blob: c1a99bf4dffd1d221d9ca9e57d303d415acef00f [file] [log] [blame]
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <linux/kmemleak.h>
#include <linux/module.h>
#include <linux/sizes.h>
#include <drm/drm_buddy.h>
static struct kmem_cache *slab_blocks;
static struct drm_buddy_block *drm_block_alloc(struct drm_buddy *mm,
struct drm_buddy_block *parent,
unsigned int order,
u64 offset)
{
struct drm_buddy_block *block;
BUG_ON(order > DRM_BUDDY_MAX_ORDER);
block = kmem_cache_zalloc(slab_blocks, GFP_KERNEL);
if (!block)
return NULL;
block->header = offset;
block->header |= order;
block->parent = parent;
BUG_ON(block->header & DRM_BUDDY_HEADER_UNUSED);
return block;
}
static void drm_block_free(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
kmem_cache_free(slab_blocks, block);
}
static void list_insert_sorted(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
struct drm_buddy_block *node;
struct list_head *head;
head = &mm->free_list[drm_buddy_block_order(block)];
if (list_empty(head)) {
list_add(&block->link, head);
return;
}
list_for_each_entry(node, head, link)
if (drm_buddy_block_offset(block) < drm_buddy_block_offset(node))
break;
__list_add(&block->link, node->link.prev, &node->link);
}
static void mark_allocated(struct drm_buddy_block *block)
{
block->header &= ~DRM_BUDDY_HEADER_STATE;
block->header |= DRM_BUDDY_ALLOCATED;
list_del(&block->link);
}
static void mark_free(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
block->header &= ~DRM_BUDDY_HEADER_STATE;
block->header |= DRM_BUDDY_FREE;
list_insert_sorted(mm, block);
}
static void mark_split(struct drm_buddy_block *block)
{
block->header &= ~DRM_BUDDY_HEADER_STATE;
block->header |= DRM_BUDDY_SPLIT;
list_del(&block->link);
}
/**
* drm_buddy_init - init memory manager
*
* @mm: DRM buddy manager to initialize
* @size: size in bytes to manage
* @chunk_size: minimum page size in bytes for our allocations
*
* Initializes the memory manager and its resources.
*
* Returns:
* 0 on success, error code on failure.
*/
int drm_buddy_init(struct drm_buddy *mm, u64 size, u64 chunk_size)
{
unsigned int i;
u64 offset;
if (size < chunk_size)
return -EINVAL;
if (chunk_size < PAGE_SIZE)
return -EINVAL;
if (!is_power_of_2(chunk_size))
return -EINVAL;
size = round_down(size, chunk_size);
mm->size = size;
mm->avail = size;
mm->chunk_size = chunk_size;
mm->max_order = ilog2(size) - ilog2(chunk_size);
BUG_ON(mm->max_order > DRM_BUDDY_MAX_ORDER);
mm->free_list = kmalloc_array(mm->max_order + 1,
sizeof(struct list_head),
GFP_KERNEL);
if (!mm->free_list)
return -ENOMEM;
for (i = 0; i <= mm->max_order; ++i)
INIT_LIST_HEAD(&mm->free_list[i]);
mm->n_roots = hweight64(size);
mm->roots = kmalloc_array(mm->n_roots,
sizeof(struct drm_buddy_block *),
GFP_KERNEL);
if (!mm->roots)
goto out_free_list;
offset = 0;
i = 0;
/*
* Split into power-of-two blocks, in case we are given a size that is
* not itself a power-of-two.
*/
do {
struct drm_buddy_block *root;
unsigned int order;
u64 root_size;
order = ilog2(size) - ilog2(chunk_size);
root_size = chunk_size << order;
root = drm_block_alloc(mm, NULL, order, offset);
if (!root)
goto out_free_roots;
mark_free(mm, root);
BUG_ON(i > mm->max_order);
BUG_ON(drm_buddy_block_size(mm, root) < chunk_size);
mm->roots[i] = root;
offset += root_size;
size -= root_size;
i++;
} while (size);
return 0;
out_free_roots:
while (i--)
drm_block_free(mm, mm->roots[i]);
kfree(mm->roots);
out_free_list:
kfree(mm->free_list);
return -ENOMEM;
}
EXPORT_SYMBOL(drm_buddy_init);
/**
* drm_buddy_fini - tear down the memory manager
*
* @mm: DRM buddy manager to free
*
* Cleanup memory manager resources and the freelist
*/
void drm_buddy_fini(struct drm_buddy *mm)
{
int i;
for (i = 0; i < mm->n_roots; ++i) {
WARN_ON(!drm_buddy_block_is_free(mm->roots[i]));
drm_block_free(mm, mm->roots[i]);
}
WARN_ON(mm->avail != mm->size);
kfree(mm->roots);
kfree(mm->free_list);
}
EXPORT_SYMBOL(drm_buddy_fini);
static int split_block(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
unsigned int block_order = drm_buddy_block_order(block) - 1;
u64 offset = drm_buddy_block_offset(block);
BUG_ON(!drm_buddy_block_is_free(block));
BUG_ON(!drm_buddy_block_order(block));
block->left = drm_block_alloc(mm, block, block_order, offset);
if (!block->left)
return -ENOMEM;
block->right = drm_block_alloc(mm, block, block_order,
offset + (mm->chunk_size << block_order));
if (!block->right) {
drm_block_free(mm, block->left);
return -ENOMEM;
}
mark_free(mm, block->left);
mark_free(mm, block->right);
mark_split(block);
return 0;
}
static struct drm_buddy_block *
__get_buddy(struct drm_buddy_block *block)
{
struct drm_buddy_block *parent;
parent = block->parent;
if (!parent)
return NULL;
if (parent->left == block)
return parent->right;
return parent->left;
}
/**
* drm_get_buddy - get buddy address
*
* @block: DRM buddy block
*
* Returns the corresponding buddy block for @block, or NULL
* if this is a root block and can't be merged further.
* Requires some kind of locking to protect against
* any concurrent allocate and free operations.
*/
struct drm_buddy_block *
drm_get_buddy(struct drm_buddy_block *block)
{
return __get_buddy(block);
}
EXPORT_SYMBOL(drm_get_buddy);
static void __drm_buddy_free(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
struct drm_buddy_block *parent;
while ((parent = block->parent)) {
struct drm_buddy_block *buddy;
buddy = __get_buddy(block);
if (!drm_buddy_block_is_free(buddy))
break;
list_del(&buddy->link);
drm_block_free(mm, block);
drm_block_free(mm, buddy);
block = parent;
}
mark_free(mm, block);
}
/**
* drm_buddy_free_block - free a block
*
* @mm: DRM buddy manager
* @block: block to be freed
*/
void drm_buddy_free_block(struct drm_buddy *mm,
struct drm_buddy_block *block)
{
BUG_ON(!drm_buddy_block_is_allocated(block));
mm->avail += drm_buddy_block_size(mm, block);
__drm_buddy_free(mm, block);
}
EXPORT_SYMBOL(drm_buddy_free_block);
/**
* drm_buddy_free_list - free blocks
*
* @mm: DRM buddy manager
* @objects: input list head to free blocks
*/
void drm_buddy_free_list(struct drm_buddy *mm, struct list_head *objects)
{
struct drm_buddy_block *block, *on;
list_for_each_entry_safe(block, on, objects, link) {
drm_buddy_free_block(mm, block);
cond_resched();
}
INIT_LIST_HEAD(objects);
}
EXPORT_SYMBOL(drm_buddy_free_list);
static inline bool overlaps(u64 s1, u64 e1, u64 s2, u64 e2)
{
return s1 <= e2 && e1 >= s2;
}
static inline bool contains(u64 s1, u64 e1, u64 s2, u64 e2)
{
return s1 <= s2 && e1 >= e2;
}
static struct drm_buddy_block *
alloc_range_bias(struct drm_buddy *mm,
u64 start, u64 end,
unsigned int order)
{
struct drm_buddy_block *block;
struct drm_buddy_block *buddy;
LIST_HEAD(dfs);
int err;
int i;
end = end - 1;
for (i = 0; i < mm->n_roots; ++i)
list_add_tail(&mm->roots[i]->tmp_link, &dfs);
do {
u64 block_start;
u64 block_end;
block = list_first_entry_or_null(&dfs,
struct drm_buddy_block,
tmp_link);
if (!block)
break;
list_del(&block->tmp_link);
if (drm_buddy_block_order(block) < order)
continue;
block_start = drm_buddy_block_offset(block);
block_end = block_start + drm_buddy_block_size(mm, block) - 1;
if (!overlaps(start, end, block_start, block_end))
continue;
if (drm_buddy_block_is_allocated(block))
continue;
if (contains(start, end, block_start, block_end) &&
order == drm_buddy_block_order(block)) {
/*
* Find the free block within the range.
*/
if (drm_buddy_block_is_free(block))
return block;
continue;
}
if (!drm_buddy_block_is_split(block)) {
err = split_block(mm, block);
if (unlikely(err))
goto err_undo;
}
list_add(&block->right->tmp_link, &dfs);
list_add(&block->left->tmp_link, &dfs);
} while (1);
return ERR_PTR(-ENOSPC);
err_undo:
/*
* We really don't want to leave around a bunch of split blocks, since
* bigger is better, so make sure we merge everything back before we
* free the allocated blocks.
*/
buddy = __get_buddy(block);
if (buddy &&
(drm_buddy_block_is_free(block) &&
drm_buddy_block_is_free(buddy)))
__drm_buddy_free(mm, block);
return ERR_PTR(err);
}
static struct drm_buddy_block *
get_maxblock(struct drm_buddy *mm, unsigned int order)
{
struct drm_buddy_block *max_block = NULL, *node;
unsigned int i;
for (i = order; i <= mm->max_order; ++i) {
if (!list_empty(&mm->free_list[i])) {
node = list_last_entry(&mm->free_list[i],
struct drm_buddy_block,
link);
if (!max_block) {
max_block = node;
continue;
}
if (drm_buddy_block_offset(node) >
drm_buddy_block_offset(max_block)) {
max_block = node;
}
}
}
return max_block;
}
static struct drm_buddy_block *
alloc_from_freelist(struct drm_buddy *mm,
unsigned int order,
unsigned long flags)
{
struct drm_buddy_block *block = NULL;
unsigned int tmp;
int err;
if (flags & DRM_BUDDY_TOPDOWN_ALLOCATION) {
block = get_maxblock(mm, order);
if (block)
/* Store the obtained block order */
tmp = drm_buddy_block_order(block);
} else {
for (tmp = order; tmp <= mm->max_order; ++tmp) {
if (!list_empty(&mm->free_list[tmp])) {
block = list_last_entry(&mm->free_list[tmp],
struct drm_buddy_block,
link);
if (block)
break;
}
}
}
if (!block)
return ERR_PTR(-ENOSPC);
BUG_ON(!drm_buddy_block_is_free(block));
while (tmp != order) {
err = split_block(mm, block);
if (unlikely(err))
goto err_undo;
block = block->right;
tmp--;
}
return block;
err_undo:
if (tmp != order)
__drm_buddy_free(mm, block);
return ERR_PTR(err);
}
static int __alloc_range(struct drm_buddy *mm,
struct list_head *dfs,
u64 start, u64 size,
struct list_head *blocks,
u64 *total_allocated_on_err)
{
struct drm_buddy_block *block;
struct drm_buddy_block *buddy;
u64 total_allocated = 0;
LIST_HEAD(allocated);
u64 end;
int err;
end = start + size - 1;
do {
u64 block_start;
u64 block_end;
block = list_first_entry_or_null(dfs,
struct drm_buddy_block,
tmp_link);
if (!block)
break;
list_del(&block->tmp_link);
block_start = drm_buddy_block_offset(block);
block_end = block_start + drm_buddy_block_size(mm, block) - 1;
if (!overlaps(start, end, block_start, block_end))
continue;
if (drm_buddy_block_is_allocated(block)) {
err = -ENOSPC;
goto err_free;
}
if (contains(start, end, block_start, block_end)) {
if (!drm_buddy_block_is_free(block)) {
err = -ENOSPC;
goto err_free;
}
mark_allocated(block);
total_allocated += drm_buddy_block_size(mm, block);
mm->avail -= drm_buddy_block_size(mm, block);
list_add_tail(&block->link, &allocated);
continue;
}
if (!drm_buddy_block_is_split(block)) {
err = split_block(mm, block);
if (unlikely(err))
goto err_undo;
}
list_add(&block->right->tmp_link, dfs);
list_add(&block->left->tmp_link, dfs);
} while (1);
list_splice_tail(&allocated, blocks);
if (total_allocated < size) {
err = -ENOSPC;
goto err_free;
}
return 0;
err_undo:
/*
* We really don't want to leave around a bunch of split blocks, since
* bigger is better, so make sure we merge everything back before we
* free the allocated blocks.
*/
buddy = __get_buddy(block);
if (buddy &&
(drm_buddy_block_is_free(block) &&
drm_buddy_block_is_free(buddy)))
__drm_buddy_free(mm, block);
err_free:
if (err == -ENOSPC && total_allocated_on_err) {
list_splice_tail(&allocated, blocks);
*total_allocated_on_err = total_allocated;
} else {
drm_buddy_free_list(mm, &allocated);
}
return err;
}
static int __drm_buddy_alloc_range(struct drm_buddy *mm,
u64 start,
u64 size,
u64 *total_allocated_on_err,
struct list_head *blocks)
{
LIST_HEAD(dfs);
int i;
for (i = 0; i < mm->n_roots; ++i)
list_add_tail(&mm->roots[i]->tmp_link, &dfs);
return __alloc_range(mm, &dfs, start, size,
blocks, total_allocated_on_err);
}
static int __alloc_contig_try_harder(struct drm_buddy *mm,
u64 size,
u64 min_block_size,
struct list_head *blocks)
{
u64 rhs_offset, lhs_offset, lhs_size, filled;
struct drm_buddy_block *block;
struct list_head *list;
LIST_HEAD(blocks_lhs);
unsigned long pages;
unsigned int order;
u64 modify_size;
int err;
modify_size = rounddown_pow_of_two(size);
pages = modify_size >> ilog2(mm->chunk_size);
order = fls(pages) - 1;
if (order == 0)
return -ENOSPC;
list = &mm->free_list[order];
if (list_empty(list))
return -ENOSPC;
list_for_each_entry_reverse(block, list, link) {
/* Allocate blocks traversing RHS */
rhs_offset = drm_buddy_block_offset(block);
err = __drm_buddy_alloc_range(mm, rhs_offset, size,
&filled, blocks);
if (!err || err != -ENOSPC)
return err;
lhs_size = max((size - filled), min_block_size);
if (!IS_ALIGNED(lhs_size, min_block_size))
lhs_size = round_up(lhs_size, min_block_size);
/* Allocate blocks traversing LHS */
lhs_offset = drm_buddy_block_offset(block) - lhs_size;
err = __drm_buddy_alloc_range(mm, lhs_offset, lhs_size,
NULL, &blocks_lhs);
if (!err) {
list_splice(&blocks_lhs, blocks);
return 0;
} else if (err != -ENOSPC) {
drm_buddy_free_list(mm, blocks);
return err;
}
/* Free blocks for the next iteration */
drm_buddy_free_list(mm, blocks);
}
return -ENOSPC;
}
/**
* drm_buddy_block_trim - free unused pages
*
* @mm: DRM buddy manager
* @new_size: original size requested
* @blocks: Input and output list of allocated blocks.
* MUST contain single block as input to be trimmed.
* On success will contain the newly allocated blocks
* making up the @new_size. Blocks always appear in
* ascending order
*
* For contiguous allocation, we round up the size to the nearest
* power of two value, drivers consume *actual* size, so remaining
* portions are unused and can be optionally freed with this function
*
* Returns:
* 0 on success, error code on failure.
*/
int drm_buddy_block_trim(struct drm_buddy *mm,
u64 new_size,
struct list_head *blocks)
{
struct drm_buddy_block *parent;
struct drm_buddy_block *block;
LIST_HEAD(dfs);
u64 new_start;
int err;
if (!list_is_singular(blocks))
return -EINVAL;
block = list_first_entry(blocks,
struct drm_buddy_block,
link);
if (WARN_ON(!drm_buddy_block_is_allocated(block)))
return -EINVAL;
if (new_size > drm_buddy_block_size(mm, block))
return -EINVAL;
if (!new_size || !IS_ALIGNED(new_size, mm->chunk_size))
return -EINVAL;
if (new_size == drm_buddy_block_size(mm, block))
return 0;
list_del(&block->link);
mark_free(mm, block);
mm->avail += drm_buddy_block_size(mm, block);
/* Prevent recursively freeing this node */
parent = block->parent;
block->parent = NULL;
new_start = drm_buddy_block_offset(block);
list_add(&block->tmp_link, &dfs);
err = __alloc_range(mm, &dfs, new_start, new_size, blocks, NULL);
if (err) {
mark_allocated(block);
mm->avail -= drm_buddy_block_size(mm, block);
list_add(&block->link, blocks);
}
block->parent = parent;
return err;
}
EXPORT_SYMBOL(drm_buddy_block_trim);
/**
* drm_buddy_alloc_blocks - allocate power-of-two blocks
*
* @mm: DRM buddy manager to allocate from
* @start: start of the allowed range for this block
* @end: end of the allowed range for this block
* @size: size of the allocation
* @min_block_size: alignment of the allocation
* @blocks: output list head to add allocated blocks
* @flags: DRM_BUDDY_*_ALLOCATION flags
*
* alloc_range_bias() called on range limitations, which traverses
* the tree and returns the desired block.
*
* alloc_from_freelist() called when *no* range restrictions
* are enforced, which picks the block from the freelist.
*
* Returns:
* 0 on success, error code on failure.
*/
int drm_buddy_alloc_blocks(struct drm_buddy *mm,
u64 start, u64 end, u64 size,
u64 min_block_size,
struct list_head *blocks,
unsigned long flags)
{
struct drm_buddy_block *block = NULL;
u64 original_size, original_min_size;
unsigned int min_order, order;
LIST_HEAD(allocated);
unsigned long pages;
int err;
if (size < mm->chunk_size)
return -EINVAL;
if (min_block_size < mm->chunk_size)
return -EINVAL;
if (!is_power_of_2(min_block_size))
return -EINVAL;
if (!IS_ALIGNED(start | end | size, mm->chunk_size))
return -EINVAL;
if (end > mm->size)
return -EINVAL;
if (range_overflows(start, size, mm->size))
return -EINVAL;
/* Actual range allocation */
if (start + size == end)
return __drm_buddy_alloc_range(mm, start, size, NULL, blocks);
original_size = size;
original_min_size = min_block_size;
/* Roundup the size to power of 2 */
if (flags & DRM_BUDDY_CONTIGUOUS_ALLOCATION) {
size = roundup_pow_of_two(size);
min_block_size = size;
/* Align size value to min_block_size */
} else if (!IS_ALIGNED(size, min_block_size)) {
size = round_up(size, min_block_size);
}
pages = size >> ilog2(mm->chunk_size);
order = fls(pages) - 1;
min_order = ilog2(min_block_size) - ilog2(mm->chunk_size);
do {
order = min(order, (unsigned int)fls(pages) - 1);
BUG_ON(order > mm->max_order);
BUG_ON(order < min_order);
do {
if (flags & DRM_BUDDY_RANGE_ALLOCATION)
/* Allocate traversing within the range */
block = alloc_range_bias(mm, start, end, order);
else
/* Allocate from freelist */
block = alloc_from_freelist(mm, order, flags);
if (!IS_ERR(block))
break;
if (order-- == min_order) {
if (flags & DRM_BUDDY_CONTIGUOUS_ALLOCATION &&
!(flags & DRM_BUDDY_RANGE_ALLOCATION))
/*
* Try contiguous block allocation through
* try harder method
*/
return __alloc_contig_try_harder(mm,
original_size,
original_min_size,
blocks);
err = -ENOSPC;
goto err_free;
}
} while (1);
mark_allocated(block);
mm->avail -= drm_buddy_block_size(mm, block);
kmemleak_update_trace(block);
list_add_tail(&block->link, &allocated);
pages -= BIT(order);
if (!pages)
break;
} while (1);
/* Trim the allocated block to the required size */
if (original_size != size) {
struct list_head *trim_list;
LIST_HEAD(temp);
u64 trim_size;
trim_list = &allocated;
trim_size = original_size;
if (!list_is_singular(&allocated)) {
block = list_last_entry(&allocated, typeof(*block), link);
list_move(&block->link, &temp);
trim_list = &temp;
trim_size = drm_buddy_block_size(mm, block) -
(size - original_size);
}
drm_buddy_block_trim(mm,
trim_size,
trim_list);
if (!list_empty(&temp))
list_splice_tail(trim_list, &allocated);
}
list_splice_tail(&allocated, blocks);
return 0;
err_free:
drm_buddy_free_list(mm, &allocated);
return err;
}
EXPORT_SYMBOL(drm_buddy_alloc_blocks);
/**
* drm_buddy_block_print - print block information
*
* @mm: DRM buddy manager
* @block: DRM buddy block
* @p: DRM printer to use
*/
void drm_buddy_block_print(struct drm_buddy *mm,
struct drm_buddy_block *block,
struct drm_printer *p)
{
u64 start = drm_buddy_block_offset(block);
u64 size = drm_buddy_block_size(mm, block);
drm_printf(p, "%#018llx-%#018llx: %llu\n", start, start + size, size);
}
EXPORT_SYMBOL(drm_buddy_block_print);
/**
* drm_buddy_print - print allocator state
*
* @mm: DRM buddy manager
* @p: DRM printer to use
*/
void drm_buddy_print(struct drm_buddy *mm, struct drm_printer *p)
{
int order;
drm_printf(p, "chunk_size: %lluKiB, total: %lluMiB, free: %lluMiB\n",
mm->chunk_size >> 10, mm->size >> 20, mm->avail >> 20);
for (order = mm->max_order; order >= 0; order--) {
struct drm_buddy_block *block;
u64 count = 0, free;
list_for_each_entry(block, &mm->free_list[order], link) {
BUG_ON(!drm_buddy_block_is_free(block));
count++;
}
drm_printf(p, "order-%2d ", order);
free = count * (mm->chunk_size << order);
if (free < SZ_1M)
drm_printf(p, "free: %8llu KiB", free >> 10);
else
drm_printf(p, "free: %8llu MiB", free >> 20);
drm_printf(p, ", blocks: %llu\n", count);
}
}
EXPORT_SYMBOL(drm_buddy_print);
static void drm_buddy_module_exit(void)
{
kmem_cache_destroy(slab_blocks);
}
static int __init drm_buddy_module_init(void)
{
slab_blocks = KMEM_CACHE(drm_buddy_block, 0);
if (!slab_blocks)
return -ENOMEM;
return 0;
}
module_init(drm_buddy_module_init);
module_exit(drm_buddy_module_exit);
MODULE_DESCRIPTION("DRM Buddy Allocator");
MODULE_LICENSE("Dual MIT/GPL");