| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_vf_lib_private.h" |
| #include "ice_base.h" |
| #include "ice_lib.h" |
| #include "ice_fltr.h" |
| #include "ice_dcb_lib.h" |
| #include "ice_flow.h" |
| #include "ice_eswitch.h" |
| #include "ice_virtchnl_allowlist.h" |
| #include "ice_flex_pipe.h" |
| #include "ice_vf_vsi_vlan_ops.h" |
| #include "ice_vlan.h" |
| |
| /** |
| * ice_free_vf_entries - Free all VF entries from the hash table |
| * @pf: pointer to the PF structure |
| * |
| * Iterate over the VF hash table, removing and releasing all VF entries. |
| * Called during VF teardown or as cleanup during failed VF initialization. |
| */ |
| static void ice_free_vf_entries(struct ice_pf *pf) |
| { |
| struct ice_vfs *vfs = &pf->vfs; |
| struct hlist_node *tmp; |
| struct ice_vf *vf; |
| unsigned int bkt; |
| |
| /* Remove all VFs from the hash table and release their main |
| * reference. Once all references to the VF are dropped, ice_put_vf() |
| * will call ice_release_vf which will remove the VF memory. |
| */ |
| lockdep_assert_held(&vfs->table_lock); |
| |
| hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) { |
| hash_del_rcu(&vf->entry); |
| ice_put_vf(vf); |
| } |
| } |
| |
| /** |
| * ice_free_vf_res - Free a VF's resources |
| * @vf: pointer to the VF info |
| */ |
| static void ice_free_vf_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| int i, last_vector_idx; |
| |
| /* First, disable VF's configuration API to prevent OS from |
| * accessing the VF's VSI after it's freed or invalidated. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| ice_vf_fdir_exit(vf); |
| /* free VF control VSI */ |
| if (vf->ctrl_vsi_idx != ICE_NO_VSI) |
| ice_vf_ctrl_vsi_release(vf); |
| |
| /* free VSI and disconnect it from the parent uplink */ |
| if (vf->lan_vsi_idx != ICE_NO_VSI) { |
| ice_vf_vsi_release(vf); |
| vf->num_mac = 0; |
| } |
| |
| last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1; |
| |
| /* clear VF MDD event information */ |
| memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events)); |
| memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events)); |
| |
| /* Disable interrupts so that VF starts in a known state */ |
| for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { |
| wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); |
| ice_flush(&pf->hw); |
| } |
| /* reset some of the state variables keeping track of the resources */ |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| } |
| |
| /** |
| * ice_dis_vf_mappings |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int first, last, v; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| vsi = ice_get_vf_vsi(vf); |
| if (WARN_ON(!vsi)) |
| return; |
| |
| dev = ice_pf_to_dev(pf); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), 0); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); |
| |
| first = vf->first_vector_idx; |
| last = first + pf->vfs.num_msix_per - 1; |
| for (v = first; v <= last; v++) { |
| u32 reg; |
| |
| reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & |
| GLINT_VECT2FUNC_IS_PF_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| |
| /** |
| * ice_sriov_free_msix_res - Reset/free any used MSIX resources |
| * @pf: pointer to the PF structure |
| * |
| * Since no MSIX entries are taken from the pf->irq_tracker then just clear |
| * the pf->sriov_base_vector. |
| * |
| * Returns 0 on success, and -EINVAL on error. |
| */ |
| static int ice_sriov_free_msix_res(struct ice_pf *pf) |
| { |
| struct ice_res_tracker *res; |
| |
| if (!pf) |
| return -EINVAL; |
| |
| res = pf->irq_tracker; |
| if (!res) |
| return -EINVAL; |
| |
| /* give back irq_tracker resources used */ |
| WARN_ON(pf->sriov_base_vector < res->num_entries); |
| |
| pf->sriov_base_vector = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_free_vfs - Free all VFs |
| * @pf: pointer to the PF structure |
| */ |
| void ice_free_vfs(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_vfs *vfs = &pf->vfs; |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf; |
| unsigned int bkt; |
| |
| if (!ice_has_vfs(pf)) |
| return; |
| |
| while (test_and_set_bit(ICE_VF_DIS, pf->state)) |
| usleep_range(1000, 2000); |
| |
| /* Disable IOV before freeing resources. This lets any VF drivers |
| * running in the host get themselves cleaned up before we yank |
| * the carpet out from underneath their feet. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) |
| pci_disable_sriov(pf->pdev); |
| else |
| dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); |
| |
| mutex_lock(&vfs->table_lock); |
| |
| ice_eswitch_release(pf); |
| |
| ice_for_each_vf(pf, bkt, vf) { |
| mutex_lock(&vf->cfg_lock); |
| |
| ice_dis_vf_qs(vf); |
| |
| if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| /* disable VF qp mappings and set VF disable state */ |
| ice_dis_vf_mappings(vf); |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| ice_free_vf_res(vf); |
| } |
| |
| if (!pci_vfs_assigned(pf->pdev)) { |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| } |
| |
| /* clear malicious info since the VF is getting released */ |
| if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs, |
| ICE_MAX_SRIOV_VFS, vf->vf_id)) |
| dev_dbg(dev, "failed to clear malicious VF state for VF %u\n", |
| vf->vf_id); |
| |
| mutex_unlock(&vf->cfg_lock); |
| } |
| |
| if (ice_sriov_free_msix_res(pf)) |
| dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); |
| |
| vfs->num_qps_per = 0; |
| ice_free_vf_entries(pf); |
| |
| mutex_unlock(&vfs->table_lock); |
| |
| clear_bit(ICE_VF_DIS, pf->state); |
| clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| } |
| |
| /** |
| * ice_vf_vsi_setup - Set up a VF VSI |
| * @vf: VF to setup VSI for |
| * |
| * Returns pointer to the successfully allocated VSI struct on success, |
| * otherwise returns NULL on failure. |
| */ |
| static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf) |
| { |
| struct ice_vsi_cfg_params params = {}; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| params.type = ICE_VSI_VF; |
| params.pi = ice_vf_get_port_info(vf); |
| params.vf = vf; |
| params.flags = ICE_VSI_FLAG_INIT; |
| |
| vsi = ice_vsi_setup(pf, ¶ms); |
| |
| if (!vsi) { |
| dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n"); |
| ice_vf_invalidate_vsi(vf); |
| return NULL; |
| } |
| |
| vf->lan_vsi_idx = vsi->idx; |
| vf->lan_vsi_num = vsi->vsi_num; |
| |
| return vsi; |
| } |
| |
| /** |
| * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space |
| * @pf: pointer to PF structure |
| * @vf: pointer to VF that the first MSIX vector index is being calculated for |
| * |
| * This returns the first MSIX vector index in PF space that is used by this VF. |
| * This index is used when accessing PF relative registers such as |
| * GLINT_VECT2FUNC and GLINT_DYN_CTL. |
| * This will always be the OICR index in the AVF driver so any functionality |
| * using vf->first_vector_idx for queue configuration will have to increment by |
| * 1 to avoid meddling with the OICR index. |
| */ |
| static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) |
| { |
| return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per; |
| } |
| |
| /** |
| * ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware |
| * @vf: VF to enable MSIX mappings for |
| * |
| * Some of the registers need to be indexed/configured using hardware global |
| * device values and other registers need 0-based values, which represent PF |
| * based values. |
| */ |
| static void ice_ena_vf_msix_mappings(struct ice_vf *vf) |
| { |
| int device_based_first_msix, device_based_last_msix; |
| int pf_based_first_msix, pf_based_last_msix, v; |
| struct ice_pf *pf = vf->pf; |
| int device_based_vf_id; |
| struct ice_hw *hw; |
| u32 reg; |
| |
| hw = &pf->hw; |
| pf_based_first_msix = vf->first_vector_idx; |
| pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1; |
| |
| device_based_first_msix = pf_based_first_msix + |
| pf->hw.func_caps.common_cap.msix_vector_first_id; |
| device_based_last_msix = |
| (device_based_first_msix + pf->vfs.num_msix_per) - 1; |
| device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) & |
| VPINT_ALLOC_FIRST_M) | |
| ((device_based_last_msix << VPINT_ALLOC_LAST_S) & |
| VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), reg); |
| |
| reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S) |
| & VPINT_ALLOC_PCI_FIRST_M) | |
| ((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) & |
| VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); |
| |
| /* map the interrupts to its functions */ |
| for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) { |
| reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & |
| GLINT_VECT2FUNC_VF_NUM_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| /* Map mailbox interrupt to VF MSI-X vector 0 */ |
| wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M); |
| } |
| |
| /** |
| * ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF |
| * @vf: VF to enable the mappings for |
| * @max_txq: max Tx queues allowed on the VF's VSI |
| * @max_rxq: max Rx queues allowed on the VF's VSI |
| */ |
| static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq) |
| { |
| struct device *dev = ice_pf_to_dev(vf->pf); |
| struct ice_vsi *vsi = ice_get_vf_vsi(vf); |
| struct ice_hw *hw = &vf->pf->hw; |
| u32 reg; |
| |
| if (WARN_ON(!vsi)) |
| return; |
| |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); |
| |
| /* VF Tx queues allocation */ |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Tx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & |
| VPLAN_TX_QBASE_VFFIRSTQ_M) | |
| (((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & |
| VPLAN_TX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| } |
| |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); |
| |
| /* VF Rx queues allocation */ |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Rx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & |
| VPLAN_RX_QBASE_VFFIRSTQ_M) | |
| (((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & |
| VPLAN_RX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| } |
| |
| /** |
| * ice_ena_vf_mappings - enable VF MSIX and queue mapping |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_ena_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = ice_get_vf_vsi(vf); |
| |
| if (WARN_ON(!vsi)) |
| return; |
| |
| ice_ena_vf_msix_mappings(vf); |
| ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq); |
| } |
| |
| /** |
| * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space |
| * @vf: VF to calculate the register index for |
| * @q_vector: a q_vector associated to the VF |
| */ |
| int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf; |
| |
| if (!vf || !q_vector) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| |
| /* always add one to account for the OICR being the first MSIX */ |
| return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id + |
| q_vector->v_idx + 1; |
| } |
| |
| /** |
| * ice_get_max_valid_res_idx - Get the max valid resource index |
| * @res: pointer to the resource to find the max valid index for |
| * |
| * Start from the end of the ice_res_tracker and return right when we find the |
| * first res->list entry with the ICE_RES_VALID_BIT set. This function is only |
| * valid for SR-IOV because it is the only consumer that manipulates the |
| * res->end and this is always called when res->end is set to res->num_entries. |
| */ |
| static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) |
| { |
| int i; |
| |
| if (!res) |
| return -EINVAL; |
| |
| for (i = res->num_entries - 1; i >= 0; i--) |
| if (res->list[i] & ICE_RES_VALID_BIT) |
| return i; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_set_msix_res - Set any used MSIX resources |
| * @pf: pointer to PF structure |
| * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs |
| * |
| * This function allows SR-IOV resources to be taken from the end of the PF's |
| * allowed HW MSIX vectors so that the irq_tracker will not be affected. We |
| * just set the pf->sriov_base_vector and return success. |
| * |
| * If there are not enough resources available, return an error. This should |
| * always be caught by ice_set_per_vf_res(). |
| * |
| * Return 0 on success, and -EINVAL when there are not enough MSIX vectors |
| * in the PF's space available for SR-IOV. |
| */ |
| static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) |
| { |
| u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors; |
| int vectors_used = pf->irq_tracker->num_entries; |
| int sriov_base_vector; |
| |
| sriov_base_vector = total_vectors - num_msix_needed; |
| |
| /* make sure we only grab irq_tracker entries from the list end and |
| * that we have enough available MSIX vectors |
| */ |
| if (sriov_base_vector < vectors_used) |
| return -EINVAL; |
| |
| pf->sriov_base_vector = sriov_base_vector; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_per_vf_res - check if vectors and queues are available |
| * @pf: pointer to the PF structure |
| * @num_vfs: the number of SR-IOV VFs being configured |
| * |
| * First, determine HW interrupts from common pool. If we allocate fewer VFs, we |
| * get more vectors and can enable more queues per VF. Note that this does not |
| * grab any vectors from the SW pool already allocated. Also note, that all |
| * vector counts include one for each VF's miscellaneous interrupt vector |
| * (i.e. OICR). |
| * |
| * Minimum VFs - 2 vectors, 1 queue pair |
| * Small VFs - 5 vectors, 4 queue pairs |
| * Medium VFs - 17 vectors, 16 queue pairs |
| * |
| * Second, determine number of queue pairs per VF by starting with a pre-defined |
| * maximum each VF supports. If this is not possible, then we adjust based on |
| * queue pairs available on the device. |
| * |
| * Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used |
| * by each VF during VF initialization and reset. |
| */ |
| static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs) |
| { |
| int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); |
| u16 num_msix_per_vf, num_txq, num_rxq, avail_qs; |
| int msix_avail_per_vf, msix_avail_for_sriov; |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| lockdep_assert_held(&pf->vfs.table_lock); |
| |
| if (!num_vfs) |
| return -EINVAL; |
| |
| if (max_valid_res_idx < 0) |
| return -ENOSPC; |
| |
| /* determine MSI-X resources per VF */ |
| msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors - |
| pf->irq_tracker->num_entries; |
| msix_avail_per_vf = msix_avail_for_sriov / num_vfs; |
| if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_MED; |
| } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL; |
| } else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) { |
| num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN; |
| } else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) { |
| num_msix_per_vf = ICE_MIN_INTR_PER_VF; |
| } else { |
| dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n", |
| msix_avail_for_sriov, ICE_MIN_INTR_PER_VF, |
| num_vfs); |
| return -ENOSPC; |
| } |
| |
| num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, |
| ICE_MAX_RSS_QS_PER_VF); |
| avail_qs = ice_get_avail_txq_count(pf) / num_vfs; |
| if (!avail_qs) |
| num_txq = 0; |
| else if (num_txq > avail_qs) |
| num_txq = rounddown_pow_of_two(avail_qs); |
| |
| num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF, |
| ICE_MAX_RSS_QS_PER_VF); |
| avail_qs = ice_get_avail_rxq_count(pf) / num_vfs; |
| if (!avail_qs) |
| num_rxq = 0; |
| else if (num_rxq > avail_qs) |
| num_rxq = rounddown_pow_of_two(avail_qs); |
| |
| if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) { |
| dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n", |
| ICE_MIN_QS_PER_VF, num_vfs); |
| return -ENOSPC; |
| } |
| |
| err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs); |
| if (err) { |
| dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n", |
| num_vfs, err); |
| return err; |
| } |
| |
| /* only allow equal Tx/Rx queue count (i.e. queue pairs) */ |
| pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq); |
| pf->vfs.num_msix_per = num_msix_per_vf; |
| dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n", |
| num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_init_vf_vsi_res - initialize/setup VF VSI resources |
| * @vf: VF to initialize/setup the VSI for |
| * |
| * This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the |
| * VF VSI's broadcast filter and is only used during initial VF creation. |
| */ |
| static int ice_init_vf_vsi_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int err; |
| |
| vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); |
| |
| vsi = ice_vf_vsi_setup(vf); |
| if (!vsi) |
| return -ENOMEM; |
| |
| err = ice_vf_init_host_cfg(vf, vsi); |
| if (err) |
| goto release_vsi; |
| |
| return 0; |
| |
| release_vsi: |
| ice_vf_vsi_release(vf); |
| return err; |
| } |
| |
| /** |
| * ice_start_vfs - start VFs so they are ready to be used by SR-IOV |
| * @pf: PF the VFs are associated with |
| */ |
| static int ice_start_vfs(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| unsigned int bkt, it_cnt; |
| struct ice_vf *vf; |
| int retval; |
| |
| lockdep_assert_held(&pf->vfs.table_lock); |
| |
| it_cnt = 0; |
| ice_for_each_vf(pf, bkt, vf) { |
| vf->vf_ops->clear_reset_trigger(vf); |
| |
| retval = ice_init_vf_vsi_res(vf); |
| if (retval) { |
| dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n", |
| vf->vf_id, retval); |
| goto teardown; |
| } |
| |
| set_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| ice_ena_vf_mappings(vf); |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| it_cnt++; |
| } |
| |
| ice_flush(hw); |
| return 0; |
| |
| teardown: |
| ice_for_each_vf(pf, bkt, vf) { |
| if (it_cnt == 0) |
| break; |
| |
| ice_dis_vf_mappings(vf); |
| ice_vf_vsi_release(vf); |
| it_cnt--; |
| } |
| |
| return retval; |
| } |
| |
| /** |
| * ice_sriov_free_vf - Free VF memory after all references are dropped |
| * @vf: pointer to VF to free |
| * |
| * Called by ice_put_vf through ice_release_vf once the last reference to a VF |
| * structure has been dropped. |
| */ |
| static void ice_sriov_free_vf(struct ice_vf *vf) |
| { |
| mutex_destroy(&vf->cfg_lock); |
| |
| kfree_rcu(vf, rcu); |
| } |
| |
| /** |
| * ice_sriov_clear_reset_state - clears VF Reset status register |
| * @vf: the vf to configure |
| */ |
| static void ice_sriov_clear_reset_state(struct ice_vf *vf) |
| { |
| struct ice_hw *hw = &vf->pf->hw; |
| |
| /* Clear the reset status register so that VF immediately sees that |
| * the device is resetting, even if hardware hasn't yet gotten around |
| * to clearing VFGEN_RSTAT for us. |
| */ |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS); |
| } |
| |
| /** |
| * ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers |
| * @vf: the vf to configure |
| */ |
| static void ice_sriov_clear_mbx_register(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| |
| wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0); |
| wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0); |
| } |
| |
| /** |
| * ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF |
| * @vf: pointer to VF structure |
| * @is_vflr: true if reset occurred due to VFLR |
| * |
| * Trigger and cleanup after a VF reset for a SR-IOV VF. |
| */ |
| static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr) |
| { |
| struct ice_pf *pf = vf->pf; |
| u32 reg, reg_idx, bit_idx; |
| unsigned int vf_abs_id, i; |
| struct device *dev; |
| struct ice_hw *hw; |
| |
| dev = ice_pf_to_dev(pf); |
| hw = &pf->hw; |
| vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* In the case of a VFLR, HW has already reset the VF and we just need |
| * to clean up. Otherwise we must first trigger the reset using the |
| * VFRTRIG register. |
| */ |
| if (!is_vflr) { |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg |= VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| } |
| |
| /* clear the VFLR bit in GLGEN_VFLRSTAT */ |
| reg_idx = (vf_abs_id) / 32; |
| bit_idx = (vf_abs_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| ice_flush(hw); |
| |
| wr32(hw, PF_PCI_CIAA, |
| VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); |
| for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { |
| reg = rd32(hw, PF_PCI_CIAD); |
| /* no transactions pending so stop polling */ |
| if ((reg & VF_TRANS_PENDING_M) == 0) |
| break; |
| |
| dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id); |
| udelay(ICE_PCI_CIAD_WAIT_DELAY_US); |
| } |
| } |
| |
| /** |
| * ice_sriov_poll_reset_status - poll SRIOV VF reset status |
| * @vf: pointer to VF structure |
| * |
| * Returns true when reset is successful, else returns false |
| */ |
| static bool ice_sriov_poll_reset_status(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| unsigned int i; |
| u32 reg; |
| |
| for (i = 0; i < 10; i++) { |
| /* VF reset requires driver to first reset the VF and then |
| * poll the status register to make sure that the reset |
| * completed successfully. |
| */ |
| reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (reg & VPGEN_VFRSTAT_VFRD_M) |
| return true; |
| |
| /* only sleep if the reset is not done */ |
| usleep_range(10, 20); |
| } |
| return false; |
| } |
| |
| /** |
| * ice_sriov_clear_reset_trigger - enable VF to access hardware |
| * @vf: VF to enabled hardware access for |
| */ |
| static void ice_sriov_clear_reset_trigger(struct ice_vf *vf) |
| { |
| struct ice_hw *hw = &vf->pf->hw; |
| u32 reg; |
| |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg &= ~VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| ice_flush(hw); |
| } |
| |
| /** |
| * ice_sriov_create_vsi - Create a new VSI for a VF |
| * @vf: VF to create the VSI for |
| * |
| * This is called by ice_vf_recreate_vsi to create the new VSI after the old |
| * VSI has been released. |
| */ |
| static int ice_sriov_create_vsi(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi; |
| |
| vsi = ice_vf_vsi_setup(vf); |
| if (!vsi) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt |
| * @vf: VF to perform tasks on |
| */ |
| static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf) |
| { |
| ice_ena_vf_mappings(vf); |
| wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| } |
| |
| static const struct ice_vf_ops ice_sriov_vf_ops = { |
| .reset_type = ICE_VF_RESET, |
| .free = ice_sriov_free_vf, |
| .clear_reset_state = ice_sriov_clear_reset_state, |
| .clear_mbx_register = ice_sriov_clear_mbx_register, |
| .trigger_reset_register = ice_sriov_trigger_reset_register, |
| .poll_reset_status = ice_sriov_poll_reset_status, |
| .clear_reset_trigger = ice_sriov_clear_reset_trigger, |
| .irq_close = NULL, |
| .create_vsi = ice_sriov_create_vsi, |
| .post_vsi_rebuild = ice_sriov_post_vsi_rebuild, |
| }; |
| |
| /** |
| * ice_create_vf_entries - Allocate and insert VF entries |
| * @pf: pointer to the PF structure |
| * @num_vfs: the number of VFs to allocate |
| * |
| * Allocate new VF entries and insert them into the hash table. Set some |
| * basic default fields for initializing the new VFs. |
| * |
| * After this function exits, the hash table will have num_vfs entries |
| * inserted. |
| * |
| * Returns 0 on success or an integer error code on failure. |
| */ |
| static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs) |
| { |
| struct ice_vfs *vfs = &pf->vfs; |
| struct ice_vf *vf; |
| u16 vf_id; |
| int err; |
| |
| lockdep_assert_held(&vfs->table_lock); |
| |
| for (vf_id = 0; vf_id < num_vfs; vf_id++) { |
| vf = kzalloc(sizeof(*vf), GFP_KERNEL); |
| if (!vf) { |
| err = -ENOMEM; |
| goto err_free_entries; |
| } |
| kref_init(&vf->refcnt); |
| |
| vf->pf = pf; |
| vf->vf_id = vf_id; |
| |
| /* set sriov vf ops for VFs created during SRIOV flow */ |
| vf->vf_ops = &ice_sriov_vf_ops; |
| |
| ice_initialize_vf_entry(vf); |
| |
| vf->vf_sw_id = pf->first_sw; |
| |
| hash_add_rcu(vfs->table, &vf->entry, vf_id); |
| } |
| |
| return 0; |
| |
| err_free_entries: |
| ice_free_vf_entries(pf); |
| return err; |
| } |
| |
| /** |
| * ice_ena_vfs - enable VFs so they are ready to be used |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to enable |
| */ |
| static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| int ret; |
| |
| /* Disable global interrupt 0 so we don't try to handle the VFLR. */ |
| wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), |
| ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); |
| set_bit(ICE_OICR_INTR_DIS, pf->state); |
| ice_flush(hw); |
| |
| ret = pci_enable_sriov(pf->pdev, num_vfs); |
| if (ret) |
| goto err_unroll_intr; |
| |
| mutex_lock(&pf->vfs.table_lock); |
| |
| ret = ice_set_per_vf_res(pf, num_vfs); |
| if (ret) { |
| dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n", |
| num_vfs, ret); |
| goto err_unroll_sriov; |
| } |
| |
| ret = ice_create_vf_entries(pf, num_vfs); |
| if (ret) { |
| dev_err(dev, "Failed to allocate VF entries for %d VFs\n", |
| num_vfs); |
| goto err_unroll_sriov; |
| } |
| |
| ret = ice_start_vfs(pf); |
| if (ret) { |
| dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret); |
| ret = -EAGAIN; |
| goto err_unroll_vf_entries; |
| } |
| |
| clear_bit(ICE_VF_DIS, pf->state); |
| |
| ret = ice_eswitch_configure(pf); |
| if (ret) { |
| dev_err(dev, "Failed to configure eswitch, err %d\n", ret); |
| goto err_unroll_sriov; |
| } |
| |
| /* rearm global interrupts */ |
| if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state)) |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| |
| mutex_unlock(&pf->vfs.table_lock); |
| |
| return 0; |
| |
| err_unroll_vf_entries: |
| ice_free_vf_entries(pf); |
| err_unroll_sriov: |
| mutex_unlock(&pf->vfs.table_lock); |
| pci_disable_sriov(pf->pdev); |
| err_unroll_intr: |
| /* rearm interrupts here */ |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| clear_bit(ICE_OICR_INTR_DIS, pf->state); |
| return ret; |
| } |
| |
| /** |
| * ice_pci_sriov_ena - Enable or change number of VFs |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * Returns 0 on success and negative on failure |
| */ |
| static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) |
| { |
| int pre_existing_vfs = pci_num_vf(pf->pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| if (pre_existing_vfs && pre_existing_vfs != num_vfs) |
| ice_free_vfs(pf); |
| else if (pre_existing_vfs && pre_existing_vfs == num_vfs) |
| return 0; |
| |
| if (num_vfs > pf->vfs.num_supported) { |
| dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", |
| num_vfs, pf->vfs.num_supported); |
| return -EOPNOTSUPP; |
| } |
| |
| dev_info(dev, "Enabling %d VFs\n", num_vfs); |
| err = ice_ena_vfs(pf, num_vfs); |
| if (err) { |
| dev_err(dev, "Failed to enable SR-IOV: %d\n", err); |
| return err; |
| } |
| |
| set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| return 0; |
| } |
| |
| /** |
| * ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks |
| * @pf: PF to enabled SR-IOV on |
| */ |
| static int ice_check_sriov_allowed(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { |
| dev_err(dev, "This device is not capable of SR-IOV\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (ice_is_safe_mode(pf)) { |
| dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (!ice_pf_state_is_nominal(pf)) { |
| dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_configure - Enable or change number of VFs via sysfs |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate or 0 to free VFs |
| * |
| * This function is called when the user updates the number of VFs in sysfs. On |
| * success return whatever num_vfs was set to by the caller. Return negative on |
| * failure. |
| */ |
| int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| struct ice_pf *pf = pci_get_drvdata(pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| err = ice_check_sriov_allowed(pf); |
| if (err) |
| return err; |
| |
| if (!num_vfs) { |
| if (!pci_vfs_assigned(pdev)) { |
| ice_free_vfs(pf); |
| ice_mbx_deinit_snapshot(&pf->hw); |
| if (pf->lag) |
| ice_enable_lag(pf->lag); |
| return 0; |
| } |
| |
| dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); |
| return -EBUSY; |
| } |
| |
| err = ice_mbx_init_snapshot(&pf->hw, num_vfs); |
| if (err) |
| return err; |
| |
| err = ice_pci_sriov_ena(pf, num_vfs); |
| if (err) { |
| ice_mbx_deinit_snapshot(&pf->hw); |
| return err; |
| } |
| |
| if (pf->lag) |
| ice_disable_lag(pf->lag); |
| return num_vfs; |
| } |
| |
| /** |
| * ice_process_vflr_event - Free VF resources via IRQ calls |
| * @pf: pointer to the PF structure |
| * |
| * called from the VFLR IRQ handler to |
| * free up VF resources and state variables |
| */ |
| void ice_process_vflr_event(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf; |
| unsigned int bkt; |
| u32 reg; |
| |
| if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) || |
| !ice_has_vfs(pf)) |
| return; |
| |
| mutex_lock(&pf->vfs.table_lock); |
| ice_for_each_vf(pf, bkt, vf) { |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32; |
| /* read GLGEN_VFLRSTAT register to find out the flr VFs */ |
| reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); |
| if (reg & BIT(bit_idx)) |
| /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ |
| ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK); |
| } |
| mutex_unlock(&pf->vfs.table_lock); |
| } |
| |
| /** |
| * ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in |
| * @pf: PF used to index all VFs |
| * @pfq: queue index relative to the PF's function space |
| * |
| * If no VF is found who owns the pfq then return NULL, otherwise return a |
| * pointer to the VF who owns the pfq |
| * |
| * If this function returns non-NULL, it acquires a reference count of the VF |
| * structure. The caller is responsible for calling ice_put_vf() to drop this |
| * reference. |
| */ |
| static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq) |
| { |
| struct ice_vf *vf; |
| unsigned int bkt; |
| |
| rcu_read_lock(); |
| ice_for_each_vf_rcu(pf, bkt, vf) { |
| struct ice_vsi *vsi; |
| u16 rxq_idx; |
| |
| vsi = ice_get_vf_vsi(vf); |
| if (!vsi) |
| continue; |
| |
| ice_for_each_rxq(vsi, rxq_idx) |
| if (vsi->rxq_map[rxq_idx] == pfq) { |
| struct ice_vf *found; |
| |
| if (kref_get_unless_zero(&vf->refcnt)) |
| found = vf; |
| else |
| found = NULL; |
| rcu_read_unlock(); |
| return found; |
| } |
| } |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_globalq_to_pfq - convert from global queue index to PF space queue index |
| * @pf: PF used for conversion |
| * @globalq: global queue index used to convert to PF space queue index |
| */ |
| static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq) |
| { |
| return globalq - pf->hw.func_caps.common_cap.rxq_first_id; |
| } |
| |
| /** |
| * ice_vf_lan_overflow_event - handle LAN overflow event for a VF |
| * @pf: PF that the LAN overflow event happened on |
| * @event: structure holding the event information for the LAN overflow event |
| * |
| * Determine if the LAN overflow event was caused by a VF queue. If it was not |
| * caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a |
| * reset on the offending VF. |
| */ |
| void |
| ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event) |
| { |
| u32 gldcb_rtctq, queue; |
| struct ice_vf *vf; |
| |
| gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq); |
| dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq); |
| |
| /* event returns device global Rx queue number */ |
| queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >> |
| GLDCB_RTCTQ_RXQNUM_S; |
| |
| vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue)); |
| if (!vf) |
| return; |
| |
| ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK); |
| ice_put_vf(vf); |
| } |
| |
| /** |
| * ice_set_vf_spoofchk |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ena: flag to enable or disable feature |
| * |
| * Enable or disable VF spoof checking |
| */ |
| int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) |
| { |
| struct ice_netdev_priv *np = netdev_priv(netdev); |
| struct ice_pf *pf = np->vsi->back; |
| struct ice_vsi *vf_vsi; |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| vf_vsi = ice_get_vf_vsi(vf); |
| if (!vf_vsi) { |
| netdev_err(netdev, "VSI %d for VF %d is null\n", |
| vf->lan_vsi_idx, vf->vf_id); |
| ret = -EINVAL; |
| goto out_put_vf; |
| } |
| |
| if (vf_vsi->type != ICE_VSI_VF) { |
| netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n", |
| vf_vsi->type, vf_vsi->vsi_num, vf->vf_id); |
| ret = -ENODEV; |
| goto out_put_vf; |
| } |
| |
| if (ena == vf->spoofchk) { |
| dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF"); |
| ret = 0; |
| goto out_put_vf; |
| } |
| |
| ret = ice_vsi_apply_spoofchk(vf_vsi, ena); |
| if (ret) |
| dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n", |
| ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret); |
| else |
| vf->spoofchk = ena; |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_get_vf_cfg |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ivi: VF configuration structure |
| * |
| * return VF configuration |
| */ |
| int |
| ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| ivi->vf = vf_id; |
| ether_addr_copy(ivi->mac, vf->hw_lan_addr); |
| |
| /* VF configuration for VLAN and applicable QoS */ |
| ivi->vlan = ice_vf_get_port_vlan_id(vf); |
| ivi->qos = ice_vf_get_port_vlan_prio(vf); |
| if (ice_vf_is_port_vlan_ena(vf)) |
| ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf)); |
| |
| ivi->trusted = vf->trusted; |
| ivi->spoofchk = vf->spoofchk; |
| if (!vf->link_forced) |
| ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; |
| else if (vf->link_up) |
| ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; |
| else |
| ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; |
| ivi->max_tx_rate = vf->max_tx_rate; |
| ivi->min_tx_rate = vf->min_tx_rate; |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_set_vf_mac |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @mac: MAC address |
| * |
| * program VF MAC address |
| */ |
| int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| if (is_multicast_ether_addr(mac)) { |
| netdev_err(netdev, "%pM not a valid unicast address\n", mac); |
| return -EINVAL; |
| } |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| /* nothing left to do, unicast MAC already set */ |
| if (ether_addr_equal(vf->dev_lan_addr, mac) && |
| ether_addr_equal(vf->hw_lan_addr, mac)) { |
| ret = 0; |
| goto out_put_vf; |
| } |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| mutex_lock(&vf->cfg_lock); |
| |
| /* VF is notified of its new MAC via the PF's response to the |
| * VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset |
| */ |
| ether_addr_copy(vf->dev_lan_addr, mac); |
| ether_addr_copy(vf->hw_lan_addr, mac); |
| if (is_zero_ether_addr(mac)) { |
| /* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */ |
| vf->pf_set_mac = false; |
| netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n", |
| vf->vf_id); |
| } else { |
| /* PF will add MAC rule for the VF */ |
| vf->pf_set_mac = true; |
| netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n", |
| mac, vf_id); |
| } |
| |
| ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); |
| mutex_unlock(&vf->cfg_lock); |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_set_vf_trust |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @trusted: Boolean value to enable/disable trusted VF |
| * |
| * Enable or disable a given VF as trusted |
| */ |
| int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| if (ice_is_eswitch_mode_switchdev(pf)) { |
| dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| /* Check if already trusted */ |
| if (trusted == vf->trusted) { |
| ret = 0; |
| goto out_put_vf; |
| } |
| |
| mutex_lock(&vf->cfg_lock); |
| |
| vf->trusted = trusted; |
| ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); |
| dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n", |
| vf_id, trusted ? "" : "un"); |
| |
| mutex_unlock(&vf->cfg_lock); |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_set_vf_link_state |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @link_state: required link state |
| * |
| * Set VF's link state, irrespective of physical link state status |
| */ |
| int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret; |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| switch (link_state) { |
| case IFLA_VF_LINK_STATE_AUTO: |
| vf->link_forced = false; |
| break; |
| case IFLA_VF_LINK_STATE_ENABLE: |
| vf->link_forced = true; |
| vf->link_up = true; |
| break; |
| case IFLA_VF_LINK_STATE_DISABLE: |
| vf->link_forced = true; |
| vf->link_up = false; |
| break; |
| default: |
| ret = -EINVAL; |
| goto out_put_vf; |
| } |
| |
| ice_vc_notify_vf_link_state(vf); |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs |
| * @pf: PF associated with VFs |
| */ |
| static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf) |
| { |
| struct ice_vf *vf; |
| unsigned int bkt; |
| int rate = 0; |
| |
| rcu_read_lock(); |
| ice_for_each_vf_rcu(pf, bkt, vf) |
| rate += vf->min_tx_rate; |
| rcu_read_unlock(); |
| |
| return rate; |
| } |
| |
| /** |
| * ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription |
| * @vf: VF trying to configure min_tx_rate |
| * @min_tx_rate: min Tx rate in Mbps |
| * |
| * Check if the min_tx_rate being passed in will cause oversubscription of total |
| * min_tx_rate based on the current link speed and all other VFs configured |
| * min_tx_rate |
| * |
| * Return true if the passed min_tx_rate would cause oversubscription, else |
| * return false |
| */ |
| static bool |
| ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate) |
| { |
| struct ice_vsi *vsi = ice_get_vf_vsi(vf); |
| int all_vfs_min_tx_rate; |
| int link_speed_mbps; |
| |
| if (WARN_ON(!vsi)) |
| return false; |
| |
| link_speed_mbps = ice_get_link_speed_mbps(vsi); |
| all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf); |
| |
| /* this VF's previous rate is being overwritten */ |
| all_vfs_min_tx_rate -= vf->min_tx_rate; |
| |
| if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) { |
| dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n", |
| min_tx_rate, vf->vf_id, |
| all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps, |
| link_speed_mbps); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * ice_set_vf_bw - set min/max VF bandwidth |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @min_tx_rate: Minimum Tx rate in Mbps |
| * @max_tx_rate: Maximum Tx rate in Mbps |
| */ |
| int |
| ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate, |
| int max_tx_rate) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| vsi = ice_get_vf_vsi(vf); |
| if (!vsi) { |
| ret = -EINVAL; |
| goto out_put_vf; |
| } |
| |
| if (min_tx_rate && ice_is_dcb_active(pf)) { |
| dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n"); |
| ret = -EOPNOTSUPP; |
| goto out_put_vf; |
| } |
| |
| if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) { |
| ret = -EINVAL; |
| goto out_put_vf; |
| } |
| |
| if (vf->min_tx_rate != (unsigned int)min_tx_rate) { |
| ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000); |
| if (ret) { |
| dev_err(dev, "Unable to set min-tx-rate for VF %d\n", |
| vf->vf_id); |
| goto out_put_vf; |
| } |
| |
| vf->min_tx_rate = min_tx_rate; |
| } |
| |
| if (vf->max_tx_rate != (unsigned int)max_tx_rate) { |
| ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000); |
| if (ret) { |
| dev_err(dev, "Unable to set max-tx-rate for VF %d\n", |
| vf->vf_id); |
| goto out_put_vf; |
| } |
| |
| vf->max_tx_rate = max_tx_rate; |
| } |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_get_vf_stats - populate some stats for the VF |
| * @netdev: the netdev of the PF |
| * @vf_id: the host OS identifier (0-255) |
| * @vf_stats: pointer to the OS memory to be initialized |
| */ |
| int ice_get_vf_stats(struct net_device *netdev, int vf_id, |
| struct ifla_vf_stats *vf_stats) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_eth_stats *stats; |
| struct ice_vsi *vsi; |
| struct ice_vf *vf; |
| int ret; |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| vsi = ice_get_vf_vsi(vf); |
| if (!vsi) { |
| ret = -EINVAL; |
| goto out_put_vf; |
| } |
| |
| ice_update_eth_stats(vsi); |
| stats = &vsi->eth_stats; |
| |
| memset(vf_stats, 0, sizeof(*vf_stats)); |
| |
| vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + |
| stats->rx_multicast; |
| vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + |
| stats->tx_multicast; |
| vf_stats->rx_bytes = stats->rx_bytes; |
| vf_stats->tx_bytes = stats->tx_bytes; |
| vf_stats->broadcast = stats->rx_broadcast; |
| vf_stats->multicast = stats->rx_multicast; |
| vf_stats->rx_dropped = stats->rx_discards; |
| vf_stats->tx_dropped = stats->tx_discards; |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported |
| * @hw: hardware structure used to check the VLAN mode |
| * @vlan_proto: VLAN TPID being checked |
| * |
| * If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q |
| * and ETH_P_8021AD are supported. If the device is configured in Single VLAN |
| * Mode (SVM), then only ETH_P_8021Q is supported. |
| */ |
| static bool |
| ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto) |
| { |
| bool is_supported = false; |
| |
| switch (vlan_proto) { |
| case ETH_P_8021Q: |
| is_supported = true; |
| break; |
| case ETH_P_8021AD: |
| if (ice_is_dvm_ena(hw)) |
| is_supported = true; |
| break; |
| } |
| |
| return is_supported; |
| } |
| |
| /** |
| * ice_set_vf_port_vlan |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @vlan_id: VLAN ID being set |
| * @qos: priority setting |
| * @vlan_proto: VLAN protocol |
| * |
| * program VF Port VLAN ID and/or QoS |
| */ |
| int |
| ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, |
| __be16 vlan_proto) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| u16 local_vlan_proto = ntohs(vlan_proto); |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| if (vlan_id >= VLAN_N_VID || qos > 7) { |
| dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n", |
| vf_id, vlan_id, qos); |
| return -EINVAL; |
| } |
| |
| if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) { |
| dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n", |
| local_vlan_proto); |
| return -EPROTONOSUPPORT; |
| } |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return -EINVAL; |
| |
| ret = ice_check_vf_ready_for_cfg(vf); |
| if (ret) |
| goto out_put_vf; |
| |
| if (ice_vf_get_port_vlan_prio(vf) == qos && |
| ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto && |
| ice_vf_get_port_vlan_id(vf) == vlan_id) { |
| /* duplicate request, so just return success */ |
| dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n", |
| vlan_id, qos, local_vlan_proto); |
| ret = 0; |
| goto out_put_vf; |
| } |
| |
| mutex_lock(&vf->cfg_lock); |
| |
| vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos); |
| if (ice_vf_is_port_vlan_ena(vf)) |
| dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n", |
| vlan_id, qos, local_vlan_proto, vf_id); |
| else |
| dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id); |
| |
| ice_reset_vf(vf, ICE_VF_RESET_NOTIFY); |
| mutex_unlock(&vf->cfg_lock); |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event |
| * @vf: pointer to the VF structure |
| */ |
| void ice_print_vf_rx_mdd_event(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct device *dev; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n", |
| vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id, |
| vf->dev_lan_addr, |
| test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags) |
| ? "on" : "off"); |
| } |
| |
| /** |
| * ice_print_vfs_mdd_events - print VFs malicious driver detect event |
| * @pf: pointer to the PF structure |
| * |
| * Called from ice_handle_mdd_event to rate limit and print VFs MDD events. |
| */ |
| void ice_print_vfs_mdd_events(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf; |
| unsigned int bkt; |
| |
| /* check that there are pending MDD events to print */ |
| if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state)) |
| return; |
| |
| /* VF MDD event logs are rate limited to one second intervals */ |
| if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1)) |
| return; |
| |
| pf->vfs.last_printed_mdd_jiffies = jiffies; |
| |
| mutex_lock(&pf->vfs.table_lock); |
| ice_for_each_vf(pf, bkt, vf) { |
| /* only print Rx MDD event message if there are new events */ |
| if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) { |
| vf->mdd_rx_events.last_printed = |
| vf->mdd_rx_events.count; |
| ice_print_vf_rx_mdd_event(vf); |
| } |
| |
| /* only print Tx MDD event message if there are new events */ |
| if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) { |
| vf->mdd_tx_events.last_printed = |
| vf->mdd_tx_events.count; |
| |
| dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n", |
| vf->mdd_tx_events.count, hw->pf_id, vf->vf_id, |
| vf->dev_lan_addr); |
| } |
| } |
| mutex_unlock(&pf->vfs.table_lock); |
| } |
| |
| /** |
| * ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR |
| * @pdev: pointer to a pci_dev structure |
| * |
| * Called when recovering from a PF FLR to restore interrupt capability to |
| * the VFs. |
| */ |
| void ice_restore_all_vfs_msi_state(struct pci_dev *pdev) |
| { |
| u16 vf_id; |
| int pos; |
| |
| if (!pci_num_vf(pdev)) |
| return; |
| |
| pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV); |
| if (pos) { |
| struct pci_dev *vfdev; |
| |
| pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, |
| &vf_id); |
| vfdev = pci_get_device(pdev->vendor, vf_id, NULL); |
| while (vfdev) { |
| if (vfdev->is_virtfn && vfdev->physfn == pdev) |
| pci_restore_msi_state(vfdev); |
| vfdev = pci_get_device(pdev->vendor, vf_id, |
| vfdev); |
| } |
| } |
| } |
| |
| /** |
| * ice_is_malicious_vf - helper function to detect a malicious VF |
| * @pf: ptr to struct ice_pf |
| * @event: pointer to the AQ event |
| * @num_msg_proc: the number of messages processed so far |
| * @num_msg_pending: the number of messages peinding in admin queue |
| */ |
| bool |
| ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event, |
| u16 num_msg_proc, u16 num_msg_pending) |
| { |
| s16 vf_id = le16_to_cpu(event->desc.retval); |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_mbx_data mbxdata; |
| bool malvf = false; |
| struct ice_vf *vf; |
| int status; |
| |
| vf = ice_get_vf_by_id(pf, vf_id); |
| if (!vf) |
| return false; |
| |
| if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) |
| goto out_put_vf; |
| |
| mbxdata.num_msg_proc = num_msg_proc; |
| mbxdata.num_pending_arq = num_msg_pending; |
| mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries; |
| #define ICE_MBX_OVERFLOW_WATERMARK 64 |
| mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK; |
| |
| /* check to see if we have a malicious VF */ |
| status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf); |
| if (status) |
| goto out_put_vf; |
| |
| if (malvf) { |
| bool report_vf = false; |
| |
| /* if the VF is malicious and we haven't let the user |
| * know about it, then let them know now |
| */ |
| status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs, |
| ICE_MAX_SRIOV_VFS, vf_id, |
| &report_vf); |
| if (status) |
| dev_dbg(dev, "Error reporting malicious VF\n"); |
| |
| if (report_vf) { |
| struct ice_vsi *pf_vsi = ice_get_main_vsi(pf); |
| |
| if (pf_vsi) |
| dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n", |
| &vf->dev_lan_addr[0], |
| pf_vsi->netdev->dev_addr); |
| } |
| } |
| |
| out_put_vf: |
| ice_put_vf(vf); |
| return malvf; |
| } |