blob: 0cc05e54a78154307bf7d9ed32f8ce6e4c31be35 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_vf_lib_private.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_dcb_lib.h"
#include "ice_flow.h"
#include "ice_eswitch.h"
#include "ice_virtchnl_allowlist.h"
#include "ice_flex_pipe.h"
#include "ice_vf_vsi_vlan_ops.h"
#include "ice_vlan.h"
/**
* ice_free_vf_entries - Free all VF entries from the hash table
* @pf: pointer to the PF structure
*
* Iterate over the VF hash table, removing and releasing all VF entries.
* Called during VF teardown or as cleanup during failed VF initialization.
*/
static void ice_free_vf_entries(struct ice_pf *pf)
{
struct ice_vfs *vfs = &pf->vfs;
struct hlist_node *tmp;
struct ice_vf *vf;
unsigned int bkt;
/* Remove all VFs from the hash table and release their main
* reference. Once all references to the VF are dropped, ice_put_vf()
* will call ice_release_vf which will remove the VF memory.
*/
lockdep_assert_held(&vfs->table_lock);
hash_for_each_safe(vfs->table, bkt, tmp, vf, entry) {
hash_del_rcu(&vf->entry);
ice_put_vf(vf);
}
}
/**
* ice_free_vf_res - Free a VF's resources
* @vf: pointer to the VF info
*/
static void ice_free_vf_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
int i, last_vector_idx;
/* First, disable VF's configuration API to prevent OS from
* accessing the VF's VSI after it's freed or invalidated.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
ice_vf_fdir_exit(vf);
/* free VF control VSI */
if (vf->ctrl_vsi_idx != ICE_NO_VSI)
ice_vf_ctrl_vsi_release(vf);
/* free VSI and disconnect it from the parent uplink */
if (vf->lan_vsi_idx != ICE_NO_VSI) {
ice_vf_vsi_release(vf);
vf->num_mac = 0;
}
last_vector_idx = vf->first_vector_idx + pf->vfs.num_msix_per - 1;
/* clear VF MDD event information */
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
/* Disable interrupts so that VF starts in a known state */
for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
ice_flush(&pf->hw);
}
/* reset some of the state variables keeping track of the resources */
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}
/**
* ice_dis_vf_mappings
* @vf: pointer to the VF structure
*/
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
int first, last, v;
struct ice_hw *hw;
hw = &pf->hw;
vsi = ice_get_vf_vsi(vf);
if (WARN_ON(!vsi))
return;
dev = ice_pf_to_dev(pf);
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
first = vf->first_vector_idx;
last = first + pf->vfs.num_msix_per - 1;
for (v = first; v <= last; v++) {
u32 reg;
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
GLINT_VECT2FUNC_IS_PF_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
else
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
else
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
}
/**
* ice_sriov_free_msix_res - Reset/free any used MSIX resources
* @pf: pointer to the PF structure
*
* Since no MSIX entries are taken from the pf->irq_tracker then just clear
* the pf->sriov_base_vector.
*
* Returns 0 on success, and -EINVAL on error.
*/
static int ice_sriov_free_msix_res(struct ice_pf *pf)
{
struct ice_res_tracker *res;
if (!pf)
return -EINVAL;
res = pf->irq_tracker;
if (!res)
return -EINVAL;
/* give back irq_tracker resources used */
WARN_ON(pf->sriov_base_vector < res->num_entries);
pf->sriov_base_vector = 0;
return 0;
}
/**
* ice_free_vfs - Free all VFs
* @pf: pointer to the PF structure
*/
void ice_free_vfs(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_vfs *vfs = &pf->vfs;
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
if (!ice_has_vfs(pf))
return;
while (test_and_set_bit(ICE_VF_DIS, pf->state))
usleep_range(1000, 2000);
/* Disable IOV before freeing resources. This lets any VF drivers
* running in the host get themselves cleaned up before we yank
* the carpet out from underneath their feet.
*/
if (!pci_vfs_assigned(pf->pdev))
pci_disable_sriov(pf->pdev);
else
dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
mutex_lock(&vfs->table_lock);
ice_eswitch_release(pf);
ice_for_each_vf(pf, bkt, vf) {
mutex_lock(&vf->cfg_lock);
ice_dis_vf_qs(vf);
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
/* disable VF qp mappings and set VF disable state */
ice_dis_vf_mappings(vf);
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
ice_free_vf_res(vf);
}
if (!pci_vfs_assigned(pf->pdev)) {
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
}
/* clear malicious info since the VF is getting released */
if (ice_mbx_clear_malvf(&hw->mbx_snapshot, pf->vfs.malvfs,
ICE_MAX_SRIOV_VFS, vf->vf_id))
dev_dbg(dev, "failed to clear malicious VF state for VF %u\n",
vf->vf_id);
mutex_unlock(&vf->cfg_lock);
}
if (ice_sriov_free_msix_res(pf))
dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
vfs->num_qps_per = 0;
ice_free_vf_entries(pf);
mutex_unlock(&vfs->table_lock);
clear_bit(ICE_VF_DIS, pf->state);
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}
/**
* ice_vf_vsi_setup - Set up a VF VSI
* @vf: VF to setup VSI for
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
{
struct ice_vsi_cfg_params params = {};
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
params.type = ICE_VSI_VF;
params.pi = ice_vf_get_port_info(vf);
params.vf = vf;
params.flags = ICE_VSI_FLAG_INIT;
vsi = ice_vsi_setup(pf, &params);
if (!vsi) {
dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
ice_vf_invalidate_vsi(vf);
return NULL;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
return vsi;
}
/**
* ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
* @pf: pointer to PF structure
* @vf: pointer to VF that the first MSIX vector index is being calculated for
*
* This returns the first MSIX vector index in PF space that is used by this VF.
* This index is used when accessing PF relative registers such as
* GLINT_VECT2FUNC and GLINT_DYN_CTL.
* This will always be the OICR index in the AVF driver so any functionality
* using vf->first_vector_idx for queue configuration will have to increment by
* 1 to avoid meddling with the OICR index.
*/
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
{
return pf->sriov_base_vector + vf->vf_id * pf->vfs.num_msix_per;
}
/**
* ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
* @vf: VF to enable MSIX mappings for
*
* Some of the registers need to be indexed/configured using hardware global
* device values and other registers need 0-based values, which represent PF
* based values.
*/
static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
{
int device_based_first_msix, device_based_last_msix;
int pf_based_first_msix, pf_based_last_msix, v;
struct ice_pf *pf = vf->pf;
int device_based_vf_id;
struct ice_hw *hw;
u32 reg;
hw = &pf->hw;
pf_based_first_msix = vf->first_vector_idx;
pf_based_last_msix = (pf_based_first_msix + pf->vfs.num_msix_per) - 1;
device_based_first_msix = pf_based_first_msix +
pf->hw.func_caps.common_cap.msix_vector_first_id;
device_based_last_msix =
(device_based_first_msix + pf->vfs.num_msix_per) - 1;
device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
VPINT_ALLOC_FIRST_M) |
((device_based_last_msix << VPINT_ALLOC_LAST_S) &
VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
& VPINT_ALLOC_PCI_FIRST_M) |
((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
/* map the interrupts to its functions */
for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
GLINT_VECT2FUNC_VF_NUM_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
/* Map mailbox interrupt to VF MSI-X vector 0 */
wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
}
/**
* ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
* @vf: VF to enable the mappings for
* @max_txq: max Tx queues allowed on the VF's VSI
* @max_rxq: max Rx queues allowed on the VF's VSI
*/
static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
{
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
if (WARN_ON(!vsi))
return;
/* set regardless of mapping mode */
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
/* VF Tx queues allocation */
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Tx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
VPLAN_TX_QBASE_VFFIRSTQ_M) |
(((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
VPLAN_TX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
} else {
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
}
/* set regardless of mapping mode */
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
/* VF Rx queues allocation */
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Rx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
VPLAN_RX_QBASE_VFFIRSTQ_M) |
(((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
VPLAN_RX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
} else {
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
}
}
/**
* ice_ena_vf_mappings - enable VF MSIX and queue mapping
* @vf: pointer to the VF structure
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
if (WARN_ON(!vsi))
return;
ice_ena_vf_msix_mappings(vf);
ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
}
/**
* ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
* @vf: VF to calculate the register index for
* @q_vector: a q_vector associated to the VF
*/
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
{
struct ice_pf *pf;
if (!vf || !q_vector)
return -EINVAL;
pf = vf->pf;
/* always add one to account for the OICR being the first MSIX */
return pf->sriov_base_vector + pf->vfs.num_msix_per * vf->vf_id +
q_vector->v_idx + 1;
}
/**
* ice_get_max_valid_res_idx - Get the max valid resource index
* @res: pointer to the resource to find the max valid index for
*
* Start from the end of the ice_res_tracker and return right when we find the
* first res->list entry with the ICE_RES_VALID_BIT set. This function is only
* valid for SR-IOV because it is the only consumer that manipulates the
* res->end and this is always called when res->end is set to res->num_entries.
*/
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
{
int i;
if (!res)
return -EINVAL;
for (i = res->num_entries - 1; i >= 0; i--)
if (res->list[i] & ICE_RES_VALID_BIT)
return i;
return 0;
}
/**
* ice_sriov_set_msix_res - Set any used MSIX resources
* @pf: pointer to PF structure
* @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
*
* This function allows SR-IOV resources to be taken from the end of the PF's
* allowed HW MSIX vectors so that the irq_tracker will not be affected. We
* just set the pf->sriov_base_vector and return success.
*
* If there are not enough resources available, return an error. This should
* always be caught by ice_set_per_vf_res().
*
* Return 0 on success, and -EINVAL when there are not enough MSIX vectors
* in the PF's space available for SR-IOV.
*/
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
{
u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
int vectors_used = pf->irq_tracker->num_entries;
int sriov_base_vector;
sriov_base_vector = total_vectors - num_msix_needed;
/* make sure we only grab irq_tracker entries from the list end and
* that we have enough available MSIX vectors
*/
if (sriov_base_vector < vectors_used)
return -EINVAL;
pf->sriov_base_vector = sriov_base_vector;
return 0;
}
/**
* ice_set_per_vf_res - check if vectors and queues are available
* @pf: pointer to the PF structure
* @num_vfs: the number of SR-IOV VFs being configured
*
* First, determine HW interrupts from common pool. If we allocate fewer VFs, we
* get more vectors and can enable more queues per VF. Note that this does not
* grab any vectors from the SW pool already allocated. Also note, that all
* vector counts include one for each VF's miscellaneous interrupt vector
* (i.e. OICR).
*
* Minimum VFs - 2 vectors, 1 queue pair
* Small VFs - 5 vectors, 4 queue pairs
* Medium VFs - 17 vectors, 16 queue pairs
*
* Second, determine number of queue pairs per VF by starting with a pre-defined
* maximum each VF supports. If this is not possible, then we adjust based on
* queue pairs available on the device.
*
* Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
* by each VF during VF initialization and reset.
*/
static int ice_set_per_vf_res(struct ice_pf *pf, u16 num_vfs)
{
int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
u16 num_msix_per_vf, num_txq, num_rxq, avail_qs;
int msix_avail_per_vf, msix_avail_for_sriov;
struct device *dev = ice_pf_to_dev(pf);
int err;
lockdep_assert_held(&pf->vfs.table_lock);
if (!num_vfs)
return -EINVAL;
if (max_valid_res_idx < 0)
return -ENOSPC;
/* determine MSI-X resources per VF */
msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
pf->irq_tracker->num_entries;
msix_avail_per_vf = msix_avail_for_sriov / num_vfs;
if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
num_msix_per_vf = ICE_MIN_INTR_PER_VF;
} else {
dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
num_vfs);
return -ENOSPC;
}
num_txq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
ICE_MAX_RSS_QS_PER_VF);
avail_qs = ice_get_avail_txq_count(pf) / num_vfs;
if (!avail_qs)
num_txq = 0;
else if (num_txq > avail_qs)
num_txq = rounddown_pow_of_two(avail_qs);
num_rxq = min_t(u16, num_msix_per_vf - ICE_NONQ_VECS_VF,
ICE_MAX_RSS_QS_PER_VF);
avail_qs = ice_get_avail_rxq_count(pf) / num_vfs;
if (!avail_qs)
num_rxq = 0;
else if (num_rxq > avail_qs)
num_rxq = rounddown_pow_of_two(avail_qs);
if (num_txq < ICE_MIN_QS_PER_VF || num_rxq < ICE_MIN_QS_PER_VF) {
dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
ICE_MIN_QS_PER_VF, num_vfs);
return -ENOSPC;
}
err = ice_sriov_set_msix_res(pf, num_msix_per_vf * num_vfs);
if (err) {
dev_err(dev, "Unable to set MSI-X resources for %d VFs, err %d\n",
num_vfs, err);
return err;
}
/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
pf->vfs.num_qps_per = min_t(int, num_txq, num_rxq);
pf->vfs.num_msix_per = num_msix_per_vf;
dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
num_vfs, pf->vfs.num_msix_per, pf->vfs.num_qps_per);
return 0;
}
/**
* ice_init_vf_vsi_res - initialize/setup VF VSI resources
* @vf: VF to initialize/setup the VSI for
*
* This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
* VF VSI's broadcast filter and is only used during initial VF creation.
*/
static int ice_init_vf_vsi_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int err;
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
vsi = ice_vf_vsi_setup(vf);
if (!vsi)
return -ENOMEM;
err = ice_vf_init_host_cfg(vf, vsi);
if (err)
goto release_vsi;
return 0;
release_vsi:
ice_vf_vsi_release(vf);
return err;
}
/**
* ice_start_vfs - start VFs so they are ready to be used by SR-IOV
* @pf: PF the VFs are associated with
*/
static int ice_start_vfs(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
unsigned int bkt, it_cnt;
struct ice_vf *vf;
int retval;
lockdep_assert_held(&pf->vfs.table_lock);
it_cnt = 0;
ice_for_each_vf(pf, bkt, vf) {
vf->vf_ops->clear_reset_trigger(vf);
retval = ice_init_vf_vsi_res(vf);
if (retval) {
dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
vf->vf_id, retval);
goto teardown;
}
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
ice_ena_vf_mappings(vf);
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
it_cnt++;
}
ice_flush(hw);
return 0;
teardown:
ice_for_each_vf(pf, bkt, vf) {
if (it_cnt == 0)
break;
ice_dis_vf_mappings(vf);
ice_vf_vsi_release(vf);
it_cnt--;
}
return retval;
}
/**
* ice_sriov_free_vf - Free VF memory after all references are dropped
* @vf: pointer to VF to free
*
* Called by ice_put_vf through ice_release_vf once the last reference to a VF
* structure has been dropped.
*/
static void ice_sriov_free_vf(struct ice_vf *vf)
{
mutex_destroy(&vf->cfg_lock);
kfree_rcu(vf, rcu);
}
/**
* ice_sriov_clear_reset_state - clears VF Reset status register
* @vf: the vf to configure
*/
static void ice_sriov_clear_reset_state(struct ice_vf *vf)
{
struct ice_hw *hw = &vf->pf->hw;
/* Clear the reset status register so that VF immediately sees that
* the device is resetting, even if hardware hasn't yet gotten around
* to clearing VFGEN_RSTAT for us.
*/
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_INPROGRESS);
}
/**
* ice_sriov_clear_mbx_register - clears SRIOV VF's mailbox registers
* @vf: the vf to configure
*/
static void ice_sriov_clear_mbx_register(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
wr32(&pf->hw, VF_MBX_ARQLEN(vf->vf_id), 0);
wr32(&pf->hw, VF_MBX_ATQLEN(vf->vf_id), 0);
}
/**
* ice_sriov_trigger_reset_register - trigger VF reset for SRIOV VF
* @vf: pointer to VF structure
* @is_vflr: true if reset occurred due to VFLR
*
* Trigger and cleanup after a VF reset for a SR-IOV VF.
*/
static void ice_sriov_trigger_reset_register(struct ice_vf *vf, bool is_vflr)
{
struct ice_pf *pf = vf->pf;
u32 reg, reg_idx, bit_idx;
unsigned int vf_abs_id, i;
struct device *dev;
struct ice_hw *hw;
dev = ice_pf_to_dev(pf);
hw = &pf->hw;
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
/* In the case of a VFLR, HW has already reset the VF and we just need
* to clean up. Otherwise we must first trigger the reset using the
* VFRTRIG register.
*/
if (!is_vflr) {
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg |= VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
}
/* clear the VFLR bit in GLGEN_VFLRSTAT */
reg_idx = (vf_abs_id) / 32;
bit_idx = (vf_abs_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
ice_flush(hw);
wr32(hw, PF_PCI_CIAA,
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
reg = rd32(hw, PF_PCI_CIAD);
/* no transactions pending so stop polling */
if ((reg & VF_TRANS_PENDING_M) == 0)
break;
dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
}
}
/**
* ice_sriov_poll_reset_status - poll SRIOV VF reset status
* @vf: pointer to VF structure
*
* Returns true when reset is successful, else returns false
*/
static bool ice_sriov_poll_reset_status(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
unsigned int i;
u32 reg;
for (i = 0; i < 10; i++) {
/* VF reset requires driver to first reset the VF and then
* poll the status register to make sure that the reset
* completed successfully.
*/
reg = rd32(&pf->hw, VPGEN_VFRSTAT(vf->vf_id));
if (reg & VPGEN_VFRSTAT_VFRD_M)
return true;
/* only sleep if the reset is not done */
usleep_range(10, 20);
}
return false;
}
/**
* ice_sriov_clear_reset_trigger - enable VF to access hardware
* @vf: VF to enabled hardware access for
*/
static void ice_sriov_clear_reset_trigger(struct ice_vf *vf)
{
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
ice_flush(hw);
}
/**
* ice_sriov_create_vsi - Create a new VSI for a VF
* @vf: VF to create the VSI for
*
* This is called by ice_vf_recreate_vsi to create the new VSI after the old
* VSI has been released.
*/
static int ice_sriov_create_vsi(struct ice_vf *vf)
{
struct ice_vsi *vsi;
vsi = ice_vf_vsi_setup(vf);
if (!vsi)
return -ENOMEM;
return 0;
}
/**
* ice_sriov_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
* @vf: VF to perform tasks on
*/
static void ice_sriov_post_vsi_rebuild(struct ice_vf *vf)
{
ice_ena_vf_mappings(vf);
wr32(&vf->pf->hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
static const struct ice_vf_ops ice_sriov_vf_ops = {
.reset_type = ICE_VF_RESET,
.free = ice_sriov_free_vf,
.clear_reset_state = ice_sriov_clear_reset_state,
.clear_mbx_register = ice_sriov_clear_mbx_register,
.trigger_reset_register = ice_sriov_trigger_reset_register,
.poll_reset_status = ice_sriov_poll_reset_status,
.clear_reset_trigger = ice_sriov_clear_reset_trigger,
.irq_close = NULL,
.create_vsi = ice_sriov_create_vsi,
.post_vsi_rebuild = ice_sriov_post_vsi_rebuild,
};
/**
* ice_create_vf_entries - Allocate and insert VF entries
* @pf: pointer to the PF structure
* @num_vfs: the number of VFs to allocate
*
* Allocate new VF entries and insert them into the hash table. Set some
* basic default fields for initializing the new VFs.
*
* After this function exits, the hash table will have num_vfs entries
* inserted.
*
* Returns 0 on success or an integer error code on failure.
*/
static int ice_create_vf_entries(struct ice_pf *pf, u16 num_vfs)
{
struct ice_vfs *vfs = &pf->vfs;
struct ice_vf *vf;
u16 vf_id;
int err;
lockdep_assert_held(&vfs->table_lock);
for (vf_id = 0; vf_id < num_vfs; vf_id++) {
vf = kzalloc(sizeof(*vf), GFP_KERNEL);
if (!vf) {
err = -ENOMEM;
goto err_free_entries;
}
kref_init(&vf->refcnt);
vf->pf = pf;
vf->vf_id = vf_id;
/* set sriov vf ops for VFs created during SRIOV flow */
vf->vf_ops = &ice_sriov_vf_ops;
ice_initialize_vf_entry(vf);
vf->vf_sw_id = pf->first_sw;
hash_add_rcu(vfs->table, &vf->entry, vf_id);
}
return 0;
err_free_entries:
ice_free_vf_entries(pf);
return err;
}
/**
* ice_ena_vfs - enable VFs so they are ready to be used
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to enable
*/
static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int ret;
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
set_bit(ICE_OICR_INTR_DIS, pf->state);
ice_flush(hw);
ret = pci_enable_sriov(pf->pdev, num_vfs);
if (ret)
goto err_unroll_intr;
mutex_lock(&pf->vfs.table_lock);
ret = ice_set_per_vf_res(pf, num_vfs);
if (ret) {
dev_err(dev, "Not enough resources for %d VFs, err %d. Try with fewer number of VFs\n",
num_vfs, ret);
goto err_unroll_sriov;
}
ret = ice_create_vf_entries(pf, num_vfs);
if (ret) {
dev_err(dev, "Failed to allocate VF entries for %d VFs\n",
num_vfs);
goto err_unroll_sriov;
}
ret = ice_start_vfs(pf);
if (ret) {
dev_err(dev, "Failed to start %d VFs, err %d\n", num_vfs, ret);
ret = -EAGAIN;
goto err_unroll_vf_entries;
}
clear_bit(ICE_VF_DIS, pf->state);
ret = ice_eswitch_configure(pf);
if (ret) {
dev_err(dev, "Failed to configure eswitch, err %d\n", ret);
goto err_unroll_sriov;
}
/* rearm global interrupts */
if (test_and_clear_bit(ICE_OICR_INTR_DIS, pf->state))
ice_irq_dynamic_ena(hw, NULL, NULL);
mutex_unlock(&pf->vfs.table_lock);
return 0;
err_unroll_vf_entries:
ice_free_vf_entries(pf);
err_unroll_sriov:
mutex_unlock(&pf->vfs.table_lock);
pci_disable_sriov(pf->pdev);
err_unroll_intr:
/* rearm interrupts here */
ice_irq_dynamic_ena(hw, NULL, NULL);
clear_bit(ICE_OICR_INTR_DIS, pf->state);
return ret;
}
/**
* ice_pci_sriov_ena - Enable or change number of VFs
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to allocate
*
* Returns 0 on success and negative on failure
*/
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
int pre_existing_vfs = pci_num_vf(pf->pdev);
struct device *dev = ice_pf_to_dev(pf);
int err;
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
ice_free_vfs(pf);
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
return 0;
if (num_vfs > pf->vfs.num_supported) {
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
num_vfs, pf->vfs.num_supported);
return -EOPNOTSUPP;
}
dev_info(dev, "Enabling %d VFs\n", num_vfs);
err = ice_ena_vfs(pf, num_vfs);
if (err) {
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
return err;
}
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
return 0;
}
/**
* ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
* @pf: PF to enabled SR-IOV on
*/
static int ice_check_sriov_allowed(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -EOPNOTSUPP;
}
if (ice_is_safe_mode(pf)) {
dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
return -EOPNOTSUPP;
}
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
return 0;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate or 0 to free VFs
*
* This function is called when the user updates the number of VFs in sysfs. On
* success return whatever num_vfs was set to by the caller. Return negative on
* failure.
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
struct device *dev = ice_pf_to_dev(pf);
int err;
err = ice_check_sriov_allowed(pf);
if (err)
return err;
if (!num_vfs) {
if (!pci_vfs_assigned(pdev)) {
ice_free_vfs(pf);
ice_mbx_deinit_snapshot(&pf->hw);
if (pf->lag)
ice_enable_lag(pf->lag);
return 0;
}
dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
return -EBUSY;
}
err = ice_mbx_init_snapshot(&pf->hw, num_vfs);
if (err)
return err;
err = ice_pci_sriov_ena(pf, num_vfs);
if (err) {
ice_mbx_deinit_snapshot(&pf->hw);
return err;
}
if (pf->lag)
ice_disable_lag(pf->lag);
return num_vfs;
}
/**
* ice_process_vflr_event - Free VF resources via IRQ calls
* @pf: pointer to the PF structure
*
* called from the VFLR IRQ handler to
* free up VF resources and state variables
*/
void ice_process_vflr_event(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
u32 reg;
if (!test_and_clear_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
!ice_has_vfs(pf))
return;
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf) {
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf->vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf->vf_id) % 32;
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
if (reg & BIT(bit_idx))
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
ice_reset_vf(vf, ICE_VF_RESET_VFLR | ICE_VF_RESET_LOCK);
}
mutex_unlock(&pf->vfs.table_lock);
}
/**
* ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
* @pf: PF used to index all VFs
* @pfq: queue index relative to the PF's function space
*
* If no VF is found who owns the pfq then return NULL, otherwise return a
* pointer to the VF who owns the pfq
*
* If this function returns non-NULL, it acquires a reference count of the VF
* structure. The caller is responsible for calling ice_put_vf() to drop this
* reference.
*/
static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
{
struct ice_vf *vf;
unsigned int bkt;
rcu_read_lock();
ice_for_each_vf_rcu(pf, bkt, vf) {
struct ice_vsi *vsi;
u16 rxq_idx;
vsi = ice_get_vf_vsi(vf);
if (!vsi)
continue;
ice_for_each_rxq(vsi, rxq_idx)
if (vsi->rxq_map[rxq_idx] == pfq) {
struct ice_vf *found;
if (kref_get_unless_zero(&vf->refcnt))
found = vf;
else
found = NULL;
rcu_read_unlock();
return found;
}
}
rcu_read_unlock();
return NULL;
}
/**
* ice_globalq_to_pfq - convert from global queue index to PF space queue index
* @pf: PF used for conversion
* @globalq: global queue index used to convert to PF space queue index
*/
static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
{
return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
}
/**
* ice_vf_lan_overflow_event - handle LAN overflow event for a VF
* @pf: PF that the LAN overflow event happened on
* @event: structure holding the event information for the LAN overflow event
*
* Determine if the LAN overflow event was caused by a VF queue. If it was not
* caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
* reset on the offending VF.
*/
void
ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
{
u32 gldcb_rtctq, queue;
struct ice_vf *vf;
gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
/* event returns device global Rx queue number */
queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
GLDCB_RTCTQ_RXQNUM_S;
vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
if (!vf)
return;
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY | ICE_VF_RESET_LOCK);
ice_put_vf(vf);
}
/**
* ice_set_vf_spoofchk
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ena: flag to enable or disable feature
*
* Enable or disable VF spoof checking
*/
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
struct ice_vsi *vf_vsi;
struct device *dev;
struct ice_vf *vf;
int ret;
dev = ice_pf_to_dev(pf);
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
vf_vsi = ice_get_vf_vsi(vf);
if (!vf_vsi) {
netdev_err(netdev, "VSI %d for VF %d is null\n",
vf->lan_vsi_idx, vf->vf_id);
ret = -EINVAL;
goto out_put_vf;
}
if (vf_vsi->type != ICE_VSI_VF) {
netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
ret = -ENODEV;
goto out_put_vf;
}
if (ena == vf->spoofchk) {
dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
ret = 0;
goto out_put_vf;
}
ret = ice_vsi_apply_spoofchk(vf_vsi, ena);
if (ret)
dev_err(dev, "Failed to set spoofchk %s for VF %d VSI %d\n error %d\n",
ena ? "ON" : "OFF", vf->vf_id, vf_vsi->vsi_num, ret);
else
vf->spoofchk = ena;
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_get_vf_cfg
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ivi: VF configuration structure
*
* return VF configuration
*/
int
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
ivi->vf = vf_id;
ether_addr_copy(ivi->mac, vf->hw_lan_addr);
/* VF configuration for VLAN and applicable QoS */
ivi->vlan = ice_vf_get_port_vlan_id(vf);
ivi->qos = ice_vf_get_port_vlan_prio(vf);
if (ice_vf_is_port_vlan_ena(vf))
ivi->vlan_proto = cpu_to_be16(ice_vf_get_port_vlan_tpid(vf));
ivi->trusted = vf->trusted;
ivi->spoofchk = vf->spoofchk;
if (!vf->link_forced)
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
else if (vf->link_up)
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
else
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
ivi->max_tx_rate = vf->max_tx_rate;
ivi->min_tx_rate = vf->min_tx_rate;
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_set_vf_mac
* @netdev: network interface device structure
* @vf_id: VF identifier
* @mac: MAC address
*
* program VF MAC address
*/
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
if (is_multicast_ether_addr(mac)) {
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
return -EINVAL;
}
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
/* nothing left to do, unicast MAC already set */
if (ether_addr_equal(vf->dev_lan_addr, mac) &&
ether_addr_equal(vf->hw_lan_addr, mac)) {
ret = 0;
goto out_put_vf;
}
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
mutex_lock(&vf->cfg_lock);
/* VF is notified of its new MAC via the PF's response to the
* VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
*/
ether_addr_copy(vf->dev_lan_addr, mac);
ether_addr_copy(vf->hw_lan_addr, mac);
if (is_zero_ether_addr(mac)) {
/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
vf->pf_set_mac = false;
netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
vf->vf_id);
} else {
/* PF will add MAC rule for the VF */
vf->pf_set_mac = true;
netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
mac, vf_id);
}
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
mutex_unlock(&vf->cfg_lock);
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_set_vf_trust
* @netdev: network interface device structure
* @vf_id: VF identifier
* @trusted: Boolean value to enable/disable trusted VF
*
* Enable or disable a given VF as trusted
*/
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
if (ice_is_eswitch_mode_switchdev(pf)) {
dev_info(ice_pf_to_dev(pf), "Trusted VF is forbidden in switchdev mode\n");
return -EOPNOTSUPP;
}
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
/* Check if already trusted */
if (trusted == vf->trusted) {
ret = 0;
goto out_put_vf;
}
mutex_lock(&vf->cfg_lock);
vf->trusted = trusted;
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
vf_id, trusted ? "" : "un");
mutex_unlock(&vf->cfg_lock);
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_set_vf_link_state
* @netdev: network interface device structure
* @vf_id: VF identifier
* @link_state: required link state
*
* Set VF's link state, irrespective of physical link state status
*/
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
switch (link_state) {
case IFLA_VF_LINK_STATE_AUTO:
vf->link_forced = false;
break;
case IFLA_VF_LINK_STATE_ENABLE:
vf->link_forced = true;
vf->link_up = true;
break;
case IFLA_VF_LINK_STATE_DISABLE:
vf->link_forced = true;
vf->link_up = false;
break;
default:
ret = -EINVAL;
goto out_put_vf;
}
ice_vc_notify_vf_link_state(vf);
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_calc_all_vfs_min_tx_rate - calculate cumulative min Tx rate on all VFs
* @pf: PF associated with VFs
*/
static int ice_calc_all_vfs_min_tx_rate(struct ice_pf *pf)
{
struct ice_vf *vf;
unsigned int bkt;
int rate = 0;
rcu_read_lock();
ice_for_each_vf_rcu(pf, bkt, vf)
rate += vf->min_tx_rate;
rcu_read_unlock();
return rate;
}
/**
* ice_min_tx_rate_oversubscribed - check if min Tx rate causes oversubscription
* @vf: VF trying to configure min_tx_rate
* @min_tx_rate: min Tx rate in Mbps
*
* Check if the min_tx_rate being passed in will cause oversubscription of total
* min_tx_rate based on the current link speed and all other VFs configured
* min_tx_rate
*
* Return true if the passed min_tx_rate would cause oversubscription, else
* return false
*/
static bool
ice_min_tx_rate_oversubscribed(struct ice_vf *vf, int min_tx_rate)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
int all_vfs_min_tx_rate;
int link_speed_mbps;
if (WARN_ON(!vsi))
return false;
link_speed_mbps = ice_get_link_speed_mbps(vsi);
all_vfs_min_tx_rate = ice_calc_all_vfs_min_tx_rate(vf->pf);
/* this VF's previous rate is being overwritten */
all_vfs_min_tx_rate -= vf->min_tx_rate;
if (all_vfs_min_tx_rate + min_tx_rate > link_speed_mbps) {
dev_err(ice_pf_to_dev(vf->pf), "min_tx_rate of %d Mbps on VF %u would cause oversubscription of %d Mbps based on the current link speed %d Mbps\n",
min_tx_rate, vf->vf_id,
all_vfs_min_tx_rate + min_tx_rate - link_speed_mbps,
link_speed_mbps);
return true;
}
return false;
}
/**
* ice_set_vf_bw - set min/max VF bandwidth
* @netdev: network interface device structure
* @vf_id: VF identifier
* @min_tx_rate: Minimum Tx rate in Mbps
* @max_tx_rate: Maximum Tx rate in Mbps
*/
int
ice_set_vf_bw(struct net_device *netdev, int vf_id, int min_tx_rate,
int max_tx_rate)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vsi *vsi;
struct device *dev;
struct ice_vf *vf;
int ret;
dev = ice_pf_to_dev(pf);
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
ret = -EINVAL;
goto out_put_vf;
}
if (min_tx_rate && ice_is_dcb_active(pf)) {
dev_err(dev, "DCB on PF is currently enabled. VF min Tx rate limiting not allowed on this PF.\n");
ret = -EOPNOTSUPP;
goto out_put_vf;
}
if (ice_min_tx_rate_oversubscribed(vf, min_tx_rate)) {
ret = -EINVAL;
goto out_put_vf;
}
if (vf->min_tx_rate != (unsigned int)min_tx_rate) {
ret = ice_set_min_bw_limit(vsi, (u64)min_tx_rate * 1000);
if (ret) {
dev_err(dev, "Unable to set min-tx-rate for VF %d\n",
vf->vf_id);
goto out_put_vf;
}
vf->min_tx_rate = min_tx_rate;
}
if (vf->max_tx_rate != (unsigned int)max_tx_rate) {
ret = ice_set_max_bw_limit(vsi, (u64)max_tx_rate * 1000);
if (ret) {
dev_err(dev, "Unable to set max-tx-rate for VF %d\n",
vf->vf_id);
goto out_put_vf;
}
vf->max_tx_rate = max_tx_rate;
}
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_get_vf_stats - populate some stats for the VF
* @netdev: the netdev of the PF
* @vf_id: the host OS identifier (0-255)
* @vf_stats: pointer to the OS memory to be initialized
*/
int ice_get_vf_stats(struct net_device *netdev, int vf_id,
struct ifla_vf_stats *vf_stats)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_eth_stats *stats;
struct ice_vsi *vsi;
struct ice_vf *vf;
int ret;
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
ret = -EINVAL;
goto out_put_vf;
}
ice_update_eth_stats(vsi);
stats = &vsi->eth_stats;
memset(vf_stats, 0, sizeof(*vf_stats));
vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
stats->rx_multicast;
vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
stats->tx_multicast;
vf_stats->rx_bytes = stats->rx_bytes;
vf_stats->tx_bytes = stats->tx_bytes;
vf_stats->broadcast = stats->rx_broadcast;
vf_stats->multicast = stats->rx_multicast;
vf_stats->rx_dropped = stats->rx_discards;
vf_stats->tx_dropped = stats->tx_discards;
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_is_supported_port_vlan_proto - make sure the vlan_proto is supported
* @hw: hardware structure used to check the VLAN mode
* @vlan_proto: VLAN TPID being checked
*
* If the device is configured in Double VLAN Mode (DVM), then both ETH_P_8021Q
* and ETH_P_8021AD are supported. If the device is configured in Single VLAN
* Mode (SVM), then only ETH_P_8021Q is supported.
*/
static bool
ice_is_supported_port_vlan_proto(struct ice_hw *hw, u16 vlan_proto)
{
bool is_supported = false;
switch (vlan_proto) {
case ETH_P_8021Q:
is_supported = true;
break;
case ETH_P_8021AD:
if (ice_is_dvm_ena(hw))
is_supported = true;
break;
}
return is_supported;
}
/**
* ice_set_vf_port_vlan
* @netdev: network interface device structure
* @vf_id: VF identifier
* @vlan_id: VLAN ID being set
* @qos: priority setting
* @vlan_proto: VLAN protocol
*
* program VF Port VLAN ID and/or QoS
*/
int
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
__be16 vlan_proto)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
u16 local_vlan_proto = ntohs(vlan_proto);
struct device *dev;
struct ice_vf *vf;
int ret;
dev = ice_pf_to_dev(pf);
if (vlan_id >= VLAN_N_VID || qos > 7) {
dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
vf_id, vlan_id, qos);
return -EINVAL;
}
if (!ice_is_supported_port_vlan_proto(&pf->hw, local_vlan_proto)) {
dev_err(dev, "VF VLAN protocol 0x%04x is not supported\n",
local_vlan_proto);
return -EPROTONOSUPPORT;
}
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return -EINVAL;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
goto out_put_vf;
if (ice_vf_get_port_vlan_prio(vf) == qos &&
ice_vf_get_port_vlan_tpid(vf) == local_vlan_proto &&
ice_vf_get_port_vlan_id(vf) == vlan_id) {
/* duplicate request, so just return success */
dev_dbg(dev, "Duplicate port VLAN %u, QoS %u, TPID 0x%04x request\n",
vlan_id, qos, local_vlan_proto);
ret = 0;
goto out_put_vf;
}
mutex_lock(&vf->cfg_lock);
vf->port_vlan_info = ICE_VLAN(local_vlan_proto, vlan_id, qos);
if (ice_vf_is_port_vlan_ena(vf))
dev_info(dev, "Setting VLAN %u, QoS %u, TPID 0x%04x on VF %d\n",
vlan_id, qos, local_vlan_proto, vf_id);
else
dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
mutex_unlock(&vf->cfg_lock);
out_put_vf:
ice_put_vf(vf);
return ret;
}
/**
* ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
* @vf: pointer to the VF structure
*/
void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct device *dev;
dev = ice_pf_to_dev(pf);
dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
vf->dev_lan_addr,
test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
? "on" : "off");
}
/**
* ice_print_vfs_mdd_events - print VFs malicious driver detect event
* @pf: pointer to the PF structure
*
* Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
*/
void ice_print_vfs_mdd_events(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
/* check that there are pending MDD events to print */
if (!test_and_clear_bit(ICE_MDD_VF_PRINT_PENDING, pf->state))
return;
/* VF MDD event logs are rate limited to one second intervals */
if (time_is_after_jiffies(pf->vfs.last_printed_mdd_jiffies + HZ * 1))
return;
pf->vfs.last_printed_mdd_jiffies = jiffies;
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf) {
/* only print Rx MDD event message if there are new events */
if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
vf->mdd_rx_events.last_printed =
vf->mdd_rx_events.count;
ice_print_vf_rx_mdd_event(vf);
}
/* only print Tx MDD event message if there are new events */
if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
vf->mdd_tx_events.last_printed =
vf->mdd_tx_events.count;
dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
vf->mdd_tx_events.count, hw->pf_id, vf->vf_id,
vf->dev_lan_addr);
}
}
mutex_unlock(&pf->vfs.table_lock);
}
/**
* ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
* @pdev: pointer to a pci_dev structure
*
* Called when recovering from a PF FLR to restore interrupt capability to
* the VFs.
*/
void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
{
u16 vf_id;
int pos;
if (!pci_num_vf(pdev))
return;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos) {
struct pci_dev *vfdev;
pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
&vf_id);
vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
while (vfdev) {
if (vfdev->is_virtfn && vfdev->physfn == pdev)
pci_restore_msi_state(vfdev);
vfdev = pci_get_device(pdev->vendor, vf_id,
vfdev);
}
}
}
/**
* ice_is_malicious_vf - helper function to detect a malicious VF
* @pf: ptr to struct ice_pf
* @event: pointer to the AQ event
* @num_msg_proc: the number of messages processed so far
* @num_msg_pending: the number of messages peinding in admin queue
*/
bool
ice_is_malicious_vf(struct ice_pf *pf, struct ice_rq_event_info *event,
u16 num_msg_proc, u16 num_msg_pending)
{
s16 vf_id = le16_to_cpu(event->desc.retval);
struct device *dev = ice_pf_to_dev(pf);
struct ice_mbx_data mbxdata;
bool malvf = false;
struct ice_vf *vf;
int status;
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf)
return false;
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states))
goto out_put_vf;
mbxdata.num_msg_proc = num_msg_proc;
mbxdata.num_pending_arq = num_msg_pending;
mbxdata.max_num_msgs_mbx = pf->hw.mailboxq.num_rq_entries;
#define ICE_MBX_OVERFLOW_WATERMARK 64
mbxdata.async_watermark_val = ICE_MBX_OVERFLOW_WATERMARK;
/* check to see if we have a malicious VF */
status = ice_mbx_vf_state_handler(&pf->hw, &mbxdata, vf_id, &malvf);
if (status)
goto out_put_vf;
if (malvf) {
bool report_vf = false;
/* if the VF is malicious and we haven't let the user
* know about it, then let them know now
*/
status = ice_mbx_report_malvf(&pf->hw, pf->vfs.malvfs,
ICE_MAX_SRIOV_VFS, vf_id,
&report_vf);
if (status)
dev_dbg(dev, "Error reporting malicious VF\n");
if (report_vf) {
struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
if (pf_vsi)
dev_warn(dev, "VF MAC %pM on PF MAC %pM is generating asynchronous messages and may be overflowing the PF message queue. Please see the Adapter User Guide for more information\n",
&vf->dev_lan_addr[0],
pf_vsi->netdev->dev_addr);
}
}
out_put_vf:
ice_put_vf(vf);
return malvf;
}