len(a->pcid, 2)); |
| if (a->regs == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "ioremap failed for regs mem region\n"); |
| pci_release_region(a->pcid, 2); |
| return -EFAULT; |
| } |
| |
| error = pci_request_region(a->pcid, 0, a->name); |
| if (error != 0) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "pci_request_region(2) failed, error %d", |
| error); |
| esas2r_unmap_regions(a); |
| return error; |
| } |
| |
| a->data_window = (void __force *)ioremap(pci_resource_start(a->pcid, |
| 0), |
| pci_resource_len(a->pcid, 0)); |
| if (a->data_window == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "ioremap failed for data_window mem region\n"); |
| esas2r_unmap_regions(a); |
| return -EFAULT; |
| } |
| |
| return 0; |
| } |
| |
| static void esas2r_setup_interrupts(struct esas2r_adapter *a, int intr_mode) |
| { |
| int i; |
| |
| /* Set up interrupt mode based on the requested value */ |
| switch (intr_mode) { |
| case INTR_MODE_LEGACY: |
| use_legacy_interrupts: |
| a->intr_mode = INTR_MODE_LEGACY; |
| break; |
| |
| case INTR_MODE_MSI: |
| i = pci_enable_msi(a->pcid); |
| if (i != 0) { |
| esas2r_log(ESAS2R_LOG_WARN, |
| "failed to enable MSI for adapter %d, " |
| "falling back to legacy interrupts " |
| "(err=%d)", a->index, |
| i); |
| goto use_legacy_interrupts; |
| } |
| a->intr_mode = INTR_MODE_MSI; |
| set_bit(AF2_MSI_ENABLED, &a->flags2); |
| break; |
| |
| |
| default: |
| esas2r_log(ESAS2R_LOG_WARN, |
| "unknown interrupt_mode %d requested, " |
| "falling back to legacy interrupt", |
| interrupt_mode); |
| goto use_legacy_interrupts; |
| } |
| } |
| |
| static void esas2r_claim_interrupts(struct esas2r_adapter *a) |
| { |
| unsigned long flags = 0; |
| |
| if (a->intr_mode == INTR_MODE_LEGACY) |
| flags |= IRQF_SHARED; |
| |
| esas2r_log(ESAS2R_LOG_INFO, |
| "esas2r_claim_interrupts irq=%d (%p, %s, %lx)", |
| a->pcid->irq, a, a->name, flags); |
| |
| if (request_irq(a->pcid->irq, |
| (a->intr_mode == |
| INTR_MODE_LEGACY) ? esas2r_interrupt : |
| esas2r_msi_interrupt, |
| flags, |
| a->name, |
| a)) { |
| esas2r_log(ESAS2R_LOG_CRIT, "unable to request IRQ %02X", |
| a->pcid->irq); |
| return; |
| } |
| |
| set_bit(AF2_IRQ_CLAIMED, &a->flags2); |
| esas2r_log(ESAS2R_LOG_INFO, |
| "claimed IRQ %d flags: 0x%lx", |
| a->pcid->irq, flags); |
| } |
| |
| int esas2r_init_adapter(struct Scsi_Host *host, struct pci_dev *pcid, |
| int index) |
| { |
| struct esas2r_adapter *a; |
| u64 bus_addr = 0; |
| int i; |
| void *next_uncached; |
| struct esas2r_request *first_request, *last_request; |
| |
| if (index >= MAX_ADAPTERS) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "tried to init invalid adapter index %u!", |
| index); |
| return 0; |
| } |
| |
| if (esas2r_adapters[index]) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "tried to init existing adapter index %u!", |
| index); |
| return 0; |
| } |
| |
| a = (struct esas2r_adapter *)host->hostdata; |
| memset(a, 0, sizeof(struct esas2r_adapter)); |
| a->pcid = pcid; |
| a->host = host; |
| |
| if (sizeof(dma_addr_t) > 4) { |
| const uint64_t required_mask = dma_get_required_mask |
| (&pcid->dev); |
| if (required_mask > DMA_BIT_MASK(32) |
| && !pci_set_dma_mask(pcid, DMA_BIT_MASK(64)) |
| && !pci_set_consistent_dma_mask(pcid, |
| DMA_BIT_MASK(64))) { |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "64-bit PCI addressing enabled\n"); |
| } else if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) |
| && !pci_set_consistent_dma_mask(pcid, |
| DMA_BIT_MASK(32))) { |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "32-bit PCI addressing enabled\n"); |
| } else { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to set DMA mask"); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| } else { |
| if (!pci_set_dma_mask(pcid, DMA_BIT_MASK(32)) |
| && !pci_set_consistent_dma_mask(pcid, |
| DMA_BIT_MASK(32))) { |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "32-bit PCI addressing enabled\n"); |
| } else { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to set DMA mask"); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| } |
| esas2r_adapters[index] = a; |
| sprintf(a->name, ESAS2R_DRVR_NAME "_%02d", index); |
| esas2r_debug("new adapter %p, name %s", a, a->name); |
| spin_lock_init(&a->request_lock); |
| spin_lock_init(&a->fw_event_lock); |
| mutex_init(&a->fm_api_mutex); |
| mutex_init(&a->fs_api_mutex); |
| sema_init(&a->nvram_semaphore, 1); |
| |
| esas2r_fw_event_off(a); |
| snprintf(a->fw_event_q_name, ESAS2R_KOBJ_NAME_LEN, "esas2r/%d", |
| a->index); |
| a->fw_event_q = create_singlethread_workqueue(a->fw_event_q_name); |
| |
| init_waitqueue_head(&a->buffered_ioctl_waiter); |
| init_waitqueue_head(&a->nvram_waiter); |
| init_waitqueue_head(&a->fm_api_waiter); |
| init_waitqueue_head(&a->fs_api_waiter); |
| init_waitqueue_head(&a->vda_waiter); |
| |
| INIT_LIST_HEAD(&a->general_req.req_list); |
| INIT_LIST_HEAD(&a->active_list); |
| INIT_LIST_HEAD(&a->defer_list); |
| INIT_LIST_HEAD(&a->free_sg_list_head); |
| INIT_LIST_HEAD(&a->avail_request); |
| INIT_LIST_HEAD(&a->vrq_mds_head); |
| INIT_LIST_HEAD(&a->fw_event_list); |
| |
| first_request = (struct esas2r_request *)((u8 *)(a + 1)); |
| |
| for (last_request = first_request, i = 1; i < num_requests; |
| last_request++, i++) { |
| INIT_LIST_HEAD(&last_request->req_list); |
| list_add_tail(&last_request->comp_list, &a->avail_request); |
| if (!alloc_vda_req(a, last_request)) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate a VDA request!"); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| } |
| |
| esas2r_debug("requests: %p to %p (%d, %d)", first_request, |
| last_request, |
| sizeof(*first_request), |
| num_requests); |
| |
| if (esas2r_map_regions(a) != 0) { |
| esas2r_log(ESAS2R_LOG_CRIT, "could not map PCI regions!"); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| |
| a->index = index; |
| |
| /* interrupts will be disabled until we are done with init */ |
| atomic_inc(&a->dis_ints_cnt); |
| atomic_inc(&a->disable_cnt); |
| set_bit(AF_CHPRST_PENDING, &a->flags); |
| set_bit(AF_DISC_PENDING, &a->flags); |
| set_bit(AF_FIRST_INIT, &a->flags); |
| set_bit(AF_LEGACY_SGE_MODE, &a->flags); |
| |
| a->init_msg = ESAS2R_INIT_MSG_START; |
| a->max_vdareq_size = 128; |
| a->build_sgl = esas2r_build_sg_list_sge; |
| |
| esas2r_setup_interrupts(a, interrupt_mode); |
| |
| a->uncached_size = esas2r_get_uncached_size(a); |
| a->uncached = dma_alloc_coherent(&pcid->dev, |
| (size_t)a->uncached_size, |
| (dma_addr_t *)&bus_addr, |
| GFP_KERNEL); |
| if (a->uncached == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate %d bytes of consistent memory!", |
| a->uncached_size); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| |
| a->uncached_phys = bus_addr; |
| |
| esas2r_debug("%d bytes uncached memory allocated @ %p (%x:%x)", |
| a->uncached_size, |
| a->uncached, |
| upper_32_bits(bus_addr), |
| lower_32_bits(bus_addr)); |
| memset(a->uncached, 0, a->uncached_size); |
| next_uncached = a->uncached; |
| |
| if (!esas2r_init_adapter_struct(a, |
| &next_uncached)) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to initialize adapter structure (2)!"); |
| esas2r_kill_adapter(index); |
| return 0; |
| } |
| |
| tasklet_init(&a->tasklet, |
| esas2r_adapter_tasklet, |
| (unsigned long)a); |
| |
| /* |
| * Disable chip interrupts to prevent spurious interrupts |
| * until we claim the IRQ. |
| */ |
| esas2r_disable_chip_interrupts(a); |
| esas2r_check_adapter(a); |
| |
| if (!esas2r_init_adapter_hw(a, true)) |
| esas2r_log(ESAS2R_LOG_CRIT, "failed to initialize hardware!"); |
| else |
| esas2r_debug("esas2r_init_adapter ok"); |
| |
| esas2r_claim_interrupts(a); |
| |
| if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) |
| esas2r_enable_chip_interrupts(a); |
| |
| set_bit(AF2_INIT_DONE, &a->flags2); |
| if (!test_bit(AF_DEGRADED_MODE, &a->flags)) |
| esas2r_kickoff_timer(a); |
| esas2r_debug("esas2r_init_adapter done for %p (%d)", |
| a, a->disable_cnt); |
| |
| return 1; |
| } |
| |
| static void esas2r_adapter_power_down(struct esas2r_adapter *a, |
| int power_management) |
| { |
| struct esas2r_mem_desc *memdesc, *next; |
| |
| if ((test_bit(AF2_INIT_DONE, &a->flags2)) |
| && (!test_bit(AF_DEGRADED_MODE, &a->flags))) { |
| if (!power_management) { |
| del_timer_sync(&a->timer); |
| tasklet_kill(&a->tasklet); |
| } |
| esas2r_power_down(a); |
| |
| /* |
| * There are versions of firmware that do not handle the sync |
| * cache command correctly. Stall here to ensure that the |
| * cache is lazily flushed. |
| */ |
| mdelay(500); |
| esas2r_debug("chip halted"); |
| } |
| |
| /* Remove sysfs binary files */ |
| if (a->sysfs_fw_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fw); |
| a->sysfs_fw_created = 0; |
| } |
| |
| if (a->sysfs_fs_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_fs); |
| a->sysfs_fs_created = 0; |
| } |
| |
| if (a->sysfs_vda_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_vda); |
| a->sysfs_vda_created = 0; |
| } |
| |
| if (a->sysfs_hw_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, &bin_attr_hw); |
| a->sysfs_hw_created = 0; |
| } |
| |
| if (a->sysfs_live_nvram_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, |
| &bin_attr_live_nvram); |
| a->sysfs_live_nvram_created = 0; |
| } |
| |
| if (a->sysfs_default_nvram_created) { |
| sysfs_remove_bin_file(&a->host->shost_dev.kobj, |
| &bin_attr_default_nvram); |
| a->sysfs_default_nvram_created = 0; |
| } |
| |
| /* Clean up interrupts */ |
| if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "free_irq(%d) called", a->pcid->irq); |
| |
| free_irq(a->pcid->irq, a); |
| esas2r_debug("IRQ released"); |
| clear_bit(AF2_IRQ_CLAIMED, &a->flags2); |
| } |
| |
| if (test_bit(AF2_MSI_ENABLED, &a->flags2)) { |
| pci_disable_msi(a->pcid); |
| clear_bit(AF2_MSI_ENABLED, &a->flags2); |
| esas2r_debug("MSI disabled"); |
| } |
| |
| if (a->inbound_list_md.virt_addr) |
| esas2r_initmem_free(a, &a->inbound_list_md); |
| |
| if (a->outbound_list_md.virt_addr) |
| esas2r_initmem_free(a, &a->outbound_list_md); |
| |
| list_for_each_entry_safe(memdesc, next, &a->free_sg_list_head, |
| next_desc) { |
| esas2r_initmem_free(a, memdesc); |
| } |
| |
| /* Following frees everything allocated via alloc_vda_req */ |
| list_for_each_entry_safe(memdesc, next, &a->vrq_mds_head, next_desc) { |
| esas2r_initmem_free(a, memdesc); |
| list_del(&memdesc->next_desc); |
| kfree(memdesc); |
| } |
| |
| kfree(a->first_ae_req); |
| a->first_ae_req = NULL; |
| |
| kfree(a->sg_list_mds); |
| a->sg_list_mds = NULL; |
| |
| kfree(a->req_table); |
| a->req_table = NULL; |
| |
| if (a->regs) { |
| esas2r_unmap_regions(a); |
| a->regs = NULL; |
| a->data_window = NULL; |
| esas2r_debug("regions unmapped"); |
| } |
| } |
| |
| /* Release/free allocated resources for specified adapters. */ |
| void esas2r_kill_adapter(int i) |
| { |
| struct esas2r_adapter *a = esas2r_adapters[i]; |
| |
| if (a) { |
| unsigned long flags; |
| struct workqueue_struct *wq; |
| esas2r_debug("killing adapter %p [%d] ", a, i); |
| esas2r_fw_event_off(a); |
| esas2r_adapter_power_down(a, 0); |
| if (esas2r_buffered_ioctl && |
| (a->pcid == esas2r_buffered_ioctl_pcid)) { |
| dma_free_coherent(&a->pcid->dev, |
| (size_t)esas2r_buffered_ioctl_size, |
| esas2r_buffered_ioctl, |
| esas2r_buffered_ioctl_addr); |
| esas2r_buffered_ioctl = NULL; |
| } |
| |
| if (a->vda_buffer) { |
| dma_free_coherent(&a->pcid->dev, |
| (size_t)VDA_MAX_BUFFER_SIZE, |
| a->vda_buffer, |
| (dma_addr_t)a->ppvda_buffer); |
| a->vda_buffer = NULL; |
| } |
| if (a->fs_api_buffer) { |
| dma_free_coherent(&a->pcid->dev, |
| (size_t)a->fs_api_buffer_size, |
| a->fs_api_buffer, |
| (dma_addr_t)a->ppfs_api_buffer); |
| a->fs_api_buffer = NULL; |
| } |
| |
| kfree(a->local_atto_ioctl); |
| a->local_atto_ioctl = NULL; |
| |
| spin_lock_irqsave(&a->fw_event_lock, flags); |
| wq = a->fw_event_q; |
| a->fw_event_q = NULL; |
| spin_unlock_irqrestore(&a->fw_event_lock, flags); |
| if (wq) |
| destroy_workqueue(wq); |
| |
| if (a->uncached) { |
| dma_free_coherent(&a->pcid->dev, |
| (size_t)a->uncached_size, |
| a->uncached, |
| (dma_addr_t)a->uncached_phys); |
| a->uncached = NULL; |
| esas2r_debug("uncached area freed"); |
| } |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "pci_disable_device() called. msix_enabled: %d " |
| "msi_enabled: %d irq: %d pin: %d", |
| a->pcid->msix_enabled, |
| a->pcid->msi_enabled, |
| a->pcid->irq, |
| a->pcid->pin); |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "before pci_disable_device() enable_cnt: %d", |
| a->pcid->enable_cnt.counter); |
| |
| pci_disable_device(a->pcid); |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "after pci_disable_device() enable_cnt: %d", |
| a->pcid->enable_cnt.counter); |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->pcid->dev), |
| "pci_set_drv_data(%p, NULL) called", |
| a->pcid); |
| |
| pci_set_drvdata(a->pcid, NULL); |
| esas2r_adapters[i] = NULL; |
| |
| if (test_bit(AF2_INIT_DONE, &a->flags2)) { |
| clear_bit(AF2_INIT_DONE, &a->flags2); |
| |
| set_bit(AF_DEGRADED_MODE, &a->flags); |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->host->shost_gendev), |
| "scsi_remove_host() called"); |
| |
| scsi_remove_host(a->host); |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, |
| &(a->host->shost_gendev), |
| "scsi_host_put() called"); |
| |
| scsi_host_put(a->host); |
| } |
| } |
| } |
| |
| int esas2r_suspend(struct pci_dev *pdev, pm_message_t state) |
| { |
| struct Scsi_Host *host = pci_get_drvdata(pdev); |
| u32 device_state; |
| struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "suspending adapter()"); |
| if (!a) |
| return -ENODEV; |
| |
| esas2r_adapter_power_down(a, 1); |
| device_state = pci_choose_state(pdev, state); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_save_state() called"); |
| pci_save_state(pdev); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_disable_device() called"); |
| pci_disable_device(pdev); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_set_power_state() called"); |
| pci_set_power_state(pdev, device_state); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "esas2r_suspend(): 0"); |
| return 0; |
| } |
| |
| int esas2r_resume(struct pci_dev *pdev) |
| { |
| struct Scsi_Host *host = pci_get_drvdata(pdev); |
| struct esas2r_adapter *a = (struct esas2r_adapter *)host->hostdata; |
| int rez; |
| |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), "resuming adapter()"); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_set_power_state(PCI_D0) " |
| "called"); |
| pci_set_power_state(pdev, PCI_D0); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_enable_wake(PCI_D0, 0) " |
| "called"); |
| pci_enable_wake(pdev, PCI_D0, 0); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_restore_state() called"); |
| pci_restore_state(pdev); |
| esas2r_log_dev(ESAS2R_LOG_INFO, &(pdev->dev), |
| "pci_enable_device() called"); |
| rez = pci_enable_device(pdev); |
| pci_set_master(pdev); |
| |
| if (!a) { |
| rez = -ENODEV; |
| goto error_exit; |
| } |
| |
| if (esas2r_map_regions(a) != 0) { |
| esas2r_log(ESAS2R_LOG_CRIT, "could not re-map PCI regions!"); |
| rez = -ENOMEM; |
| goto error_exit; |
| } |
| |
| /* Set up interupt mode */ |
| esas2r_setup_interrupts(a, a->intr_mode); |
| |
| /* |
| * Disable chip interrupts to prevent spurious interrupts until we |
| * claim the IRQ. |
| */ |
| esas2r_disable_chip_interrupts(a); |
| if (!esas2r_power_up(a, true)) { |
| esas2r_debug("yikes, esas2r_power_up failed"); |
| rez = -ENOMEM; |
| goto error_exit; |
| } |
| |
| esas2r_claim_interrupts(a); |
| |
| if (test_bit(AF2_IRQ_CLAIMED, &a->flags2)) { |
| /* |
| * Now that system interrupt(s) are claimed, we can enable |
| * chip interrupts. |
| */ |
| esas2r_enable_chip_interrupts(a); |
| esas2r_kickoff_timer(a); |
| } else { |
| esas2r_debug("yikes, unable to claim IRQ"); |
| esas2r_log(ESAS2R_LOG_CRIT, "could not re-claim IRQ!"); |
| rez = -ENOMEM; |
| goto error_exit; |
| } |
| |
| error_exit: |
| esas2r_log_dev(ESAS2R_LOG_CRIT, &(pdev->dev), "esas2r_resume(): %d", |
| rez); |
| return rez; |
| } |
| |
| bool esas2r_set_degraded_mode(struct esas2r_adapter *a, char *error_str) |
| { |
| set_bit(AF_DEGRADED_MODE, &a->flags); |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "setting adapter to degraded mode: %s\n", error_str); |
| return false; |
| } |
| |
| u32 esas2r_get_uncached_size(struct esas2r_adapter *a) |
| { |
| return sizeof(struct esas2r_sas_nvram) |
| + ALIGN(ESAS2R_DISC_BUF_LEN, 8) |
| + ALIGN(sizeof(u32), 8) /* outbound list copy pointer */ |
| + 8 |
| + (num_sg_lists * (u16)sgl_page_size) |
| + ALIGN((num_requests + num_ae_requests + 1 + |
| ESAS2R_LIST_EXTRA) * |
| sizeof(struct esas2r_inbound_list_source_entry), |
| 8) |
| + ALIGN((num_requests + num_ae_requests + 1 + |
| ESAS2R_LIST_EXTRA) * |
| sizeof(struct atto_vda_ob_rsp), 8) |
| + 256; /* VDA request and buffer align */ |
| } |
| |
| static void esas2r_init_pci_cfg_space(struct esas2r_adapter *a) |
| { |
| int pcie_cap_reg; |
| |
| pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP); |
| if (pcie_cap_reg) { |
| u16 devcontrol; |
| |
| pci_read_config_word(a->pcid, pcie_cap_reg + PCI_EXP_DEVCTL, |
| &devcontrol); |
| |
| if ((devcontrol & PCI_EXP_DEVCTL_READRQ) > |
| PCI_EXP_DEVCTL_READRQ_512B) { |
| esas2r_log(ESAS2R_LOG_INFO, |
| "max read request size > 512B"); |
| |
| devcontrol &= ~PCI_EXP_DEVCTL_READRQ; |
| devcontrol |= PCI_EXP_DEVCTL_READRQ_512B; |
| pci_write_config_word(a->pcid, |
| pcie_cap_reg + PCI_EXP_DEVCTL, |
| devcontrol); |
| } |
| } |
| } |
| |
| /* |
| * Determine the organization of the uncached data area and |
| * finish initializing the adapter structure |
| */ |
| bool esas2r_init_adapter_struct(struct esas2r_adapter *a, |
| void **uncached_area) |
| { |
| u32 i; |
| u8 *high; |
| struct esas2r_inbound_list_source_entry *element; |
| struct esas2r_request *rq; |
| struct esas2r_mem_desc *sgl; |
| |
| spin_lock_init(&a->sg_list_lock); |
| spin_lock_init(&a->mem_lock); |
| spin_lock_init(&a->queue_lock); |
| |
| a->targetdb_end = &a->targetdb[ESAS2R_MAX_TARGETS]; |
| |
| if (!alloc_vda_req(a, &a->general_req)) { |
| esas2r_hdebug( |
| "failed to allocate a VDA request for the general req!"); |
| return false; |
| } |
| |
| /* allocate requests for asynchronous events */ |
| a->first_ae_req = |
| kzalloc(num_ae_requests * sizeof(struct esas2r_request), |
| GFP_KERNEL); |
| |
| if (a->first_ae_req == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate memory for asynchronous events"); |
| return false; |
| } |
| |
| /* allocate the S/G list memory descriptors */ |
| a->sg_list_mds = kzalloc( |
| num_sg_lists * sizeof(struct esas2r_mem_desc), GFP_KERNEL); |
| |
| if (a->sg_list_mds == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate memory for s/g list descriptors"); |
| return false; |
| } |
| |
| /* allocate the request table */ |
| a->req_table = |
| kzalloc((num_requests + num_ae_requests + |
| 1) * sizeof(struct esas2r_request *), GFP_KERNEL); |
| |
| if (a->req_table == NULL) { |
| esas2r_log(ESAS2R_LOG_CRIT, |
| "failed to allocate memory for the request table"); |
| return false; |
| } |
| |
| /* initialize PCI configuration space */ |
| esas2r_init_pci_cfg_space(a); |
| |
| /* |
| * the thunder_stream boards all have a serial flash part that has a |
| * different base address on the AHB bus. |
| */ |
| if ((a->pcid->subsystem_vendor == ATTO_VENDOR_ID) |
| && (a->pcid->subsystem_device & ATTO_SSDID_TBT)) |
| a->flags2 |= AF2_THUNDERBOLT; |
| |
| if (test_bit(AF2_THUNDERBOLT, &a->flags2)) |
| a->flags2 |= AF2_SERIAL_FLASH; |
| |
| if (a->pcid->subsystem_device == ATTO_TLSH_1068) |
| a->flags2 |= AF2_THUNDERLINK; |
| |
| /* Uncached Area */ |
| high = (u8 *)*uncached_area; |
| |
| /* initialize the scatter/gather table pages */ |
| |
| for (i = 0, sgl = a->sg_list_mds; i < num_sg_lists; i++, sgl++) { |
| sgl->size = sgl_page_size; |
| |
| list_add_tail(&sgl->next_desc, &a->free_sg_list_head); |
| |
| if (!esas2r_initmem_alloc(a, sgl, ESAS2R_SGL_ALIGN)) { |
| /* Allow the driver to load if the minimum count met. */ |
| if (i < NUM_SGL_MIN) |
| return false; |
| break; |
| } |
| } |
| |
| /* compute the size of the lists */ |
| a->list_size = num_requests + ESAS2R_LIST_EXTRA; |
| |
| /* allocate the inbound list */ |
| a->inbound_list_md.size = a->list_size * |
| sizeof(struct |
| esas2r_inbound_list_source_entry); |
| |
| if (!esas2r_initmem_alloc(a, &a->inbound_list_md, ESAS2R_LIST_ALIGN)) { |
| esas2r_hdebug("failed to allocate IB list"); |
| return false; |
| } |
| |
| /* allocate the outbound list */ |
| a->outbound_list_md.size = a->list_size * |
| sizeof(struct atto_vda_ob_rsp); |
| |
| if (!esas2r_initmem_alloc(a, &a->outbound_list_md, |
| ESAS2R_LIST_ALIGN)) { |
| esas2r_hdebug("failed to allocate IB list"); |
| return false; |
| } |
| |
| /* allocate the NVRAM structure */ |
| a->nvram = (struct esas2r_sas_nvram *)high; |
| high += sizeof(struct esas2r_sas_nvram); |
| |
| /* allocate the discovery buffer */ |
| a->disc_buffer = high; |
| high += ESAS2R_DISC_BUF_LEN; |
| high = PTR_ALIGN(high, 8); |
| |
| /* allocate the outbound list copy pointer */ |
| a->outbound_copy = (u32 volatile *)high; |
| high += sizeof(u32); |
| |
| if (!test_bit(AF_NVR_VALID, &a->flags)) |
| esas2r_nvram_set_defaults(a); |
| |
| /* update the caller's uncached memory area pointer */ |
| *uncached_area = (void *)high; |
| |
| /* initialize the allocated memory */ |
| if (test_bit(AF_FIRST_INIT, &a->flags)) { |
| esas2r_targ_db_initialize(a); |
| |
| /* prime parts of the inbound list */ |
| element = |
| (struct esas2r_inbound_list_source_entry *)a-> |
| inbound_list_md. |
| virt_addr; |
| |
| for (i = 0; i < a->list_size; i++) { |
| element->address = 0; |
| element->reserved = 0; |
| element->length = cpu_to_le32(HWILSE_INTERFACE_F0 |
| | (sizeof(union |
| atto_vda_req) |
| / |
| sizeof(u32))); |
| element++; |
| } |
| |
| /* init the AE requests */ |
| for (rq = a->first_ae_req, i = 0; i < num_ae_requests; rq++, |
| i++) { |
| INIT_LIST_HEAD(&rq->req_list); |
| if (!alloc_vda_req(a, rq)) { |
| esas2r_hdebug( |
| "failed to allocate a VDA request!"); |
| return false; |
| } |
| |
| esas2r_rq_init_request(rq, a); |
| |
| /* override the completion function */ |
| rq->comp_cb = esas2r_ae_complete; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* This code will verify that the chip is operational. */ |
| bool esas2r_check_adapter(struct esas2r_adapter *a) |
| { |
| u32 starttime; |
| u32 doorbell; |
| u64 ppaddr; |
| u32 dw; |
| |
| /* |
| * if the chip reset detected flag is set, we can bypass a bunch of |
| * stuff. |
| */ |
| if (test_bit(AF_CHPRST_DETECTED, &a->flags)) |
| goto skip_chip_reset; |
| |
| /* |
| * BEFORE WE DO ANYTHING, disable the chip interrupts! the boot driver |
| * may have left them enabled or we may be recovering from a fault. |
| */ |
| esas2r_write_register_dword(a, MU_INT_MASK_OUT, ESAS2R_INT_DIS_MASK); |
| esas2r_flush_register_dword(a, MU_INT_MASK_OUT); |
| |
| /* |
| * wait for the firmware to become ready by forcing an interrupt and |
| * waiting for a response. |
| */ |
| starttime = jiffies_to_msecs(jiffies); |
| |
| while (true) { |
| esas2r_force_interrupt(a); |
| doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| if (doorbell == 0xFFFFFFFF) { |
| /* |
| * Give the firmware up to two seconds to enable |
| * register access after a reset. |
| */ |
| if ((jiffies_to_msecs(jiffies) - starttime) > 2000) |
| return esas2r_set_degraded_mode(a, |
| "unable to access registers"); |
| } else if (doorbell & DRBL_FORCE_INT) { |
| u32 ver = (doorbell & DRBL_FW_VER_MSK); |
| |
| /* |
| * This driver supports version 0 and version 1 of |
| * the API |
| */ |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| doorbell); |
| |
| if (ver == DRBL_FW_VER_0) { |
| set_bit(AF_LEGACY_SGE_MODE, &a->flags); |
| |
| a->max_vdareq_size = 128; |
| a->build_sgl = esas2r_build_sg_list_sge; |
| } else if (ver == DRBL_FW_VER_1) { |
| clear_bit(AF_LEGACY_SGE_MODE, &a->flags); |
| |
| a->max_vdareq_size = 1024; |
| a->build_sgl = esas2r_build_sg_list_prd; |
| } else { |
| return esas2r_set_degraded_mode(a, |
| "unknown firmware version"); |
| } |
| break; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| |
| if ((jiffies_to_msecs(jiffies) - starttime) > 180000) { |
| esas2r_hdebug("FW ready TMO"); |
| esas2r_bugon(); |
| |
| return esas2r_set_degraded_mode(a, |
| "firmware start has timed out"); |
| } |
| } |
| |
| /* purge any asynchronous events since we will repost them later */ |
| esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_DOWN); |
| starttime = jiffies_to_msecs(jiffies); |
| |
| while (true) { |
| doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| if (doorbell & DRBL_MSG_IFC_DOWN) { |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| doorbell); |
| break; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(50)); |
| |
| if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { |
| esas2r_hdebug("timeout waiting for interface down"); |
| break; |
| } |
| } |
| skip_chip_reset: |
| /* |
| * first things first, before we go changing any of these registers |
| * disable the communication lists. |
| */ |
| dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); |
| dw &= ~MU_ILC_ENABLE; |
| esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); |
| dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); |
| dw &= ~MU_OLC_ENABLE; |
| esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); |
| |
| /* configure the communication list addresses */ |
| ppaddr = a->inbound_list_md.phys_addr; |
| esas2r_write_register_dword(a, MU_IN_LIST_ADDR_LO, |
| lower_32_bits(ppaddr)); |
| esas2r_write_register_dword(a, MU_IN_LIST_ADDR_HI, |
| upper_32_bits(ppaddr)); |
| ppaddr = a->outbound_list_md.phys_addr; |
| esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_LO, |
| lower_32_bits(ppaddr)); |
| esas2r_write_register_dword(a, MU_OUT_LIST_ADDR_HI, |
| upper_32_bits(ppaddr)); |
| ppaddr = a->uncached_phys + |
| ((u8 *)a->outbound_copy - a->uncached); |
| esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_LO, |
| lower_32_bits(ppaddr)); |
| esas2r_write_register_dword(a, MU_OUT_LIST_COPY_PTR_HI, |
| upper_32_bits(ppaddr)); |
| |
| /* reset the read and write pointers */ |
| *a->outbound_copy = |
| a->last_write = |
| a->last_read = a->list_size - 1; |
| set_bit(AF_COMM_LIST_TOGGLE, &a->flags); |
| esas2r_write_register_dword(a, MU_IN_LIST_WRITE, MU_ILW_TOGGLE | |
| a->last_write); |
| esas2r_write_register_dword(a, MU_OUT_LIST_COPY, MU_OLC_TOGGLE | |
| a->last_write); |
| esas2r_write_register_dword(a, MU_IN_LIST_READ, MU_ILR_TOGGLE | |
| a->last_write); |
| esas2r_write_register_dword(a, MU_OUT_LIST_WRITE, |
| MU_OLW_TOGGLE | a->last_write); |
| |
| /* configure the interface select fields */ |
| dw = esas2r_read_register_dword(a, MU_IN_LIST_IFC_CONFIG); |
| dw &= ~(MU_ILIC_LIST | MU_ILIC_DEST); |
| esas2r_write_register_dword(a, MU_IN_LIST_IFC_CONFIG, |
| (dw | MU_ILIC_LIST_F0 | MU_ILIC_DEST_DDR)); |
| dw = esas2r_read_register_dword(a, MU_OUT_LIST_IFC_CONFIG); |
| dw &= ~(MU_OLIC_LIST | MU_OLIC_SOURCE); |
| esas2r_write_register_dword(a, MU_OUT_LIST_IFC_CONFIG, |
| (dw | MU_OLIC_LIST_F0 | |
| MU_OLIC_SOURCE_DDR)); |
| |
| /* finish configuring the communication lists */ |
| dw = esas2r_read_register_dword(a, MU_IN_LIST_CONFIG); |
| dw &= ~(MU_ILC_ENTRY_MASK | MU_ILC_NUMBER_MASK); |
| dw |= MU_ILC_ENTRY_4_DW | MU_ILC_DYNAMIC_SRC |
| | (a->list_size << MU_ILC_NUMBER_SHIFT); |
| esas2r_write_register_dword(a, MU_IN_LIST_CONFIG, dw); |
| dw = esas2r_read_register_dword(a, MU_OUT_LIST_CONFIG); |
| dw &= ~(MU_OLC_ENTRY_MASK | MU_OLC_NUMBER_MASK); |
| dw |= MU_OLC_ENTRY_4_DW | (a->list_size << MU_OLC_NUMBER_SHIFT); |
| esas2r_write_register_dword(a, MU_OUT_LIST_CONFIG, dw); |
| |
| /* |
| * notify the firmware that we're done setting up the communication |
| * list registers. wait here until the firmware is done configuring |
| * its lists. it will signal that it is done by enabling the lists. |
| */ |
| esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_MSG_IFC_INIT); |
| starttime = jiffies_to_msecs(jiffies); |
| |
| while (true) { |
| doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| if (doorbell & DRBL_MSG_IFC_INIT) { |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| doorbell); |
| break; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| |
| if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { |
| esas2r_hdebug( |
| "timeout waiting for communication list init"); |
| esas2r_bugon(); |
| return esas2r_set_degraded_mode(a, |
| "timeout waiting for communication list init"); |
| } |
| } |
| |
| /* |
| * flag whether the firmware supports the power down doorbell. we |
| * determine this by reading the inbound doorbell enable mask. |
| */ |
| doorbell = esas2r_read_register_dword(a, MU_DOORBELL_IN_ENB); |
| if (doorbell & DRBL_POWER_DOWN) |
| set_bit(AF2_VDA_POWER_DOWN, &a->flags2); |
| else |
| clear_bit(AF2_VDA_POWER_DOWN, &a->flags2); |
| |
| /* |
| * enable assertion of outbound queue and doorbell interrupts in the |
| * main interrupt cause register. |
| */ |
| esas2r_write_register_dword(a, MU_OUT_LIST_INT_MASK, MU_OLIS_MASK); |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT_ENB, DRBL_ENB_MASK); |
| return true; |
| } |
| |
| /* Process the initialization message just completed and format the next one. */ |
| static bool esas2r_format_init_msg(struct esas2r_adapter *a, |
| struct esas2r_request *rq) |
| { |
| u32 msg = a->init_msg; |
| struct atto_vda_cfg_init *ci; |
| |
| a->init_msg = 0; |
| |
| switch (msg) { |
| case ESAS2R_INIT_MSG_START: |
| case ESAS2R_INIT_MSG_REINIT: |
| { |
| struct timeval now; |
| do_gettimeofday(&now); |
| esas2r_hdebug("CFG init"); |
| esas2r_build_cfg_req(a, |
| rq, |
| VDA_CFG_INIT, |
| 0, |
| NULL); |
| ci = (struct atto_vda_cfg_init *)&rq->vrq->cfg.data.init; |
| ci->sgl_page_size = cpu_to_le32(sgl_page_size); |
| ci->epoch_time = cpu_to_le32(now.tv_sec); |
| rq->flags |= RF_FAILURE_OK; |
| a->init_msg = ESAS2R_INIT_MSG_INIT; |
| break; |
| } |
| |
| case ESAS2R_INIT_MSG_INIT: |
| if (rq->req_stat == RS_SUCCESS) { |
| u32 major; |
| u32 minor; |
| u16 fw_release; |
| |
| a->fw_version = le16_to_cpu( |
| rq->func_rsp.cfg_rsp.vda_version); |
| a->fw_build = rq->func_rsp.cfg_rsp.fw_build; |
| fw_release = le16_to_cpu( |
| rq->func_rsp.cfg_rsp.fw_release); |
| major = LOBYTE(fw_release); |
| minor = HIBYTE(fw_release); |
| a->fw_version += (major << 16) + (minor << 24); |
| } else { |
| esas2r_hdebug("FAILED"); |
| } |
| |
| /* |
| * the 2.71 and earlier releases of R6xx firmware did not error |
| * unsupported config requests correctly. |
| */ |
| |
| if ((test_bit(AF2_THUNDERBOLT, &a->flags2)) |
| || (be32_to_cpu(a->fw_version) > 0x00524702)) { |
| esas2r_hdebug("CFG get init"); |
| esas2r_build_cfg_req(a, |
| rq, |
| VDA_CFG_GET_INIT2, |
| sizeof(struct atto_vda_cfg_init), |
| NULL); |
| |
| rq->vrq->cfg.sg_list_offset = offsetof( |
| struct atto_vda_cfg_req, |
| data.sge); |
| rq->vrq->cfg.data.prde.ctl_len = |
| cpu_to_le32(sizeof(struct atto_vda_cfg_init)); |
| rq->vrq->cfg.data.prde.address = cpu_to_le64( |
| rq->vrq_md->phys_addr + |
| sizeof(union atto_vda_req)); |
| rq->flags |= RF_FAILURE_OK; |
| a->init_msg = ESAS2R_INIT_MSG_GET_INIT; |
| break; |
| } |
| |
| case ESAS2R_INIT_MSG_GET_INIT: |
| if (msg == ESAS2R_INIT_MSG_GET_INIT) { |
| ci = (struct atto_vda_cfg_init *)rq->data_buf; |
| if (rq->req_stat == RS_SUCCESS) { |
| a->num_targets_backend = |
| le32_to_cpu(ci->num_targets_backend); |
| a->ioctl_tunnel = |
| le32_to_cpu(ci->ioctl_tunnel); |
| } else { |
| esas2r_hdebug("FAILED"); |
| } |
| } |
| /* fall through */ |
| |
| default: |
| rq->req_stat = RS_SUCCESS; |
| return false; |
| } |
| return true; |
| } |
| |
| /* |
| * Perform initialization messages via the request queue. Messages are |
| * performed with interrupts disabled. |
| */ |
| bool esas2r_init_msgs(struct esas2r_adapter *a) |
| { |
| bool success = true; |
| struct esas2r_request *rq = &a->general_req; |
| |
| esas2r_rq_init_request(rq, a); |
| rq->comp_cb = esas2r_dummy_complete; |
| |
| if (a->init_msg == 0) |
| a->init_msg = ESAS2R_INIT_MSG_REINIT; |
| |
| while (a->init_msg) { |
| if (esas2r_format_init_msg(a, rq)) { |
| unsigned long flags; |
| while (true) { |
| spin_lock_irqsave(&a->queue_lock, flags); |
| esas2r_start_vda_request(a, rq); |
| spin_unlock_irqrestore(&a->queue_lock, flags); |
| esas2r_wait_request(a, rq); |
| if (rq->req_stat != RS_PENDING) |
| break; |
| } |
| } |
| |
| if (rq->req_stat == RS_SUCCESS |
| || ((rq->flags & RF_FAILURE_OK) |
| && rq->req_stat != RS_TIMEOUT)) |
| continue; |
| |
| esas2r_log(ESAS2R_LOG_CRIT, "init message %x failed (%x, %x)", |
| a->init_msg, rq->req_stat, rq->flags); |
| a->init_msg = ESAS2R_INIT_MSG_START; |
| success = false; |
| break; |
| } |
| |
| esas2r_rq_destroy_request(rq, a); |
| return success; |
| } |
| |
| /* Initialize the adapter chip */ |
| bool esas2r_init_adapter_hw(struct esas2r_adapter *a, bool init_poll) |
| { |
| bool rslt = false; |
| struct esas2r_request *rq; |
| u32 i; |
| |
| if (test_bit(AF_DEGRADED_MODE, &a->flags)) |
| goto exit; |
| |
| if (!test_bit(AF_NVR_VALID, &a->flags)) { |
| if (!esas2r_nvram_read_direct(a)) |
| esas2r_log(ESAS2R_LOG_WARN, |
| "invalid/missing NVRAM parameters"); |
| } |
| |
| if (!esas2r_init_msgs(a)) { |
| esas2r_set_degraded_mode(a, "init messages failed"); |
| goto exit; |
| } |
| |
| /* The firmware is ready. */ |
| clear_bit(AF_DEGRADED_MODE, &a->flags); |
| clear_bit(AF_CHPRST_PENDING, &a->flags); |
| |
| /* Post all the async event requests */ |
| for (i = 0, rq = a->first_ae_req; i < num_ae_requests; i++, rq++) |
| esas2r_start_ae_request(a, rq); |
| |
| if (!a->flash_rev[0]) |
| esas2r_read_flash_rev(a); |
| |
| if (!a->image_type[0]) |
| esas2r_read_image_type(a); |
| |
| if (a->fw_version == 0) |
| a->fw_rev[0] = 0; |
| else |
| sprintf(a->fw_rev, "%1d.%02d", |
| (int)LOBYTE(HIWORD(a->fw_version)), |
| (int)HIBYTE(HIWORD(a->fw_version))); |
| |
| esas2r_hdebug("firmware revision: %s", a->fw_rev); |
| |
| if (test_bit(AF_CHPRST_DETECTED, &a->flags) |
| && (test_bit(AF_FIRST_INIT, &a->flags))) { |
| esas2r_enable_chip_interrupts(a); |
| return true; |
| } |
| |
| /* initialize discovery */ |
| esas2r_disc_initialize(a); |
| |
| /* |
| * wait for the device wait time to expire here if requested. this is |
| * usually requested during initial driver load and possibly when |
| * resuming from a low power state. deferred device waiting will use |
| * interrupts. chip reset recovery always defers device waiting to |
| * avoid being in a TASKLET too long. |
| */ |
| if (init_poll) { |
| u32 currtime = a->disc_start_time; |
| u32 nexttick = 100; |
| u32 deltatime; |
| |
| /* |
| * Block Tasklets from getting scheduled and indicate this is |
| * polled discovery. |
| */ |
| set_bit(AF_TASKLET_SCHEDULED, &a->flags); |
| set_bit(AF_DISC_POLLED, &a->flags); |
| |
| /* |
| * Temporarily bring the disable count to zero to enable |
| * deferred processing. Note that the count is already zero |
| * after the first initialization. |
| */ |
| if (test_bit(AF_FIRST_INIT, &a->flags)) |
| atomic_dec(&a->disable_cnt); |
| |
| while (test_bit(AF_DISC_PENDING, &a->flags)) { |
| schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| |
| /* |
| * Determine the need for a timer tick based on the |
| * delta time between this and the last iteration of |
| * this loop. We don't use the absolute time because |
| * then we would have to worry about when nexttick |
| * wraps and currtime hasn't yet. |
| */ |
| deltatime = jiffies_to_msecs(jiffies) - currtime; |
| currtime += deltatime; |
| |
| /* |
| * Process any waiting discovery as long as the chip is |
| * up. If a chip reset happens during initial polling, |
| * we have to make sure the timer tick processes the |
| * doorbell indicating the firmware is ready. |
| */ |
| if (!test_bit(AF_CHPRST_PENDING, &a->flags)) |
| esas2r_disc_check_for_work(a); |
| |
| /* Simulate a timer tick. */ |
| if (nexttick <= deltatime) { |
| |
| /* Time for a timer tick */ |
| nexttick += 100; |
| esas2r_timer_tick(a); |
| } |
| |
| if (nexttick > deltatime) |
| nexttick -= deltatime; |
| |
| /* Do any deferred processing */ |
| if (esas2r_is_tasklet_pending(a)) |
| esas2r_do_tasklet_tasks(a); |
| |
| } |
| |
| if (test_bit(AF_FIRST_INIT, &a->flags)) |
| atomic_inc(&a->disable_cnt); |
| |
| clear_bit(AF_DISC_POLLED, &a->flags); |
| clear_bit(AF_TASKLET_SCHEDULED, &a->flags); |
| } |
| |
| |
| esas2r_targ_db_report_changes(a); |
| |
| /* |
| * For cases where (a) the initialization messages processing may |
| * handle an interrupt for a port event and a discovery is waiting, but |
| * we are not waiting for devices, or (b) the device wait time has been |
| * exhausted but there is still discovery pending, start any leftover |
| * discovery in interrupt driven mode. |
| */ |
| esas2r_disc_start_waiting(a); |
| |
| /* Enable chip interrupts */ |
| a->int_mask = ESAS2R_INT_STS_MASK; |
| esas2r_enable_chip_interrupts(a); |
| esas2r_enable_heartbeat(a); |
| rslt = true; |
| |
| exit: |
| /* |
| * Regardless of whether initialization was successful, certain things |
| * need to get done before we exit. |
| */ |
| |
| if (test_bit(AF_CHPRST_DETECTED, &a->flags) && |
| test_bit(AF_FIRST_INIT, &a->flags)) { |
| /* |
| * Reinitialization was performed during the first |
| * initialization. Only clear the chip reset flag so the |
| * original device polling is not cancelled. |
| */ |
| if (!rslt) |
| clear_bit(AF_CHPRST_PENDING, &a->flags); |
| } else { |
| /* First initialization or a subsequent re-init is complete. */ |
| if (!rslt) { |
| clear_bit(AF_CHPRST_PENDING, &a->flags); |
| clear_bit(AF_DISC_PENDING, &a->flags); |
| } |
| |
| |
| /* Enable deferred processing after the first initialization. */ |
| if (test_bit(AF_FIRST_INIT, &a->flags)) { |
| clear_bit(AF_FIRST_INIT, &a->flags); |
| |
| if (atomic_dec_return(&a->disable_cnt) == 0) |
| esas2r_do_deferred_processes(a); |
| } |
| } |
| |
| return rslt; |
| } |
| |
| void esas2r_reset_adapter(struct esas2r_adapter *a) |
| { |
| set_bit(AF_OS_RESET, &a->flags); |
| esas2r_local_reset_adapter(a); |
| esas2r_schedule_tasklet(a); |
| } |
| |
| void esas2r_reset_chip(struct esas2r_adapter *a) |
| { |
| if (!esas2r_is_adapter_present(a)) |
| return; |
| |
| /* |
| * Before we reset the chip, save off the VDA core dump. The VDA core |
| * dump is located in the upper 512KB of the onchip SRAM. Make sure |
| * to not overwrite a previous crash that was saved. |
| */ |
| if (test_bit(AF2_COREDUMP_AVAIL, &a->flags2) && |
| !test_bit(AF2_COREDUMP_SAVED, &a->flags2)) { |
| esas2r_read_mem_block(a, |
| a->fw_coredump_buff, |
| MW_DATA_ADDR_SRAM + 0x80000, |
| ESAS2R_FWCOREDUMP_SZ); |
| |
| set_bit(AF2_COREDUMP_SAVED, &a->flags2); |
| } |
| |
| clear_bit(AF2_COREDUMP_AVAIL, &a->flags2); |
| |
| /* Reset the chip */ |
| if (a->pcid->revision == MVR_FREY_B2) |
| esas2r_write_register_dword(a, MU_CTL_STATUS_IN_B2, |
| MU_CTL_IN_FULL_RST2); |
| else |
| esas2r_write_register_dword(a, MU_CTL_STATUS_IN, |
| MU_CTL_IN_FULL_RST); |
| |
| |
| /* Stall a little while to let the reset condition clear */ |
| mdelay(10); |
| } |
| |
| static void esas2r_power_down_notify_firmware(struct esas2r_adapter *a) |
| { |
| u32 starttime; |
| u32 doorbell; |
| |
| esas2r_write_register_dword(a, MU_DOORBELL_IN, DRBL_POWER_DOWN); |
| starttime = jiffies_to_msecs(jiffies); |
| |
| while (true) { |
| doorbell = esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| if (doorbell & DRBL_POWER_DOWN) { |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| doorbell); |
| break; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| |
| if ((jiffies_to_msecs(jiffies) - starttime) > 30000) { |
| esas2r_hdebug("Timeout waiting for power down"); |
| break; |
| } |
| } |
| } |
| |
| /* |
| * Perform power management processing including managing device states, adapter |
| * states, interrupts, and I/O. |
| */ |
| void esas2r_power_down(struct esas2r_adapter *a) |
| { |
| set_bit(AF_POWER_MGT, &a->flags); |
| set_bit(AF_POWER_DOWN, &a->flags); |
| |
| if (!test_bit(AF_DEGRADED_MODE, &a->flags)) { |
| u32 starttime; |
| u32 doorbell; |
| |
| /* |
| * We are currently running OK and will be reinitializing later. |
| * increment the disable count to coordinate with |
| * esas2r_init_adapter. We don't have to do this in degraded |
| * mode since we never enabled interrupts in the first place. |
| */ |
| esas2r_disable_chip_interrupts(a); |
| esas2r_disable_heartbeat(a); |
| |
| /* wait for any VDA activity to clear before continuing */ |
| esas2r_write_register_dword(a, MU_DOORBELL_IN, |
| DRBL_MSG_IFC_DOWN); |
| starttime = jiffies_to_msecs(jiffies); |
| |
| while (true) { |
| doorbell = |
| esas2r_read_register_dword(a, MU_DOORBELL_OUT); |
| if (doorbell & DRBL_MSG_IFC_DOWN) { |
| esas2r_write_register_dword(a, MU_DOORBELL_OUT, |
| doorbell); |
| break; |
| } |
| |
| schedule_timeout_interruptible(msecs_to_jiffies(100)); |
| |
| if ((jiffies_to_msecs(jiffies) - starttime) > 3000) { |
| esas2r_hdebug( |
| "timeout waiting for interface down"); |
| break; |
| } |
| } |
| |
| /* |
| * For versions of firmware that support it tell them the driver |
| * is powering down. |
| */ |
| if (test_bit(AF2_VDA_POWER_DOWN, &a->flags2)) |
| esas2r_power_down_notify_firmware(a); |
| } |
| |
| /* Suspend I/O processing. */ |
| set_bit(AF_OS_RESET, &a->flags); |
| set_bit(AF_DISC_PENDING, &a->flags); |
| set_bit(AF_CHPRST_PENDING, &a->flags); |
| |
| esas2r_process_adapter_reset(a); |
| |
| /* Remove devices now that I/O is cleaned up. */ |
| a->prev_dev_cnt = esas2r_targ_db_get_tgt_cnt(a); |
| esas2r_targ_db_remove_all(a, false); |
| } |
| |
| /* |
| * Perform power management processing including managing device states, adapter |
| * states, interrupts, and I/O. |
| */ |
| bool esas2r_power_up(struct esas2r_adapter *a, bool init_poll) |
| { |
| bool ret; |
| |
| clear_bit(AF_POWER_DOWN, &a->flags); |
| esas2r_init_pci_cfg_space(a); |
| set_bit(AF_FIRST_INIT, &a->flags); |
| atomic_inc(&a->disable_cnt); |
| |
| /* reinitialize the adapter */ |
| ret = esas2r_check_adapter(a); |
| if (!esas2r_init_adapter_hw(a, init_poll)) |
| ret = false; |
| |
| /* send the reset asynchronous event */ |
| esas2r_send_reset_ae(a, true); |
| |
| /* clear this flag after initialization. */ |
| clear_bit(AF_POWER_MGT, &a->flags); |
| return ret; |
| } |
| |
| bool esas2r_is_adapter_present(struct esas2r_adapter *a) |
| { |
| if (test_bit(AF_NOT_PRESENT, &a->flags)) |
| return false; |
| |
| if (esas2r_read_register_dword(a, MU_DOORBELL_OUT) == 0xFFFFFFFF) { |
| set_bit(AF_NOT_PRESENT, &a->flags); |
| |
| return false; |
| } |
| return true; |
| } |
| |
| const char *esas2r_get_model_name(struct esas2r_adapter *a) |
| { |
| switch (a->pcid->subsystem_device) { |
| case ATTO_ESAS_R680: |
| return "ATTO ExpressSAS R680"; |
| |
| case ATTO_ESAS_R608: |
| return "ATTO ExpressSAS R608"; |
| |
| case ATTO_ESAS_R60F: |
| return "ATTO ExpressSAS R60F"; |
| |
| case ATTO_ESAS_R6F0: |
| return "ATTO ExpressSAS R6F0"; |
| |
| case ATTO_ESAS_R644: |
| return "ATTO ExpressSAS R644"; |
| |
| case ATTO_ESAS_R648: |
| return "ATTO ExpressSAS R648"; |
| |
| case ATTO_TSSC_3808: |
| return "ATTO ThunderStream SC 3808D"; |
| |
| case ATTO_TSSC_3808E: |
| return "ATTO ThunderStream SC 3808E"; |
| |
| case ATTO_TLSH_1068: |
| return "ATTO ThunderLink SH 1068"; |
| } |
| |
| return "ATTO SAS Controller"; |
| } |
| |
| const char *esas2r_get_model_name_short(struct esas2r_adapter *a) |
| { |
| switch (a->pcid->subsystem_device) { |
| case ATTO_ESAS_R680: |
| return "R680"; |
| |
| case ATTO_ESAS_R608: |
| return "R608"; |
| |
| case ATTO_ESAS_R60F: |
| return "R60F"; |
| |
| case ATTO_ESAS_R6F0: |
| return "R6F0"; |
| |
| case ATTO_ESAS_R644: |
| return "R644"; |
| |
| case ATTO_ESAS_R648: |
| return "R648"; |
| |
| case ATTO_TSSC_3808: |
| return "SC 3808D"; |
| |
| case ATTO_TSSC_3808E: |
| return "SC 3808E"; |
| |
| case ATTO_TLSH_1068: |
| return "SH 1068"; |
| } |
| |
| return "unknown"; |
| } |