| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * efi.c - EFI subsystem |
| * |
| * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> |
| * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> |
| * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> |
| * |
| * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, |
| * allowing the efivarfs to be mounted or the efivars module to be loaded. |
| * The existance of /sys/firmware/efi may also be used by userspace to |
| * determine that the system supports EFI. |
| */ |
| |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| |
| #include <linux/kobject.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/debugfs.h> |
| #include <linux/device.h> |
| #include <linux/efi.h> |
| #include <linux/of.h> |
| #include <linux/io.h> |
| #include <linux/kexec.h> |
| #include <linux/platform_device.h> |
| #include <linux/random.h> |
| #include <linux/reboot.h> |
| #include <linux/slab.h> |
| #include <linux/acpi.h> |
| #include <linux/ucs2_string.h> |
| #include <linux/memblock.h> |
| #include <linux/security.h> |
| |
| #include <asm/early_ioremap.h> |
| |
| struct efi __read_mostly efi = { |
| .runtime_supported_mask = EFI_RT_SUPPORTED_ALL, |
| .acpi = EFI_INVALID_TABLE_ADDR, |
| .acpi20 = EFI_INVALID_TABLE_ADDR, |
| .smbios = EFI_INVALID_TABLE_ADDR, |
| .smbios3 = EFI_INVALID_TABLE_ADDR, |
| .esrt = EFI_INVALID_TABLE_ADDR, |
| .tpm_log = EFI_INVALID_TABLE_ADDR, |
| .tpm_final_log = EFI_INVALID_TABLE_ADDR, |
| }; |
| EXPORT_SYMBOL(efi); |
| |
| unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR; |
| static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR; |
| static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR; |
| |
| struct mm_struct efi_mm = { |
| .mm_rb = RB_ROOT, |
| .mm_users = ATOMIC_INIT(2), |
| .mm_count = ATOMIC_INIT(1), |
| MMAP_LOCK_INITIALIZER(efi_mm) |
| .page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock), |
| .mmlist = LIST_HEAD_INIT(efi_mm.mmlist), |
| .cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0}, |
| }; |
| |
| struct workqueue_struct *efi_rts_wq; |
| |
| static bool disable_runtime; |
| static int __init setup_noefi(char *arg) |
| { |
| disable_runtime = true; |
| return 0; |
| } |
| early_param("noefi", setup_noefi); |
| |
| bool efi_runtime_disabled(void) |
| { |
| return disable_runtime; |
| } |
| |
| bool __pure __efi_soft_reserve_enabled(void) |
| { |
| return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE); |
| } |
| |
| static int __init parse_efi_cmdline(char *str) |
| { |
| if (!str) { |
| pr_warn("need at least one option\n"); |
| return -EINVAL; |
| } |
| |
| if (parse_option_str(str, "debug")) |
| set_bit(EFI_DBG, &efi.flags); |
| |
| if (parse_option_str(str, "noruntime")) |
| disable_runtime = true; |
| |
| if (parse_option_str(str, "nosoftreserve")) |
| set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags); |
| |
| return 0; |
| } |
| early_param("efi", parse_efi_cmdline); |
| |
| struct kobject *efi_kobj; |
| |
| /* |
| * Let's not leave out systab information that snuck into |
| * the efivars driver |
| * Note, do not add more fields in systab sysfs file as it breaks sysfs |
| * one value per file rule! |
| */ |
| static ssize_t systab_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| char *str = buf; |
| |
| if (!kobj || !buf) |
| return -EINVAL; |
| |
| if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); |
| if (efi.acpi != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); |
| /* |
| * If both SMBIOS and SMBIOS3 entry points are implemented, the |
| * SMBIOS3 entry point shall be preferred, so we list it first to |
| * let applications stop parsing after the first match. |
| */ |
| if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); |
| if (efi.smbios != EFI_INVALID_TABLE_ADDR) |
| str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); |
| |
| if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86)) |
| str = efi_systab_show_arch(str); |
| |
| return str - buf; |
| } |
| |
| static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400); |
| |
| static ssize_t fw_platform_size_show(struct kobject *kobj, |
| struct kobj_attribute *attr, char *buf) |
| { |
| return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); |
| } |
| |
| extern __weak struct kobj_attribute efi_attr_fw_vendor; |
| extern __weak struct kobj_attribute efi_attr_runtime; |
| extern __weak struct kobj_attribute efi_attr_config_table; |
| static struct kobj_attribute efi_attr_fw_platform_size = |
| __ATTR_RO(fw_platform_size); |
| |
| static struct attribute *efi_subsys_attrs[] = { |
| &efi_attr_systab.attr, |
| &efi_attr_fw_platform_size.attr, |
| &efi_attr_fw_vendor.attr, |
| &efi_attr_runtime.attr, |
| &efi_attr_config_table.attr, |
| NULL, |
| }; |
| |
| umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr, |
| int n) |
| { |
| return attr->mode; |
| } |
| |
| static const struct attribute_group efi_subsys_attr_group = { |
| .attrs = efi_subsys_attrs, |
| .is_visible = efi_attr_is_visible, |
| }; |
| |
| static struct efivars generic_efivars; |
| static struct efivar_operations generic_ops; |
| |
| static int generic_ops_register(void) |
| { |
| generic_ops.get_variable = efi.get_variable; |
| generic_ops.set_variable = efi.set_variable; |
| generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking; |
| generic_ops.get_next_variable = efi.get_next_variable; |
| generic_ops.query_variable_store = efi_query_variable_store; |
| |
| return efivars_register(&generic_efivars, &generic_ops, efi_kobj); |
| } |
| |
| static void generic_ops_unregister(void) |
| { |
| efivars_unregister(&generic_efivars); |
| } |
| |
| #if IS_ENABLED(CONFIG_ACPI) |
| #define EFIVAR_SSDT_NAME_MAX 16 |
| static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata; |
| static int __init efivar_ssdt_setup(char *str) |
| { |
| int ret = security_locked_down(LOCKDOWN_ACPI_TABLES); |
| |
| if (ret) |
| return ret; |
| |
| if (strlen(str) < sizeof(efivar_ssdt)) |
| memcpy(efivar_ssdt, str, strlen(str)); |
| else |
| pr_warn("efivar_ssdt: name too long: %s\n", str); |
| return 0; |
| } |
| __setup("efivar_ssdt=", efivar_ssdt_setup); |
| |
| static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor, |
| unsigned long name_size, void *data) |
| { |
| struct efivar_entry *entry; |
| struct list_head *list = data; |
| char utf8_name[EFIVAR_SSDT_NAME_MAX]; |
| int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size); |
| |
| ucs2_as_utf8(utf8_name, name, limit - 1); |
| if (strncmp(utf8_name, efivar_ssdt, limit) != 0) |
| return 0; |
| |
| entry = kmalloc(sizeof(*entry), GFP_KERNEL); |
| if (!entry) |
| return 0; |
| |
| memcpy(entry->var.VariableName, name, name_size); |
| memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t)); |
| |
| efivar_entry_add(entry, list); |
| |
| return 0; |
| } |
| |
| static __init int efivar_ssdt_load(void) |
| { |
| LIST_HEAD(entries); |
| struct efivar_entry *entry, *aux; |
| unsigned long size; |
| void *data; |
| int ret; |
| |
| if (!efivar_ssdt[0]) |
| return 0; |
| |
| ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries); |
| |
| list_for_each_entry_safe(entry, aux, &entries, list) { |
| pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, |
| &entry->var.VendorGuid); |
| |
| list_del(&entry->list); |
| |
| ret = efivar_entry_size(entry, &size); |
| if (ret) { |
| pr_err("failed to get var size\n"); |
| goto free_entry; |
| } |
| |
| data = kmalloc(size, GFP_KERNEL); |
| if (!data) { |
| ret = -ENOMEM; |
| goto free_entry; |
| } |
| |
| ret = efivar_entry_get(entry, NULL, &size, data); |
| if (ret) { |
| pr_err("failed to get var data\n"); |
| goto free_data; |
| } |
| |
| ret = acpi_load_table(data, NULL); |
| if (ret) { |
| pr_err("failed to load table: %d\n", ret); |
| goto free_data; |
| } |
| |
| goto free_entry; |
| |
| free_data: |
| kfree(data); |
| |
| free_entry: |
| kfree(entry); |
| } |
| |
| return ret; |
| } |
| #else |
| static inline int efivar_ssdt_load(void) { return 0; } |
| #endif |
| |
| #ifdef CONFIG_DEBUG_FS |
| |
| #define EFI_DEBUGFS_MAX_BLOBS 32 |
| |
| static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS]; |
| |
| static void __init efi_debugfs_init(void) |
| { |
| struct dentry *efi_debugfs; |
| efi_memory_desc_t *md; |
| char name[32]; |
| int type_count[EFI_BOOT_SERVICES_DATA + 1] = {}; |
| int i = 0; |
| |
| efi_debugfs = debugfs_create_dir("efi", NULL); |
| if (IS_ERR_OR_NULL(efi_debugfs)) |
| return; |
| |
| for_each_efi_memory_desc(md) { |
| switch (md->type) { |
| case EFI_BOOT_SERVICES_CODE: |
| snprintf(name, sizeof(name), "boot_services_code%d", |
| type_count[md->type]++); |
| break; |
| case EFI_BOOT_SERVICES_DATA: |
| snprintf(name, sizeof(name), "boot_services_data%d", |
| type_count[md->type]++); |
| break; |
| default: |
| continue; |
| } |
| |
| if (i >= EFI_DEBUGFS_MAX_BLOBS) { |
| pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n", |
| EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS); |
| break; |
| } |
| |
| debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT; |
| debugfs_blob[i].data = memremap(md->phys_addr, |
| debugfs_blob[i].size, |
| MEMREMAP_WB); |
| if (!debugfs_blob[i].data) |
| continue; |
| |
| debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]); |
| i++; |
| } |
| } |
| #else |
| static inline void efi_debugfs_init(void) {} |
| #endif |
| |
| /* |
| * We register the efi subsystem with the firmware subsystem and the |
| * efivars subsystem with the efi subsystem, if the system was booted with |
| * EFI. |
| */ |
| static int __init efisubsys_init(void) |
| { |
| int error; |
| |
| if (!efi_enabled(EFI_RUNTIME_SERVICES)) |
| efi.runtime_supported_mask = 0; |
| |
| if (!efi_enabled(EFI_BOOT)) |
| return 0; |
| |
| if (efi.runtime_supported_mask) { |
| /* |
| * Since we process only one efi_runtime_service() at a time, an |
| * ordered workqueue (which creates only one execution context) |
| * should suffice for all our needs. |
| */ |
| efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0); |
| if (!efi_rts_wq) { |
| pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n"); |
| clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); |
| efi.runtime_supported_mask = 0; |
| return 0; |
| } |
| } |
| |
| if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES)) |
| platform_device_register_simple("rtc-efi", 0, NULL, 0); |
| |
| /* We register the efi directory at /sys/firmware/efi */ |
| efi_kobj = kobject_create_and_add("efi", firmware_kobj); |
| if (!efi_kobj) { |
| pr_err("efi: Firmware registration failed.\n"); |
| return -ENOMEM; |
| } |
| |
| if (efi_rt_services_supported(EFI_RT_SUPPORTED_VARIABLE_SERVICES)) { |
| efivar_ssdt_load(); |
| error = generic_ops_register(); |
| if (error) |
| goto err_put; |
| platform_device_register_simple("efivars", 0, NULL, 0); |
| } |
| |
| error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); |
| if (error) { |
| pr_err("efi: Sysfs attribute export failed with error %d.\n", |
| error); |
| goto err_unregister; |
| } |
| |
| error = efi_runtime_map_init(efi_kobj); |
| if (error) |
| goto err_remove_group; |
| |
| /* and the standard mountpoint for efivarfs */ |
| error = sysfs_create_mount_point(efi_kobj, "efivars"); |
| if (error) { |
| pr_err("efivars: Subsystem registration failed.\n"); |
| goto err_remove_group; |
| } |
| |
| if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS)) |
| efi_debugfs_init(); |
| |
| return 0; |
| |
| err_remove_group: |
| sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); |
| err_unregister: |
| if (efi_rt_services_supported(EFI_RT_SUPPORTED_VARIABLE_SERVICES)) |
| generic_ops_unregister(); |
| err_put: |
| kobject_put(efi_kobj); |
| return error; |
| } |
| |
| subsys_initcall(efisubsys_init); |
| |
| /* |
| * Find the efi memory descriptor for a given physical address. Given a |
| * physical address, determine if it exists within an EFI Memory Map entry, |
| * and if so, populate the supplied memory descriptor with the appropriate |
| * data. |
| */ |
| int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) |
| { |
| efi_memory_desc_t *md; |
| |
| if (!efi_enabled(EFI_MEMMAP)) { |
| pr_err_once("EFI_MEMMAP is not enabled.\n"); |
| return -EINVAL; |
| } |
| |
| if (!out_md) { |
| pr_err_once("out_md is null.\n"); |
| return -EINVAL; |
| } |
| |
| for_each_efi_memory_desc(md) { |
| u64 size; |
| u64 end; |
| |
| size = md->num_pages << EFI_PAGE_SHIFT; |
| end = md->phys_addr + size; |
| if (phys_addr >= md->phys_addr && phys_addr < end) { |
| memcpy(out_md, md, sizeof(*out_md)); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /* |
| * Calculate the highest address of an efi memory descriptor. |
| */ |
| u64 __init efi_mem_desc_end(efi_memory_desc_t *md) |
| { |
| u64 size = md->num_pages << EFI_PAGE_SHIFT; |
| u64 end = md->phys_addr + size; |
| return end; |
| } |
| |
| void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} |
| |
| /** |
| * efi_mem_reserve - Reserve an EFI memory region |
| * @addr: Physical address to reserve |
| * @size: Size of reservation |
| * |
| * Mark a region as reserved from general kernel allocation and |
| * prevent it being released by efi_free_boot_services(). |
| * |
| * This function should be called drivers once they've parsed EFI |
| * configuration tables to figure out where their data lives, e.g. |
| * efi_esrt_init(). |
| */ |
| void __init efi_mem_reserve(phys_addr_t addr, u64 size) |
| { |
| if (!memblock_is_region_reserved(addr, size)) |
| memblock_reserve(addr, size); |
| |
| /* |
| * Some architectures (x86) reserve all boot services ranges |
| * until efi_free_boot_services() because of buggy firmware |
| * implementations. This means the above memblock_reserve() is |
| * superfluous on x86 and instead what it needs to do is |
| * ensure the @start, @size is not freed. |
| */ |
| efi_arch_mem_reserve(addr, size); |
| } |
| |
| static const efi_config_table_type_t common_tables[] __initconst = { |
| {ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" }, |
| {ACPI_TABLE_GUID, &efi.acpi, "ACPI" }, |
| {SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" }, |
| {SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" }, |
| {EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" }, |
| {EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" }, |
| {LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" }, |
| {LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" }, |
| {LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" }, |
| {LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" }, |
| {EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" }, |
| #ifdef CONFIG_EFI_RCI2_TABLE |
| {DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys }, |
| #endif |
| {}, |
| }; |
| |
| static __init int match_config_table(const efi_guid_t *guid, |
| unsigned long table, |
| const efi_config_table_type_t *table_types) |
| { |
| int i; |
| |
| for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { |
| if (!efi_guidcmp(*guid, table_types[i].guid)) { |
| *(table_types[i].ptr) = table; |
| if (table_types[i].name[0]) |
| pr_cont("%s=0x%lx ", |
| table_types[i].name, table); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int __init efi_config_parse_tables(const efi_config_table_t *config_tables, |
| int count, |
| const efi_config_table_type_t *arch_tables) |
| { |
| const efi_config_table_64_t *tbl64 = (void *)config_tables; |
| const efi_config_table_32_t *tbl32 = (void *)config_tables; |
| const efi_guid_t *guid; |
| unsigned long table; |
| int i; |
| |
| pr_info(""); |
| for (i = 0; i < count; i++) { |
| if (!IS_ENABLED(CONFIG_X86)) { |
| guid = &config_tables[i].guid; |
| table = (unsigned long)config_tables[i].table; |
| } else if (efi_enabled(EFI_64BIT)) { |
| guid = &tbl64[i].guid; |
| table = tbl64[i].table; |
| |
| if (IS_ENABLED(CONFIG_X86_32) && |
| tbl64[i].table > U32_MAX) { |
| pr_cont("\n"); |
| pr_err("Table located above 4GB, disabling EFI.\n"); |
| return -EINVAL; |
| } |
| } else { |
| guid = &tbl32[i].guid; |
| table = tbl32[i].table; |
| } |
| |
| if (!match_config_table(guid, table, common_tables) && arch_tables) |
| match_config_table(guid, table, arch_tables); |
| } |
| pr_cont("\n"); |
| set_bit(EFI_CONFIG_TABLES, &efi.flags); |
| |
| if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) { |
| struct linux_efi_random_seed *seed; |
| u32 size = 0; |
| |
| seed = early_memremap(efi_rng_seed, sizeof(*seed)); |
| if (seed != NULL) { |
| size = READ_ONCE(seed->size); |
| early_memunmap(seed, sizeof(*seed)); |
| } else { |
| pr_err("Could not map UEFI random seed!\n"); |
| } |
| if (size > 0) { |
| seed = early_memremap(efi_rng_seed, |
| sizeof(*seed) + size); |
| if (seed != NULL) { |
| pr_notice("seeding entropy pool\n"); |
| add_bootloader_randomness(seed->bits, size); |
| early_memunmap(seed, sizeof(*seed) + size); |
| } else { |
| pr_err("Could not map UEFI random seed!\n"); |
| } |
| } |
| } |
| |
| if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP)) |
| efi_memattr_init(); |
| |
| efi_tpm_eventlog_init(); |
| |
| if (mem_reserve != EFI_INVALID_TABLE_ADDR) { |
| unsigned long prsv = mem_reserve; |
| |
| while (prsv) { |
| struct linux_efi_memreserve *rsv; |
| u8 *p; |
| |
| /* |
| * Just map a full page: that is what we will get |
| * anyway, and it permits us to map the entire entry |
| * before knowing its size. |
| */ |
| p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE), |
| PAGE_SIZE); |
| if (p == NULL) { |
| pr_err("Could not map UEFI memreserve entry!\n"); |
| return -ENOMEM; |
| } |
| |
| rsv = (void *)(p + prsv % PAGE_SIZE); |
| |
| /* reserve the entry itself */ |
| memblock_reserve(prsv, EFI_MEMRESERVE_SIZE(rsv->size)); |
| |
| for (i = 0; i < atomic_read(&rsv->count); i++) { |
| memblock_reserve(rsv->entry[i].base, |
| rsv->entry[i].size); |
| } |
| |
| prsv = rsv->next; |
| early_memunmap(p, PAGE_SIZE); |
| } |
| } |
| |
| if (rt_prop != EFI_INVALID_TABLE_ADDR) { |
| efi_rt_properties_table_t *tbl; |
| |
| tbl = early_memremap(rt_prop, sizeof(*tbl)); |
| if (tbl) { |
| efi.runtime_supported_mask &= tbl->runtime_services_supported; |
| early_memunmap(tbl, sizeof(*tbl)); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr, |
| int min_major_version) |
| { |
| if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) { |
| pr_err("System table signature incorrect!\n"); |
| return -EINVAL; |
| } |
| |
| if ((systab_hdr->revision >> 16) < min_major_version) |
| pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n", |
| systab_hdr->revision >> 16, |
| systab_hdr->revision & 0xffff, |
| min_major_version); |
| |
| return 0; |
| } |
| |
| #ifndef CONFIG_IA64 |
| static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor, |
| size_t size) |
| { |
| const efi_char16_t *ret; |
| |
| ret = early_memremap_ro(fw_vendor, size); |
| if (!ret) |
| pr_err("Could not map the firmware vendor!\n"); |
| return ret; |
| } |
| |
| static void __init unmap_fw_vendor(const void *fw_vendor, size_t size) |
| { |
| early_memunmap((void *)fw_vendor, size); |
| } |
| #else |
| #define map_fw_vendor(p, s) __va(p) |
| #define unmap_fw_vendor(v, s) |
| #endif |
| |
| void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr, |
| unsigned long fw_vendor) |
| { |
| char vendor[100] = "unknown"; |
| const efi_char16_t *c16; |
| size_t i; |
| |
| c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t)); |
| if (c16) { |
| for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i) |
| vendor[i] = c16[i]; |
| vendor[i] = '\0'; |
| |
| unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t)); |
| } |
| |
| pr_info("EFI v%u.%.02u by %s\n", |
| systab_hdr->revision >> 16, |
| systab_hdr->revision & 0xffff, |
| vendor); |
| } |
| |
| static __initdata char memory_type_name[][20] = { |
| "Reserved", |
| "Loader Code", |
| "Loader Data", |
| "Boot Code", |
| "Boot Data", |
| "Runtime Code", |
| "Runtime Data", |
| "Conventional Memory", |
| "Unusable Memory", |
| "ACPI Reclaim Memory", |
| "ACPI Memory NVS", |
| "Memory Mapped I/O", |
| "MMIO Port Space", |
| "PAL Code", |
| "Persistent Memory", |
| }; |
| |
| char * __init efi_md_typeattr_format(char *buf, size_t size, |
| const efi_memory_desc_t *md) |
| { |
| char *pos; |
| int type_len; |
| u64 attr; |
| |
| pos = buf; |
| if (md->type >= ARRAY_SIZE(memory_type_name)) |
| type_len = snprintf(pos, size, "[type=%u", md->type); |
| else |
| type_len = snprintf(pos, size, "[%-*s", |
| (int)(sizeof(memory_type_name[0]) - 1), |
| memory_type_name[md->type]); |
| if (type_len >= size) |
| return buf; |
| |
| pos += type_len; |
| size -= type_len; |
| |
| attr = md->attribute; |
| if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | |
| EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | |
| EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | |
| EFI_MEMORY_NV | EFI_MEMORY_SP | |
| EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE)) |
| snprintf(pos, size, "|attr=0x%016llx]", |
| (unsigned long long)attr); |
| else |
| snprintf(pos, size, |
| "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", |
| attr & EFI_MEMORY_RUNTIME ? "RUN" : "", |
| attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", |
| attr & EFI_MEMORY_SP ? "SP" : "", |
| attr & EFI_MEMORY_NV ? "NV" : "", |
| attr & EFI_MEMORY_XP ? "XP" : "", |
| attr & EFI_MEMORY_RP ? "RP" : "", |
| attr & EFI_MEMORY_WP ? "WP" : "", |
| attr & EFI_MEMORY_RO ? "RO" : "", |
| attr & EFI_MEMORY_UCE ? "UCE" : "", |
| attr & EFI_MEMORY_WB ? "WB" : "", |
| attr & EFI_MEMORY_WT ? "WT" : "", |
| attr & EFI_MEMORY_WC ? "WC" : "", |
| attr & EFI_MEMORY_UC ? "UC" : ""); |
| return buf; |
| } |
| |
| /* |
| * IA64 has a funky EFI memory map that doesn't work the same way as |
| * other architectures. |
| */ |
| #ifndef CONFIG_IA64 |
| /* |
| * efi_mem_attributes - lookup memmap attributes for physical address |
| * @phys_addr: the physical address to lookup |
| * |
| * Search in the EFI memory map for the region covering |
| * @phys_addr. Returns the EFI memory attributes if the region |
| * was found in the memory map, 0 otherwise. |
| */ |
| u64 efi_mem_attributes(unsigned long phys_addr) |
| { |
| efi_memory_desc_t *md; |
| |
| if (!efi_enabled(EFI_MEMMAP)) |
| return 0; |
| |
| for_each_efi_memory_desc(md) { |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->attribute; |
| } |
| return 0; |
| } |
| |
| /* |
| * efi_mem_type - lookup memmap type for physical address |
| * @phys_addr: the physical address to lookup |
| * |
| * Search in the EFI memory map for the region covering @phys_addr. |
| * Returns the EFI memory type if the region was found in the memory |
| * map, -EINVAL otherwise. |
| */ |
| int efi_mem_type(unsigned long phys_addr) |
| { |
| const efi_memory_desc_t *md; |
| |
| if (!efi_enabled(EFI_MEMMAP)) |
| return -ENOTSUPP; |
| |
| for_each_efi_memory_desc(md) { |
| if ((md->phys_addr <= phys_addr) && |
| (phys_addr < (md->phys_addr + |
| (md->num_pages << EFI_PAGE_SHIFT)))) |
| return md->type; |
| } |
| return -EINVAL; |
| } |
| #endif |
| |
| int efi_status_to_err(efi_status_t status) |
| { |
| int err; |
| |
| switch (status) { |
| case EFI_SUCCESS: |
| err = 0; |
| break; |
| case EFI_INVALID_PARAMETER: |
| err = -EINVAL; |
| break; |
| case EFI_OUT_OF_RESOURCES: |
| err = -ENOSPC; |
| break; |
| case EFI_DEVICE_ERROR: |
| err = -EIO; |
| break; |
| case EFI_WRITE_PROTECTED: |
| err = -EROFS; |
| break; |
| case EFI_SECURITY_VIOLATION: |
| err = -EACCES; |
| break; |
| case EFI_NOT_FOUND: |
| err = -ENOENT; |
| break; |
| case EFI_ABORTED: |
| err = -EINTR; |
| break; |
| default: |
| err = -EINVAL; |
| } |
| |
| return err; |
| } |
| |
| static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock); |
| static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init; |
| |
| static int __init efi_memreserve_map_root(void) |
| { |
| if (mem_reserve == EFI_INVALID_TABLE_ADDR) |
| return -ENODEV; |
| |
| efi_memreserve_root = memremap(mem_reserve, |
| sizeof(*efi_memreserve_root), |
| MEMREMAP_WB); |
| if (WARN_ON_ONCE(!efi_memreserve_root)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size) |
| { |
| struct resource *res, *parent; |
| |
| res = kzalloc(sizeof(struct resource), GFP_ATOMIC); |
| if (!res) |
| return -ENOMEM; |
| |
| res->name = "reserved"; |
| res->flags = IORESOURCE_MEM; |
| res->start = addr; |
| res->end = addr + size - 1; |
| |
| /* we expect a conflict with a 'System RAM' region */ |
| parent = request_resource_conflict(&iomem_resource, res); |
| return parent ? request_resource(parent, res) : 0; |
| } |
| |
| int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size) |
| { |
| struct linux_efi_memreserve *rsv; |
| unsigned long prsv; |
| int rc, index; |
| |
| if (efi_memreserve_root == (void *)ULONG_MAX) |
| return -ENODEV; |
| |
| if (!efi_memreserve_root) { |
| rc = efi_memreserve_map_root(); |
| if (rc) |
| return rc; |
| } |
| |
| /* first try to find a slot in an existing linked list entry */ |
| for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) { |
| rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB); |
| index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size); |
| if (index < rsv->size) { |
| rsv->entry[index].base = addr; |
| rsv->entry[index].size = size; |
| |
| memunmap(rsv); |
| return efi_mem_reserve_iomem(addr, size); |
| } |
| memunmap(rsv); |
| } |
| |
| /* no slot found - allocate a new linked list entry */ |
| rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC); |
| if (!rsv) |
| return -ENOMEM; |
| |
| rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K); |
| if (rc) { |
| free_page((unsigned long)rsv); |
| return rc; |
| } |
| |
| /* |
| * The memremap() call above assumes that a linux_efi_memreserve entry |
| * never crosses a page boundary, so let's ensure that this remains true |
| * even when kexec'ing a 4k pages kernel from a >4k pages kernel, by |
| * using SZ_4K explicitly in the size calculation below. |
| */ |
| rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K); |
| atomic_set(&rsv->count, 1); |
| rsv->entry[0].base = addr; |
| rsv->entry[0].size = size; |
| |
| spin_lock(&efi_mem_reserve_persistent_lock); |
| rsv->next = efi_memreserve_root->next; |
| efi_memreserve_root->next = __pa(rsv); |
| spin_unlock(&efi_mem_reserve_persistent_lock); |
| |
| return efi_mem_reserve_iomem(addr, size); |
| } |
| |
| static int __init efi_memreserve_root_init(void) |
| { |
| if (efi_memreserve_root) |
| return 0; |
| if (efi_memreserve_map_root()) |
| efi_memreserve_root = (void *)ULONG_MAX; |
| return 0; |
| } |
| early_initcall(efi_memreserve_root_init); |
| |
| #ifdef CONFIG_KEXEC |
| static int update_efi_random_seed(struct notifier_block *nb, |
| unsigned long code, void *unused) |
| { |
| struct linux_efi_random_seed *seed; |
| u32 size = 0; |
| |
| if (!kexec_in_progress) |
| return NOTIFY_DONE; |
| |
| seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB); |
| if (seed != NULL) { |
| size = min(seed->size, EFI_RANDOM_SEED_SIZE); |
| memunmap(seed); |
| } else { |
| pr_err("Could not map UEFI random seed!\n"); |
| } |
| if (size > 0) { |
| seed = memremap(efi_rng_seed, sizeof(*seed) + size, |
| MEMREMAP_WB); |
| if (seed != NULL) { |
| seed->size = size; |
| get_random_bytes(seed->bits, seed->size); |
| memunmap(seed); |
| } else { |
| pr_err("Could not map UEFI random seed!\n"); |
| } |
| } |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block efi_random_seed_nb = { |
| .notifier_call = update_efi_random_seed, |
| }; |
| |
| static int __init register_update_efi_random_seed(void) |
| { |
| if (efi_rng_seed == EFI_INVALID_TABLE_ADDR) |
| return 0; |
| return register_reboot_notifier(&efi_random_seed_nb); |
| } |
| late_initcall(register_update_efi_random_seed); |
| #endif |