| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Evatronix/Renesas R-Car Gen3, RZ/N1D, RZ/N1S, RZ/N1L NAND controller driver |
| * |
| * Copyright (C) 2021 Schneider Electric |
| * Author: Miquel RAYNAL <miquel.raynal@bootlin.com> |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/clk.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/iopoll.h> |
| #include <linux/module.h> |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/rawnand.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/slab.h> |
| |
| #define COMMAND_REG 0x00 |
| #define COMMAND_SEQ(x) FIELD_PREP(GENMASK(5, 0), (x)) |
| #define COMMAND_SEQ_10 COMMAND_SEQ(0x2A) |
| #define COMMAND_SEQ_12 COMMAND_SEQ(0x0C) |
| #define COMMAND_SEQ_18 COMMAND_SEQ(0x32) |
| #define COMMAND_SEQ_19 COMMAND_SEQ(0x13) |
| #define COMMAND_SEQ_GEN_IN COMMAND_SEQ_18 |
| #define COMMAND_SEQ_GEN_OUT COMMAND_SEQ_19 |
| #define COMMAND_SEQ_READ_PAGE COMMAND_SEQ_10 |
| #define COMMAND_SEQ_WRITE_PAGE COMMAND_SEQ_12 |
| #define COMMAND_INPUT_SEL_AHBS 0 |
| #define COMMAND_INPUT_SEL_DMA BIT(6) |
| #define COMMAND_FIFO_SEL 0 |
| #define COMMAND_DATA_SEL BIT(7) |
| #define COMMAND_0(x) FIELD_PREP(GENMASK(15, 8), (x)) |
| #define COMMAND_1(x) FIELD_PREP(GENMASK(23, 16), (x)) |
| #define COMMAND_2(x) FIELD_PREP(GENMASK(31, 24), (x)) |
| |
| #define CONTROL_REG 0x04 |
| #define CONTROL_CHECK_RB_LINE 0 |
| #define CONTROL_ECC_BLOCK_SIZE(x) FIELD_PREP(GENMASK(2, 1), (x)) |
| #define CONTROL_ECC_BLOCK_SIZE_256 CONTROL_ECC_BLOCK_SIZE(0) |
| #define CONTROL_ECC_BLOCK_SIZE_512 CONTROL_ECC_BLOCK_SIZE(1) |
| #define CONTROL_ECC_BLOCK_SIZE_1024 CONTROL_ECC_BLOCK_SIZE(2) |
| #define CONTROL_INT_EN BIT(4) |
| #define CONTROL_ECC_EN BIT(5) |
| #define CONTROL_BLOCK_SIZE(x) FIELD_PREP(GENMASK(7, 6), (x)) |
| #define CONTROL_BLOCK_SIZE_32P CONTROL_BLOCK_SIZE(0) |
| #define CONTROL_BLOCK_SIZE_64P CONTROL_BLOCK_SIZE(1) |
| #define CONTROL_BLOCK_SIZE_128P CONTROL_BLOCK_SIZE(2) |
| #define CONTROL_BLOCK_SIZE_256P CONTROL_BLOCK_SIZE(3) |
| |
| #define STATUS_REG 0x8 |
| #define MEM_RDY(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) |
| #define CTRL_RDY(reg) (FIELD_GET(BIT(8), (reg)) == 0) |
| |
| #define ECC_CTRL_REG 0x18 |
| #define ECC_CTRL_CAP(x) FIELD_PREP(GENMASK(2, 0), (x)) |
| #define ECC_CTRL_CAP_2B ECC_CTRL_CAP(0) |
| #define ECC_CTRL_CAP_4B ECC_CTRL_CAP(1) |
| #define ECC_CTRL_CAP_8B ECC_CTRL_CAP(2) |
| #define ECC_CTRL_CAP_16B ECC_CTRL_CAP(3) |
| #define ECC_CTRL_CAP_24B ECC_CTRL_CAP(4) |
| #define ECC_CTRL_CAP_32B ECC_CTRL_CAP(5) |
| #define ECC_CTRL_ERR_THRESHOLD(x) FIELD_PREP(GENMASK(13, 8), (x)) |
| |
| #define INT_MASK_REG 0x10 |
| #define INT_STATUS_REG 0x14 |
| #define INT_CMD_END BIT(1) |
| #define INT_DMA_END BIT(3) |
| #define INT_MEM_RDY(cs) FIELD_PREP(GENMASK(11, 8), BIT(cs)) |
| #define INT_DMA_ENDED BIT(3) |
| #define MEM_IS_RDY(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) |
| #define DMA_HAS_ENDED(reg) FIELD_GET(BIT(3), (reg)) |
| |
| #define ECC_OFFSET_REG 0x1C |
| #define ECC_OFFSET(x) FIELD_PREP(GENMASK(15, 0), (x)) |
| |
| #define ECC_STAT_REG 0x20 |
| #define ECC_STAT_CORRECTABLE(cs, reg) (FIELD_GET(GENMASK(3, 0), (reg)) & BIT(cs)) |
| #define ECC_STAT_UNCORRECTABLE(cs, reg) (FIELD_GET(GENMASK(11, 8), (reg)) & BIT(cs)) |
| |
| #define ADDR0_COL_REG 0x24 |
| #define ADDR0_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) |
| |
| #define ADDR0_ROW_REG 0x28 |
| #define ADDR0_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) |
| |
| #define ADDR1_COL_REG 0x2C |
| #define ADDR1_COL(x) FIELD_PREP(GENMASK(15, 0), (x)) |
| |
| #define ADDR1_ROW_REG 0x30 |
| #define ADDR1_ROW(x) FIELD_PREP(GENMASK(23, 0), (x)) |
| |
| #define FIFO_DATA_REG 0x38 |
| |
| #define DATA_REG 0x3C |
| |
| #define DATA_REG_SIZE_REG 0x40 |
| |
| #define DMA_ADDR_LOW_REG 0x64 |
| |
| #define DMA_ADDR_HIGH_REG 0x68 |
| |
| #define DMA_CNT_REG 0x6C |
| |
| #define DMA_CTRL_REG 0x70 |
| #define DMA_CTRL_INCREMENT_BURST_4 0 |
| #define DMA_CTRL_REGISTER_MANAGED_MODE 0 |
| #define DMA_CTRL_START BIT(7) |
| |
| #define MEM_CTRL_REG 0x80 |
| #define MEM_CTRL_CS(cs) FIELD_PREP(GENMASK(1, 0), (cs)) |
| #define MEM_CTRL_DIS_WP(cs) FIELD_PREP(GENMASK(11, 8), BIT((cs))) |
| |
| #define DATA_SIZE_REG 0x84 |
| #define DATA_SIZE(x) FIELD_PREP(GENMASK(14, 0), (x)) |
| |
| #define TIMINGS_ASYN_REG 0x88 |
| #define TIMINGS_ASYN_TRWP(x) FIELD_PREP(GENMASK(3, 0), max((x), 1U) - 1) |
| #define TIMINGS_ASYN_TRWH(x) FIELD_PREP(GENMASK(7, 4), max((x), 1U) - 1) |
| |
| #define TIM_SEQ0_REG 0x90 |
| #define TIM_SEQ0_TCCS(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| #define TIM_SEQ0_TADL(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) |
| #define TIM_SEQ0_TRHW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) |
| #define TIM_SEQ0_TWHR(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) |
| |
| #define TIM_SEQ1_REG 0x94 |
| #define TIM_SEQ1_TWB(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| #define TIM_SEQ1_TRR(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) |
| #define TIM_SEQ1_TWW(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) |
| |
| #define TIM_GEN_SEQ0_REG 0x98 |
| #define TIM_GEN_SEQ0_D0(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ0_D1(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ0_D2(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ0_D3(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) |
| |
| #define TIM_GEN_SEQ1_REG 0x9c |
| #define TIM_GEN_SEQ1_D4(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ1_D5(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ1_D6(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ1_D7(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) |
| |
| #define TIM_GEN_SEQ2_REG 0xA0 |
| #define TIM_GEN_SEQ2_D8(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ2_D9(x) FIELD_PREP(GENMASK(13, 8), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ2_D10(x) FIELD_PREP(GENMASK(21, 16), max((x), 1U) - 1) |
| #define TIM_GEN_SEQ2_D11(x) FIELD_PREP(GENMASK(29, 24), max((x), 1U) - 1) |
| |
| #define FIFO_INIT_REG 0xB4 |
| #define FIFO_INIT BIT(0) |
| |
| #define FIFO_STATE_REG 0xB4 |
| #define FIFO_STATE_R_EMPTY(reg) FIELD_GET(BIT(0), (reg)) |
| #define FIFO_STATE_W_FULL(reg) FIELD_GET(BIT(1), (reg)) |
| #define FIFO_STATE_C_EMPTY(reg) FIELD_GET(BIT(2), (reg)) |
| #define FIFO_STATE_R_FULL(reg) FIELD_GET(BIT(6), (reg)) |
| #define FIFO_STATE_W_EMPTY(reg) FIELD_GET(BIT(7), (reg)) |
| |
| #define GEN_SEQ_CTRL_REG 0xB8 |
| #define GEN_SEQ_CMD0_EN BIT(0) |
| #define GEN_SEQ_CMD1_EN BIT(1) |
| #define GEN_SEQ_CMD2_EN BIT(2) |
| #define GEN_SEQ_CMD3_EN BIT(3) |
| #define GEN_SEQ_COL_A0(x) FIELD_PREP(GENMASK(5, 4), min((x), 2U)) |
| #define GEN_SEQ_COL_A1(x) FIELD_PREP(GENMASK(7, 6), min((x), 2U)) |
| #define GEN_SEQ_ROW_A0(x) FIELD_PREP(GENMASK(9, 8), min((x), 3U)) |
| #define GEN_SEQ_ROW_A1(x) FIELD_PREP(GENMASK(11, 10), min((x), 3U)) |
| #define GEN_SEQ_DATA_EN BIT(12) |
| #define GEN_SEQ_DELAY_EN(x) FIELD_PREP(GENMASK(14, 13), (x)) |
| #define GEN_SEQ_DELAY0_EN GEN_SEQ_DELAY_EN(1) |
| #define GEN_SEQ_DELAY1_EN GEN_SEQ_DELAY_EN(2) |
| #define GEN_SEQ_IMD_SEQ BIT(15) |
| #define GEN_SEQ_COMMAND_3(x) FIELD_PREP(GENMASK(26, 16), (x)) |
| |
| #define DMA_TLVL_REG 0x114 |
| #define DMA_TLVL(x) FIELD_PREP(GENMASK(7, 0), (x)) |
| #define DMA_TLVL_MAX DMA_TLVL(0xFF) |
| |
| #define TIM_GEN_SEQ3_REG 0x134 |
| #define TIM_GEN_SEQ3_D12(x) FIELD_PREP(GENMASK(5, 0), max((x), 1U) - 1) |
| |
| #define ECC_CNT_REG 0x14C |
| #define ECC_CNT(cs, reg) FIELD_GET(GENMASK(5, 0), (reg) >> ((cs) * 8)) |
| |
| #define RNANDC_CS_NUM 4 |
| |
| #define TO_CYCLES64(ps, period_ns) ((unsigned int)DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ |
| period_ns)) |
| |
| struct rnand_chip_sel { |
| unsigned int cs; |
| }; |
| |
| struct rnand_chip { |
| struct nand_chip chip; |
| struct list_head node; |
| int selected_die; |
| u32 ctrl; |
| unsigned int nsels; |
| u32 control; |
| u32 ecc_ctrl; |
| u32 timings_asyn; |
| u32 tim_seq0; |
| u32 tim_seq1; |
| u32 tim_gen_seq0; |
| u32 tim_gen_seq1; |
| u32 tim_gen_seq2; |
| u32 tim_gen_seq3; |
| struct rnand_chip_sel sels[] __counted_by(nsels); |
| }; |
| |
| struct rnandc { |
| struct nand_controller controller; |
| struct device *dev; |
| void __iomem *regs; |
| unsigned long ext_clk_rate; |
| unsigned long assigned_cs; |
| struct list_head chips; |
| struct nand_chip *selected_chip; |
| struct completion complete; |
| bool use_polling; |
| u8 *buf; |
| unsigned int buf_sz; |
| }; |
| |
| struct rnandc_op { |
| u32 command; |
| u32 addr0_col; |
| u32 addr0_row; |
| u32 addr1_col; |
| u32 addr1_row; |
| u32 data_size; |
| u32 ecc_offset; |
| u32 gen_seq_ctrl; |
| u8 *buf; |
| bool read; |
| unsigned int len; |
| }; |
| |
| static inline struct rnandc *to_rnandc(struct nand_controller *ctrl) |
| { |
| return container_of(ctrl, struct rnandc, controller); |
| } |
| |
| static inline struct rnand_chip *to_rnand(struct nand_chip *chip) |
| { |
| return container_of(chip, struct rnand_chip, chip); |
| } |
| |
| static inline unsigned int to_rnandc_cs(struct rnand_chip *nand) |
| { |
| return nand->sels[nand->selected_die].cs; |
| } |
| |
| static void rnandc_dis_correction(struct rnandc *rnandc) |
| { |
| u32 control; |
| |
| control = readl_relaxed(rnandc->regs + CONTROL_REG); |
| control &= ~CONTROL_ECC_EN; |
| writel_relaxed(control, rnandc->regs + CONTROL_REG); |
| } |
| |
| static void rnandc_en_correction(struct rnandc *rnandc) |
| { |
| u32 control; |
| |
| control = readl_relaxed(rnandc->regs + CONTROL_REG); |
| control |= CONTROL_ECC_EN; |
| writel_relaxed(control, rnandc->regs + CONTROL_REG); |
| } |
| |
| static void rnandc_clear_status(struct rnandc *rnandc) |
| { |
| writel_relaxed(0, rnandc->regs + INT_STATUS_REG); |
| writel_relaxed(0, rnandc->regs + ECC_STAT_REG); |
| writel_relaxed(0, rnandc->regs + ECC_CNT_REG); |
| } |
| |
| static void rnandc_dis_interrupts(struct rnandc *rnandc) |
| { |
| writel_relaxed(0, rnandc->regs + INT_MASK_REG); |
| } |
| |
| static void rnandc_en_interrupts(struct rnandc *rnandc, u32 val) |
| { |
| if (!rnandc->use_polling) |
| writel_relaxed(val, rnandc->regs + INT_MASK_REG); |
| } |
| |
| static void rnandc_clear_fifo(struct rnandc *rnandc) |
| { |
| writel_relaxed(FIFO_INIT, rnandc->regs + FIFO_INIT_REG); |
| } |
| |
| static void rnandc_select_target(struct nand_chip *chip, int die_nr) |
| { |
| struct rnand_chip *rnand = to_rnand(chip); |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| unsigned int cs = rnand->sels[die_nr].cs; |
| |
| if (chip == rnandc->selected_chip && die_nr == rnand->selected_die) |
| return; |
| |
| rnandc_clear_status(rnandc); |
| writel_relaxed(MEM_CTRL_CS(cs) | MEM_CTRL_DIS_WP(cs), rnandc->regs + MEM_CTRL_REG); |
| writel_relaxed(rnand->control, rnandc->regs + CONTROL_REG); |
| writel_relaxed(rnand->ecc_ctrl, rnandc->regs + ECC_CTRL_REG); |
| writel_relaxed(rnand->timings_asyn, rnandc->regs + TIMINGS_ASYN_REG); |
| writel_relaxed(rnand->tim_seq0, rnandc->regs + TIM_SEQ0_REG); |
| writel_relaxed(rnand->tim_seq1, rnandc->regs + TIM_SEQ1_REG); |
| writel_relaxed(rnand->tim_gen_seq0, rnandc->regs + TIM_GEN_SEQ0_REG); |
| writel_relaxed(rnand->tim_gen_seq1, rnandc->regs + TIM_GEN_SEQ1_REG); |
| writel_relaxed(rnand->tim_gen_seq2, rnandc->regs + TIM_GEN_SEQ2_REG); |
| writel_relaxed(rnand->tim_gen_seq3, rnandc->regs + TIM_GEN_SEQ3_REG); |
| |
| rnandc->selected_chip = chip; |
| rnand->selected_die = die_nr; |
| } |
| |
| static void rnandc_trigger_op(struct rnandc *rnandc, struct rnandc_op *rop) |
| { |
| writel_relaxed(rop->addr0_col, rnandc->regs + ADDR0_COL_REG); |
| writel_relaxed(rop->addr0_row, rnandc->regs + ADDR0_ROW_REG); |
| writel_relaxed(rop->addr1_col, rnandc->regs + ADDR1_COL_REG); |
| writel_relaxed(rop->addr1_row, rnandc->regs + ADDR1_ROW_REG); |
| writel_relaxed(rop->ecc_offset, rnandc->regs + ECC_OFFSET_REG); |
| writel_relaxed(rop->gen_seq_ctrl, rnandc->regs + GEN_SEQ_CTRL_REG); |
| writel_relaxed(DATA_SIZE(rop->len), rnandc->regs + DATA_SIZE_REG); |
| writel_relaxed(rop->command, rnandc->regs + COMMAND_REG); |
| } |
| |
| static void rnandc_trigger_dma(struct rnandc *rnandc) |
| { |
| writel_relaxed(DMA_CTRL_INCREMENT_BURST_4 | |
| DMA_CTRL_REGISTER_MANAGED_MODE | |
| DMA_CTRL_START, rnandc->regs + DMA_CTRL_REG); |
| } |
| |
| static irqreturn_t rnandc_irq_handler(int irq, void *private) |
| { |
| struct rnandc *rnandc = private; |
| |
| rnandc_dis_interrupts(rnandc); |
| complete(&rnandc->complete); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int rnandc_wait_end_of_op(struct rnandc *rnandc, |
| struct nand_chip *chip) |
| { |
| struct rnand_chip *rnand = to_rnand(chip); |
| unsigned int cs = to_rnandc_cs(rnand); |
| u32 status; |
| int ret; |
| |
| ret = readl_poll_timeout(rnandc->regs + STATUS_REG, status, |
| MEM_RDY(cs, status) && CTRL_RDY(status), |
| 1, 100000); |
| if (ret) |
| dev_err(rnandc->dev, "Operation timed out, status: 0x%08x\n", |
| status); |
| |
| return ret; |
| } |
| |
| static int rnandc_wait_end_of_io(struct rnandc *rnandc, |
| struct nand_chip *chip) |
| { |
| int timeout_ms = 1000; |
| int ret; |
| |
| if (rnandc->use_polling) { |
| struct rnand_chip *rnand = to_rnand(chip); |
| unsigned int cs = to_rnandc_cs(rnand); |
| u32 status; |
| |
| ret = readl_poll_timeout(rnandc->regs + INT_STATUS_REG, status, |
| MEM_IS_RDY(cs, status) & |
| DMA_HAS_ENDED(status), |
| 0, timeout_ms * 1000); |
| } else { |
| ret = wait_for_completion_timeout(&rnandc->complete, |
| msecs_to_jiffies(timeout_ms)); |
| if (!ret) |
| ret = -ETIMEDOUT; |
| else |
| ret = 0; |
| } |
| |
| return ret; |
| } |
| |
| static int rnandc_read_page_hw_ecc(struct nand_chip *chip, u8 *buf, |
| int oob_required, int page) |
| { |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rnand_chip *rnand = to_rnand(chip); |
| unsigned int cs = to_rnandc_cs(rnand); |
| struct rnandc_op rop = { |
| .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_READ0) | |
| COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | |
| COMMAND_SEQ_READ_PAGE, |
| .addr0_row = page, |
| .len = mtd->writesize, |
| .ecc_offset = ECC_OFFSET(mtd->writesize + 2), |
| }; |
| unsigned int max_bitflips = 0; |
| dma_addr_t dma_addr; |
| u32 ecc_stat; |
| int bf, ret, i; |
| |
| /* Prepare controller */ |
| rnandc_select_target(chip, chip->cur_cs); |
| rnandc_clear_status(rnandc); |
| reinit_completion(&rnandc->complete); |
| rnandc_en_interrupts(rnandc, INT_DMA_ENDED); |
| rnandc_en_correction(rnandc); |
| |
| /* Configure DMA */ |
| dma_addr = dma_map_single(rnandc->dev, rnandc->buf, mtd->writesize, |
| DMA_FROM_DEVICE); |
| writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); |
| writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); |
| writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); |
| |
| rnandc_trigger_op(rnandc, &rop); |
| rnandc_trigger_dma(rnandc); |
| |
| ret = rnandc_wait_end_of_io(rnandc, chip); |
| dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_FROM_DEVICE); |
| rnandc_dis_correction(rnandc); |
| if (ret) { |
| dev_err(rnandc->dev, "Read page operation never ending\n"); |
| return ret; |
| } |
| |
| ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); |
| |
| if (oob_required || ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { |
| ret = nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| } |
| |
| if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { |
| for (i = 0; i < chip->ecc.steps; i++) { |
| unsigned int off = i * chip->ecc.size; |
| unsigned int eccoff = i * chip->ecc.bytes; |
| |
| bf = nand_check_erased_ecc_chunk(rnandc->buf + off, |
| chip->ecc.size, |
| chip->oob_poi + 2 + eccoff, |
| chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| if (bf < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += bf; |
| max_bitflips = max_t(unsigned int, max_bitflips, bf); |
| } |
| } |
| } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { |
| bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); |
| /* |
| * The number of bitflips is an approximation given the fact |
| * that this controller does not provide per-chunk details but |
| * only gives statistics on the entire page. |
| */ |
| mtd->ecc_stats.corrected += bf; |
| } |
| |
| memcpy(buf, rnandc->buf, mtd->writesize); |
| |
| return 0; |
| } |
| |
| static int rnandc_read_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, |
| u32 req_len, u8 *bufpoi, int page) |
| { |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rnand_chip *rnand = to_rnand(chip); |
| unsigned int cs = to_rnandc_cs(rnand); |
| unsigned int page_off = round_down(req_offset, chip->ecc.size); |
| unsigned int real_len = round_up(req_offset + req_len - page_off, |
| chip->ecc.size); |
| unsigned int start_chunk = page_off / chip->ecc.size; |
| unsigned int nchunks = real_len / chip->ecc.size; |
| unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); |
| struct rnandc_op rop = { |
| .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_READ0) | |
| COMMAND_2(NAND_CMD_READSTART) | COMMAND_FIFO_SEL | |
| COMMAND_SEQ_READ_PAGE, |
| .addr0_row = page, |
| .addr0_col = page_off, |
| .len = real_len, |
| .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), |
| }; |
| unsigned int max_bitflips = 0, i; |
| u32 ecc_stat; |
| int bf, ret; |
| |
| /* Prepare controller */ |
| rnandc_select_target(chip, chip->cur_cs); |
| rnandc_clear_status(rnandc); |
| rnandc_en_correction(rnandc); |
| rnandc_trigger_op(rnandc, &rop); |
| |
| while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| ioread32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, |
| real_len / 4); |
| |
| if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { |
| dev_err(rnandc->dev, "Clearing residual data in the read FIFO\n"); |
| rnandc_clear_fifo(rnandc); |
| } |
| |
| ret = rnandc_wait_end_of_op(rnandc, chip); |
| rnandc_dis_correction(rnandc); |
| if (ret) { |
| dev_err(rnandc->dev, "Read subpage operation never ending\n"); |
| return ret; |
| } |
| |
| ecc_stat = readl_relaxed(rnandc->regs + ECC_STAT_REG); |
| |
| if (ECC_STAT_UNCORRECTABLE(cs, ecc_stat)) { |
| ret = nand_change_read_column_op(chip, mtd->writesize, |
| chip->oob_poi, mtd->oobsize, |
| false); |
| if (ret) |
| return ret; |
| |
| for (i = start_chunk; i < nchunks; i++) { |
| unsigned int dataoff = i * chip->ecc.size; |
| unsigned int eccoff = 2 + (i * chip->ecc.bytes); |
| |
| bf = nand_check_erased_ecc_chunk(bufpoi + dataoff, |
| chip->ecc.size, |
| chip->oob_poi + eccoff, |
| chip->ecc.bytes, |
| NULL, 0, |
| chip->ecc.strength); |
| if (bf < 0) { |
| mtd->ecc_stats.failed++; |
| } else { |
| mtd->ecc_stats.corrected += bf; |
| max_bitflips = max_t(unsigned int, max_bitflips, bf); |
| } |
| } |
| } else if (ECC_STAT_CORRECTABLE(cs, ecc_stat)) { |
| bf = ECC_CNT(cs, readl_relaxed(rnandc->regs + ECC_CNT_REG)); |
| /* |
| * The number of bitflips is an approximation given the fact |
| * that this controller does not provide per-chunk details but |
| * only gives statistics on the entire page. |
| */ |
| mtd->ecc_stats.corrected += bf; |
| } |
| |
| return 0; |
| } |
| |
| static int rnandc_write_page_hw_ecc(struct nand_chip *chip, const u8 *buf, |
| int oob_required, int page) |
| { |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rnand_chip *rnand = to_rnand(chip); |
| unsigned int cs = to_rnandc_cs(rnand); |
| struct rnandc_op rop = { |
| .command = COMMAND_INPUT_SEL_DMA | COMMAND_0(NAND_CMD_SEQIN) | |
| COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | |
| COMMAND_SEQ_WRITE_PAGE, |
| .addr0_row = page, |
| .len = mtd->writesize, |
| .ecc_offset = ECC_OFFSET(mtd->writesize + 2), |
| }; |
| dma_addr_t dma_addr; |
| int ret; |
| |
| memcpy(rnandc->buf, buf, mtd->writesize); |
| |
| /* Prepare controller */ |
| rnandc_select_target(chip, chip->cur_cs); |
| rnandc_clear_status(rnandc); |
| reinit_completion(&rnandc->complete); |
| rnandc_en_interrupts(rnandc, INT_MEM_RDY(cs)); |
| rnandc_en_correction(rnandc); |
| |
| /* Configure DMA */ |
| dma_addr = dma_map_single(rnandc->dev, (void *)rnandc->buf, mtd->writesize, |
| DMA_TO_DEVICE); |
| writel(dma_addr, rnandc->regs + DMA_ADDR_LOW_REG); |
| writel(mtd->writesize, rnandc->regs + DMA_CNT_REG); |
| writel(DMA_TLVL_MAX, rnandc->regs + DMA_TLVL_REG); |
| |
| rnandc_trigger_op(rnandc, &rop); |
| rnandc_trigger_dma(rnandc); |
| |
| ret = rnandc_wait_end_of_io(rnandc, chip); |
| dma_unmap_single(rnandc->dev, dma_addr, mtd->writesize, DMA_TO_DEVICE); |
| rnandc_dis_correction(rnandc); |
| if (ret) { |
| dev_err(rnandc->dev, "Write page operation never ending\n"); |
| return ret; |
| } |
| |
| if (!oob_required) |
| return 0; |
| |
| return nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, |
| mtd->oobsize, false); |
| } |
| |
| static int rnandc_write_subpage_hw_ecc(struct nand_chip *chip, u32 req_offset, |
| u32 req_len, const u8 *bufpoi, |
| int oob_required, int page) |
| { |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| unsigned int page_off = round_down(req_offset, chip->ecc.size); |
| unsigned int real_len = round_up(req_offset + req_len - page_off, |
| chip->ecc.size); |
| unsigned int start_chunk = page_off / chip->ecc.size; |
| unsigned int ecc_off = 2 + (start_chunk * chip->ecc.bytes); |
| struct rnandc_op rop = { |
| .command = COMMAND_INPUT_SEL_AHBS | COMMAND_0(NAND_CMD_SEQIN) | |
| COMMAND_1(NAND_CMD_PAGEPROG) | COMMAND_FIFO_SEL | |
| COMMAND_SEQ_WRITE_PAGE, |
| .addr0_row = page, |
| .addr0_col = page_off, |
| .len = real_len, |
| .ecc_offset = ECC_OFFSET(mtd->writesize + ecc_off), |
| }; |
| int ret; |
| |
| /* Prepare controller */ |
| rnandc_select_target(chip, chip->cur_cs); |
| rnandc_clear_status(rnandc); |
| rnandc_en_correction(rnandc); |
| rnandc_trigger_op(rnandc, &rop); |
| |
| while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| iowrite32_rep(rnandc->regs + FIFO_DATA_REG, bufpoi + page_off, |
| real_len / 4); |
| |
| while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| ret = rnandc_wait_end_of_op(rnandc, chip); |
| rnandc_dis_correction(rnandc); |
| if (ret) { |
| dev_err(rnandc->dev, "Write subpage operation never ending\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * This controller is simple enough and thus does not need to use the parser |
| * provided by the core, instead, handle every situation here. |
| */ |
| static int rnandc_exec_op(struct nand_chip *chip, |
| const struct nand_operation *op, bool check_only) |
| { |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| const struct nand_op_instr *instr = NULL; |
| struct rnandc_op rop = { |
| .command = COMMAND_INPUT_SEL_AHBS, |
| .gen_seq_ctrl = GEN_SEQ_IMD_SEQ, |
| }; |
| unsigned int cmd_phase = 0, addr_phase = 0, data_phase = 0, |
| delay_phase = 0, delays = 0; |
| unsigned int op_id, col_addrs, row_addrs, naddrs, remainder, words, i; |
| const u8 *addrs; |
| u32 last_bytes; |
| int ret; |
| |
| if (!check_only) |
| rnandc_select_target(chip, op->cs); |
| |
| for (op_id = 0; op_id < op->ninstrs; op_id++) { |
| instr = &op->instrs[op_id]; |
| |
| nand_op_trace(" ", instr); |
| |
| switch (instr->type) { |
| case NAND_OP_CMD_INSTR: |
| switch (cmd_phase++) { |
| case 0: |
| rop.command |= COMMAND_0(instr->ctx.cmd.opcode); |
| rop.gen_seq_ctrl |= GEN_SEQ_CMD0_EN; |
| break; |
| case 1: |
| rop.gen_seq_ctrl |= GEN_SEQ_COMMAND_3(instr->ctx.cmd.opcode); |
| rop.gen_seq_ctrl |= GEN_SEQ_CMD3_EN; |
| if (addr_phase == 0) |
| addr_phase = 1; |
| break; |
| case 2: |
| rop.command |= COMMAND_2(instr->ctx.cmd.opcode); |
| rop.gen_seq_ctrl |= GEN_SEQ_CMD2_EN; |
| if (addr_phase <= 1) |
| addr_phase = 2; |
| break; |
| case 3: |
| rop.command |= COMMAND_1(instr->ctx.cmd.opcode); |
| rop.gen_seq_ctrl |= GEN_SEQ_CMD1_EN; |
| if (addr_phase <= 1) |
| addr_phase = 2; |
| if (delay_phase == 0) |
| delay_phase = 1; |
| if (data_phase == 0) |
| data_phase = 1; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| |
| case NAND_OP_ADDR_INSTR: |
| addrs = instr->ctx.addr.addrs; |
| naddrs = instr->ctx.addr.naddrs; |
| if (naddrs > 5) |
| return -EOPNOTSUPP; |
| |
| col_addrs = min(2U, naddrs); |
| row_addrs = naddrs > 2 ? naddrs - col_addrs : 0; |
| |
| switch (addr_phase++) { |
| case 0: |
| for (i = 0; i < col_addrs; i++) |
| rop.addr0_col |= addrs[i] << (i * 8); |
| rop.gen_seq_ctrl |= GEN_SEQ_COL_A0(col_addrs); |
| |
| for (i = 0; i < row_addrs; i++) |
| rop.addr0_row |= addrs[2 + i] << (i * 8); |
| rop.gen_seq_ctrl |= GEN_SEQ_ROW_A0(row_addrs); |
| |
| if (cmd_phase == 0) |
| cmd_phase = 1; |
| break; |
| case 1: |
| for (i = 0; i < col_addrs; i++) |
| rop.addr1_col |= addrs[i] << (i * 8); |
| rop.gen_seq_ctrl |= GEN_SEQ_COL_A1(col_addrs); |
| |
| for (i = 0; i < row_addrs; i++) |
| rop.addr1_row |= addrs[2 + i] << (i * 8); |
| rop.gen_seq_ctrl |= GEN_SEQ_ROW_A1(row_addrs); |
| |
| if (cmd_phase <= 1) |
| cmd_phase = 2; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| |
| case NAND_OP_DATA_IN_INSTR: |
| rop.read = true; |
| fallthrough; |
| case NAND_OP_DATA_OUT_INSTR: |
| rop.gen_seq_ctrl |= GEN_SEQ_DATA_EN; |
| rop.buf = instr->ctx.data.buf.in; |
| rop.len = instr->ctx.data.len; |
| rop.command |= COMMAND_FIFO_SEL; |
| |
| switch (data_phase++) { |
| case 0: |
| if (cmd_phase <= 2) |
| cmd_phase = 3; |
| if (addr_phase <= 1) |
| addr_phase = 2; |
| if (delay_phase == 0) |
| delay_phase = 1; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| |
| case NAND_OP_WAITRDY_INSTR: |
| switch (delay_phase++) { |
| case 0: |
| rop.gen_seq_ctrl |= GEN_SEQ_DELAY0_EN; |
| |
| if (cmd_phase <= 2) |
| cmd_phase = 3; |
| break; |
| case 1: |
| rop.gen_seq_ctrl |= GEN_SEQ_DELAY1_EN; |
| |
| if (cmd_phase <= 3) |
| cmd_phase = 4; |
| if (data_phase == 0) |
| data_phase = 1; |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| break; |
| } |
| } |
| |
| /* |
| * Sequence 19 is generic and dedicated to write operations. |
| * Sequence 18 is also generic and works for all other operations. |
| */ |
| if (rop.buf && !rop.read) |
| rop.command |= COMMAND_SEQ_GEN_OUT; |
| else |
| rop.command |= COMMAND_SEQ_GEN_IN; |
| |
| if (delays > 1) { |
| dev_err(rnandc->dev, "Cannot handle more than one wait delay\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (check_only) |
| return 0; |
| |
| rnandc_trigger_op(rnandc, &rop); |
| |
| words = rop.len / sizeof(u32); |
| remainder = rop.len % sizeof(u32); |
| if (rop.buf && rop.read) { |
| while (!FIFO_STATE_C_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| while (FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| ioread32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, words); |
| if (remainder) { |
| last_bytes = readl_relaxed(rnandc->regs + FIFO_DATA_REG); |
| memcpy(rop.buf + (words * sizeof(u32)), &last_bytes, |
| remainder); |
| } |
| |
| if (!FIFO_STATE_R_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) { |
| dev_warn(rnandc->dev, |
| "Clearing residual data in the read FIFO\n"); |
| rnandc_clear_fifo(rnandc); |
| } |
| } else if (rop.len && !rop.read) { |
| while (FIFO_STATE_W_FULL(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| |
| iowrite32_rep(rnandc->regs + FIFO_DATA_REG, rop.buf, |
| DIV_ROUND_UP(rop.len, 4)); |
| |
| if (remainder) { |
| last_bytes = 0; |
| memcpy(&last_bytes, rop.buf + (words * sizeof(u32)), remainder); |
| writel_relaxed(last_bytes, rnandc->regs + FIFO_DATA_REG); |
| } |
| |
| while (!FIFO_STATE_W_EMPTY(readl(rnandc->regs + FIFO_STATE_REG))) |
| cpu_relax(); |
| } |
| |
| ret = rnandc_wait_end_of_op(rnandc, chip); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| static int rnandc_setup_interface(struct nand_chip *chip, int chipnr, |
| const struct nand_interface_config *conf) |
| { |
| struct rnand_chip *rnand = to_rnand(chip); |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| unsigned int period_ns = 1000000000 / rnandc->ext_clk_rate; |
| const struct nand_sdr_timings *sdr; |
| unsigned int cyc, cle, ale, bef_dly, ca_to_data; |
| |
| sdr = nand_get_sdr_timings(conf); |
| if (IS_ERR(sdr)) |
| return PTR_ERR(sdr); |
| |
| if (sdr->tRP_min != sdr->tWP_min || sdr->tREH_min != sdr->tWH_min) { |
| dev_err(rnandc->dev, "Read and write hold times must be identical\n"); |
| return -EINVAL; |
| } |
| |
| if (chipnr < 0) |
| return 0; |
| |
| rnand->timings_asyn = |
| TIMINGS_ASYN_TRWP(TO_CYCLES64(sdr->tRP_min, period_ns)) | |
| TIMINGS_ASYN_TRWH(TO_CYCLES64(sdr->tREH_min, period_ns)); |
| rnand->tim_seq0 = |
| TIM_SEQ0_TCCS(TO_CYCLES64(sdr->tCCS_min, period_ns)) | |
| TIM_SEQ0_TADL(TO_CYCLES64(sdr->tADL_min, period_ns)) | |
| TIM_SEQ0_TRHW(TO_CYCLES64(sdr->tRHW_min, period_ns)) | |
| TIM_SEQ0_TWHR(TO_CYCLES64(sdr->tWHR_min, period_ns)); |
| rnand->tim_seq1 = |
| TIM_SEQ1_TWB(TO_CYCLES64(sdr->tWB_max, period_ns)) | |
| TIM_SEQ1_TRR(TO_CYCLES64(sdr->tRR_min, period_ns)) | |
| TIM_SEQ1_TWW(TO_CYCLES64(sdr->tWW_min, period_ns)); |
| |
| cyc = sdr->tDS_min + sdr->tDH_min; |
| cle = sdr->tCLH_min + sdr->tCLS_min; |
| ale = sdr->tALH_min + sdr->tALS_min; |
| bef_dly = sdr->tWB_max - sdr->tDH_min; |
| ca_to_data = sdr->tWHR_min + sdr->tREA_max - sdr->tDH_min; |
| |
| /* |
| * D0 = CMD -> ADDR = tCLH + tCLS - 1 cycle |
| * D1 = CMD -> CMD = tCLH + tCLS - 1 cycle |
| * D2 = CMD -> DLY = tWB - tDH |
| * D3 = CMD -> DATA = tWHR + tREA - tDH |
| */ |
| rnand->tim_gen_seq0 = |
| TIM_GEN_SEQ0_D0(TO_CYCLES64(cle - cyc, period_ns)) | |
| TIM_GEN_SEQ0_D1(TO_CYCLES64(cle - cyc, period_ns)) | |
| TIM_GEN_SEQ0_D2(TO_CYCLES64(bef_dly, period_ns)) | |
| TIM_GEN_SEQ0_D3(TO_CYCLES64(ca_to_data, period_ns)); |
| |
| /* |
| * D4 = ADDR -> CMD = tALH + tALS - 1 cyle |
| * D5 = ADDR -> ADDR = tALH + tALS - 1 cyle |
| * D6 = ADDR -> DLY = tWB - tDH |
| * D7 = ADDR -> DATA = tWHR + tREA - tDH |
| */ |
| rnand->tim_gen_seq1 = |
| TIM_GEN_SEQ1_D4(TO_CYCLES64(ale - cyc, period_ns)) | |
| TIM_GEN_SEQ1_D5(TO_CYCLES64(ale - cyc, period_ns)) | |
| TIM_GEN_SEQ1_D6(TO_CYCLES64(bef_dly, period_ns)) | |
| TIM_GEN_SEQ1_D7(TO_CYCLES64(ca_to_data, period_ns)); |
| |
| /* |
| * D8 = DLY -> DATA = tRR + tREA |
| * D9 = DLY -> CMD = tRR |
| * D10 = DATA -> CMD = tCLH + tCLS - 1 cycle |
| * D11 = DATA -> DLY = tWB - tDH |
| */ |
| rnand->tim_gen_seq2 = |
| TIM_GEN_SEQ2_D8(TO_CYCLES64(sdr->tRR_min + sdr->tREA_max, period_ns)) | |
| TIM_GEN_SEQ2_D9(TO_CYCLES64(sdr->tRR_min, period_ns)) | |
| TIM_GEN_SEQ2_D10(TO_CYCLES64(cle - cyc, period_ns)) | |
| TIM_GEN_SEQ2_D11(TO_CYCLES64(bef_dly, period_ns)); |
| |
| /* D12 = DATA -> END = tCLH - tDH */ |
| rnand->tim_gen_seq3 = |
| TIM_GEN_SEQ3_D12(TO_CYCLES64(sdr->tCLH_min - sdr->tDH_min, period_ns)); |
| |
| return 0; |
| } |
| |
| static int rnandc_ooblayout_ecc(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 2; |
| oobregion->length = eccbytes; |
| |
| return 0; |
| } |
| |
| static int rnandc_ooblayout_free(struct mtd_info *mtd, int section, |
| struct mtd_oob_region *oobregion) |
| { |
| struct nand_chip *chip = mtd_to_nand(mtd); |
| unsigned int eccbytes = round_up(chip->ecc.bytes, 4) * chip->ecc.steps; |
| |
| if (section) |
| return -ERANGE; |
| |
| oobregion->offset = 2 + eccbytes; |
| oobregion->length = mtd->oobsize - oobregion->offset; |
| |
| return 0; |
| } |
| |
| static const struct mtd_ooblayout_ops rnandc_ooblayout_ops = { |
| .ecc = rnandc_ooblayout_ecc, |
| .free = rnandc_ooblayout_free, |
| }; |
| |
| static int rnandc_hw_ecc_controller_init(struct nand_chip *chip) |
| { |
| struct rnand_chip *rnand = to_rnand(chip); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| |
| if (mtd->writesize > SZ_16K) { |
| dev_err(rnandc->dev, "Unsupported page size\n"); |
| return -EINVAL; |
| } |
| |
| switch (chip->ecc.size) { |
| case SZ_256: |
| rnand->control |= CONTROL_ECC_BLOCK_SIZE_256; |
| break; |
| case SZ_512: |
| rnand->control |= CONTROL_ECC_BLOCK_SIZE_512; |
| break; |
| case SZ_1K: |
| rnand->control |= CONTROL_ECC_BLOCK_SIZE_1024; |
| break; |
| default: |
| dev_err(rnandc->dev, "Unsupported ECC chunk size\n"); |
| return -EINVAL; |
| } |
| |
| switch (chip->ecc.strength) { |
| case 2: |
| chip->ecc.bytes = 4; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_2B; |
| break; |
| case 4: |
| chip->ecc.bytes = 7; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_4B; |
| break; |
| case 8: |
| chip->ecc.bytes = 14; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_8B; |
| break; |
| case 16: |
| chip->ecc.bytes = 28; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_16B; |
| break; |
| case 24: |
| chip->ecc.bytes = 42; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_24B; |
| break; |
| case 32: |
| chip->ecc.bytes = 56; |
| rnand->ecc_ctrl |= ECC_CTRL_CAP_32B; |
| break; |
| default: |
| dev_err(rnandc->dev, "Unsupported ECC strength\n"); |
| return -EINVAL; |
| } |
| |
| rnand->ecc_ctrl |= ECC_CTRL_ERR_THRESHOLD(chip->ecc.strength); |
| |
| mtd_set_ooblayout(mtd, &rnandc_ooblayout_ops); |
| chip->ecc.steps = mtd->writesize / chip->ecc.size; |
| chip->ecc.read_page = rnandc_read_page_hw_ecc; |
| chip->ecc.read_subpage = rnandc_read_subpage_hw_ecc; |
| chip->ecc.write_page = rnandc_write_page_hw_ecc; |
| chip->ecc.write_subpage = rnandc_write_subpage_hw_ecc; |
| |
| return 0; |
| } |
| |
| static int rnandc_ecc_init(struct nand_chip *chip) |
| { |
| struct nand_ecc_ctrl *ecc = &chip->ecc; |
| const struct nand_ecc_props *requirements = |
| nanddev_get_ecc_requirements(&chip->base); |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| int ret; |
| |
| if (ecc->engine_type != NAND_ECC_ENGINE_TYPE_NONE && |
| (!ecc->size || !ecc->strength)) { |
| if (requirements->step_size && requirements->strength) { |
| ecc->size = requirements->step_size; |
| ecc->strength = requirements->strength; |
| } else { |
| dev_err(rnandc->dev, "No minimum ECC strength\n"); |
| return -EINVAL; |
| } |
| } |
| |
| switch (ecc->engine_type) { |
| case NAND_ECC_ENGINE_TYPE_ON_HOST: |
| ret = rnandc_hw_ecc_controller_init(chip); |
| if (ret) |
| return ret; |
| break; |
| case NAND_ECC_ENGINE_TYPE_NONE: |
| case NAND_ECC_ENGINE_TYPE_SOFT: |
| case NAND_ECC_ENGINE_TYPE_ON_DIE: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int rnandc_attach_chip(struct nand_chip *chip) |
| { |
| struct rnand_chip *rnand = to_rnand(chip); |
| struct rnandc *rnandc = to_rnandc(chip->controller); |
| struct mtd_info *mtd = nand_to_mtd(chip); |
| struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); |
| int ret; |
| |
| /* Do not store BBT bits in the OOB section as it is not protected */ |
| if (chip->bbt_options & NAND_BBT_USE_FLASH) |
| chip->bbt_options |= NAND_BBT_NO_OOB; |
| |
| if (mtd->writesize <= 512) { |
| dev_err(rnandc->dev, "Small page devices not supported\n"); |
| return -EINVAL; |
| } |
| |
| rnand->control |= CONTROL_CHECK_RB_LINE | CONTROL_INT_EN; |
| |
| switch (memorg->pages_per_eraseblock) { |
| case 32: |
| rnand->control |= CONTROL_BLOCK_SIZE_32P; |
| break; |
| case 64: |
| rnand->control |= CONTROL_BLOCK_SIZE_64P; |
| break; |
| case 128: |
| rnand->control |= CONTROL_BLOCK_SIZE_128P; |
| break; |
| case 256: |
| rnand->control |= CONTROL_BLOCK_SIZE_256P; |
| break; |
| default: |
| dev_err(rnandc->dev, "Unsupported memory organization\n"); |
| return -EINVAL; |
| } |
| |
| chip->options |= NAND_SUBPAGE_READ; |
| |
| ret = rnandc_ecc_init(chip); |
| if (ret) { |
| dev_err(rnandc->dev, "ECC initialization failed (%d)\n", ret); |
| return ret; |
| } |
| |
| /* Force an update of the configuration registers */ |
| rnand->selected_die = -1; |
| |
| return 0; |
| } |
| |
| static const struct nand_controller_ops rnandc_ops = { |
| .attach_chip = rnandc_attach_chip, |
| .exec_op = rnandc_exec_op, |
| .setup_interface = rnandc_setup_interface, |
| }; |
| |
| static int rnandc_alloc_dma_buf(struct rnandc *rnandc, |
| struct mtd_info *new_mtd) |
| { |
| unsigned int max_len = new_mtd->writesize + new_mtd->oobsize; |
| struct rnand_chip *entry, *temp; |
| struct nand_chip *chip; |
| struct mtd_info *mtd; |
| |
| list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { |
| chip = &entry->chip; |
| mtd = nand_to_mtd(chip); |
| max_len = max(max_len, mtd->writesize + mtd->oobsize); |
| } |
| |
| if (rnandc->buf && rnandc->buf_sz < max_len) { |
| devm_kfree(rnandc->dev, rnandc->buf); |
| rnandc->buf = NULL; |
| } |
| |
| if (!rnandc->buf) { |
| rnandc->buf_sz = max_len; |
| rnandc->buf = devm_kmalloc(rnandc->dev, max_len, |
| GFP_KERNEL | GFP_DMA); |
| if (!rnandc->buf) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int rnandc_chip_init(struct rnandc *rnandc, struct device_node *np) |
| { |
| struct rnand_chip *rnand; |
| struct mtd_info *mtd; |
| struct nand_chip *chip; |
| int nsels, ret, i; |
| u32 cs; |
| |
| nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); |
| if (nsels <= 0) { |
| ret = (nsels < 0) ? nsels : -EINVAL; |
| dev_err(rnandc->dev, "Invalid reg property (%d)\n", ret); |
| return ret; |
| } |
| |
| /* Alloc the driver's NAND chip structure */ |
| rnand = devm_kzalloc(rnandc->dev, struct_size(rnand, sels, nsels), |
| GFP_KERNEL); |
| if (!rnand) |
| return -ENOMEM; |
| |
| rnand->nsels = nsels; |
| rnand->selected_die = -1; |
| |
| for (i = 0; i < nsels; i++) { |
| ret = of_property_read_u32_index(np, "reg", i, &cs); |
| if (ret) { |
| dev_err(rnandc->dev, "Incomplete reg property (%d)\n", ret); |
| return ret; |
| } |
| |
| if (cs >= RNANDC_CS_NUM) { |
| dev_err(rnandc->dev, "Invalid reg property (%d)\n", cs); |
| return -EINVAL; |
| } |
| |
| if (test_and_set_bit(cs, &rnandc->assigned_cs)) { |
| dev_err(rnandc->dev, "CS %d already assigned\n", cs); |
| return -EINVAL; |
| } |
| |
| /* |
| * No need to check for RB or WP properties, there is a 1:1 |
| * mandatory mapping with the CS. |
| */ |
| rnand->sels[i].cs = cs; |
| } |
| |
| chip = &rnand->chip; |
| chip->controller = &rnandc->controller; |
| nand_set_flash_node(chip, np); |
| |
| mtd = nand_to_mtd(chip); |
| mtd->dev.parent = rnandc->dev; |
| if (!mtd->name) { |
| dev_err(rnandc->dev, "Missing MTD label\n"); |
| return -EINVAL; |
| } |
| |
| ret = nand_scan(chip, rnand->nsels); |
| if (ret) { |
| dev_err(rnandc->dev, "Failed to scan the NAND chip (%d)\n", ret); |
| return ret; |
| } |
| |
| ret = rnandc_alloc_dma_buf(rnandc, mtd); |
| if (ret) |
| goto cleanup_nand; |
| |
| ret = mtd_device_register(mtd, NULL, 0); |
| if (ret) { |
| dev_err(rnandc->dev, "Failed to register MTD device (%d)\n", ret); |
| goto cleanup_nand; |
| } |
| |
| list_add_tail(&rnand->node, &rnandc->chips); |
| |
| return 0; |
| |
| cleanup_nand: |
| nand_cleanup(chip); |
| |
| return ret; |
| } |
| |
| static void rnandc_chips_cleanup(struct rnandc *rnandc) |
| { |
| struct rnand_chip *entry, *temp; |
| struct nand_chip *chip; |
| int ret; |
| |
| list_for_each_entry_safe(entry, temp, &rnandc->chips, node) { |
| chip = &entry->chip; |
| ret = mtd_device_unregister(nand_to_mtd(chip)); |
| WARN_ON(ret); |
| nand_cleanup(chip); |
| list_del(&entry->node); |
| } |
| } |
| |
| static int rnandc_chips_init(struct rnandc *rnandc) |
| { |
| struct device_node *np; |
| int ret; |
| |
| for_each_child_of_node(rnandc->dev->of_node, np) { |
| ret = rnandc_chip_init(rnandc, np); |
| if (ret) { |
| of_node_put(np); |
| goto cleanup_chips; |
| } |
| } |
| |
| return 0; |
| |
| cleanup_chips: |
| rnandc_chips_cleanup(rnandc); |
| |
| return ret; |
| } |
| |
| static int rnandc_probe(struct platform_device *pdev) |
| { |
| struct rnandc *rnandc; |
| struct clk *eclk; |
| int irq, ret; |
| |
| rnandc = devm_kzalloc(&pdev->dev, sizeof(*rnandc), GFP_KERNEL); |
| if (!rnandc) |
| return -ENOMEM; |
| |
| rnandc->dev = &pdev->dev; |
| nand_controller_init(&rnandc->controller); |
| rnandc->controller.ops = &rnandc_ops; |
| INIT_LIST_HEAD(&rnandc->chips); |
| init_completion(&rnandc->complete); |
| |
| rnandc->regs = devm_platform_ioremap_resource(pdev, 0); |
| if (IS_ERR(rnandc->regs)) |
| return PTR_ERR(rnandc->regs); |
| |
| devm_pm_runtime_enable(&pdev->dev); |
| ret = pm_runtime_resume_and_get(&pdev->dev); |
| if (ret < 0) |
| return ret; |
| |
| /* The external NAND bus clock rate is needed for computing timings */ |
| eclk = clk_get(&pdev->dev, "eclk"); |
| if (IS_ERR(eclk)) { |
| ret = PTR_ERR(eclk); |
| goto dis_runtime_pm; |
| } |
| |
| rnandc->ext_clk_rate = clk_get_rate(eclk); |
| clk_put(eclk); |
| |
| rnandc_dis_interrupts(rnandc); |
| irq = platform_get_irq_optional(pdev, 0); |
| if (irq == -EPROBE_DEFER) { |
| ret = irq; |
| goto dis_runtime_pm; |
| } else if (irq < 0) { |
| dev_info(&pdev->dev, "No IRQ found, fallback to polling\n"); |
| rnandc->use_polling = true; |
| } else { |
| ret = devm_request_irq(&pdev->dev, irq, rnandc_irq_handler, 0, |
| "renesas-nand-controller", rnandc); |
| if (ret < 0) |
| goto dis_runtime_pm; |
| } |
| |
| ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); |
| if (ret) |
| goto dis_runtime_pm; |
| |
| rnandc_clear_fifo(rnandc); |
| |
| platform_set_drvdata(pdev, rnandc); |
| |
| ret = rnandc_chips_init(rnandc); |
| if (ret) |
| goto dis_runtime_pm; |
| |
| return 0; |
| |
| dis_runtime_pm: |
| pm_runtime_put(&pdev->dev); |
| |
| return ret; |
| } |
| |
| static void rnandc_remove(struct platform_device *pdev) |
| { |
| struct rnandc *rnandc = platform_get_drvdata(pdev); |
| |
| rnandc_chips_cleanup(rnandc); |
| |
| pm_runtime_put(&pdev->dev); |
| } |
| |
| static const struct of_device_id rnandc_id_table[] = { |
| { .compatible = "renesas,rcar-gen3-nandc" }, |
| { .compatible = "renesas,rzn1-nandc" }, |
| {} /* sentinel */ |
| }; |
| MODULE_DEVICE_TABLE(of, rnandc_id_table); |
| |
| static struct platform_driver rnandc_driver = { |
| .driver = { |
| .name = "renesas-nandc", |
| .of_match_table = rnandc_id_table, |
| }, |
| .probe = rnandc_probe, |
| .remove_new = rnandc_remove, |
| }; |
| module_platform_driver(rnandc_driver); |
| |
| MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); |
| MODULE_DESCRIPTION("Renesas R-Car Gen3 & RZ/N1 NAND controller driver"); |
| MODULE_LICENSE("GPL v2"); |