| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _LINUX_SCHED_MM_H |
| #define _LINUX_SCHED_MM_H |
| |
| #include <linux/kernel.h> |
| #include <linux/atomic.h> |
| #include <linux/sched.h> |
| #include <linux/mm_types.h> |
| #include <linux/gfp.h> |
| #include <linux/sync_core.h> |
| |
| /* |
| * Routines for handling mm_structs |
| */ |
| extern struct mm_struct *mm_alloc(void); |
| |
| /** |
| * mmgrab() - Pin a &struct mm_struct. |
| * @mm: The &struct mm_struct to pin. |
| * |
| * Make sure that @mm will not get freed even after the owning task |
| * exits. This doesn't guarantee that the associated address space |
| * will still exist later on and mmget_not_zero() has to be used before |
| * accessing it. |
| * |
| * This is a preferred way to pin @mm for a longer/unbounded amount |
| * of time. |
| * |
| * Use mmdrop() to release the reference acquired by mmgrab(). |
| * |
| * See also <Documentation/mm/active_mm.rst> for an in-depth explanation |
| * of &mm_struct.mm_count vs &mm_struct.mm_users. |
| */ |
| static inline void mmgrab(struct mm_struct *mm) |
| { |
| atomic_inc(&mm->mm_count); |
| } |
| |
| extern void __mmdrop(struct mm_struct *mm); |
| |
| static inline void mmdrop(struct mm_struct *mm) |
| { |
| /* |
| * The implicit full barrier implied by atomic_dec_and_test() is |
| * required by the membarrier system call before returning to |
| * user-space, after storing to rq->curr. |
| */ |
| if (unlikely(atomic_dec_and_test(&mm->mm_count))) |
| __mmdrop(mm); |
| } |
| |
| #ifdef CONFIG_PREEMPT_RT |
| /* |
| * RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is |
| * by far the least expensive way to do that. |
| */ |
| static inline void __mmdrop_delayed(struct rcu_head *rhp) |
| { |
| struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop); |
| |
| __mmdrop(mm); |
| } |
| |
| /* |
| * Invoked from finish_task_switch(). Delegates the heavy lifting on RT |
| * kernels via RCU. |
| */ |
| static inline void mmdrop_sched(struct mm_struct *mm) |
| { |
| /* Provides a full memory barrier. See mmdrop() */ |
| if (atomic_dec_and_test(&mm->mm_count)) |
| call_rcu(&mm->delayed_drop, __mmdrop_delayed); |
| } |
| #else |
| static inline void mmdrop_sched(struct mm_struct *mm) |
| { |
| mmdrop(mm); |
| } |
| #endif |
| |
| /** |
| * mmget() - Pin the address space associated with a &struct mm_struct. |
| * @mm: The address space to pin. |
| * |
| * Make sure that the address space of the given &struct mm_struct doesn't |
| * go away. This does not protect against parts of the address space being |
| * modified or freed, however. |
| * |
| * Never use this function to pin this address space for an |
| * unbounded/indefinite amount of time. |
| * |
| * Use mmput() to release the reference acquired by mmget(). |
| * |
| * See also <Documentation/mm/active_mm.rst> for an in-depth explanation |
| * of &mm_struct.mm_count vs &mm_struct.mm_users. |
| */ |
| static inline void mmget(struct mm_struct *mm) |
| { |
| atomic_inc(&mm->mm_users); |
| } |
| |
| static inline bool mmget_not_zero(struct mm_struct *mm) |
| { |
| return atomic_inc_not_zero(&mm->mm_users); |
| } |
| |
| /* mmput gets rid of the mappings and all user-space */ |
| extern void mmput(struct mm_struct *); |
| #ifdef CONFIG_MMU |
| /* same as above but performs the slow path from the async context. Can |
| * be called from the atomic context as well |
| */ |
| void mmput_async(struct mm_struct *); |
| #endif |
| |
| /* Grab a reference to a task's mm, if it is not already going away */ |
| extern struct mm_struct *get_task_mm(struct task_struct *task); |
| /* |
| * Grab a reference to a task's mm, if it is not already going away |
| * and ptrace_may_access with the mode parameter passed to it |
| * succeeds. |
| */ |
| extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode); |
| /* Remove the current tasks stale references to the old mm_struct on exit() */ |
| extern void exit_mm_release(struct task_struct *, struct mm_struct *); |
| /* Remove the current tasks stale references to the old mm_struct on exec() */ |
| extern void exec_mm_release(struct task_struct *, struct mm_struct *); |
| |
| #ifdef CONFIG_MEMCG |
| extern void mm_update_next_owner(struct mm_struct *mm); |
| #else |
| static inline void mm_update_next_owner(struct mm_struct *mm) |
| { |
| } |
| #endif /* CONFIG_MEMCG */ |
| |
| #ifdef CONFIG_MMU |
| #ifndef arch_get_mmap_end |
| #define arch_get_mmap_end(addr, len, flags) (TASK_SIZE) |
| #endif |
| |
| #ifndef arch_get_mmap_base |
| #define arch_get_mmap_base(addr, base) (base) |
| #endif |
| |
| extern void arch_pick_mmap_layout(struct mm_struct *mm, |
| struct rlimit *rlim_stack); |
| extern unsigned long |
| arch_get_unmapped_area(struct file *, unsigned long, unsigned long, |
| unsigned long, unsigned long); |
| extern unsigned long |
| arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| |
| unsigned long |
| generic_get_unmapped_area(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| unsigned long |
| generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr, |
| unsigned long len, unsigned long pgoff, |
| unsigned long flags); |
| #else |
| static inline void arch_pick_mmap_layout(struct mm_struct *mm, |
| struct rlimit *rlim_stack) {} |
| #endif |
| |
| static inline bool in_vfork(struct task_struct *tsk) |
| { |
| bool ret; |
| |
| /* |
| * need RCU to access ->real_parent if CLONE_VM was used along with |
| * CLONE_PARENT. |
| * |
| * We check real_parent->mm == tsk->mm because CLONE_VFORK does not |
| * imply CLONE_VM |
| * |
| * CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus |
| * ->real_parent is not necessarily the task doing vfork(), so in |
| * theory we can't rely on task_lock() if we want to dereference it. |
| * |
| * And in this case we can't trust the real_parent->mm == tsk->mm |
| * check, it can be false negative. But we do not care, if init or |
| * another oom-unkillable task does this it should blame itself. |
| */ |
| rcu_read_lock(); |
| ret = tsk->vfork_done && |
| rcu_dereference(tsk->real_parent)->mm == tsk->mm; |
| rcu_read_unlock(); |
| |
| return ret; |
| } |
| |
| /* |
| * Applies per-task gfp context to the given allocation flags. |
| * PF_MEMALLOC_NOIO implies GFP_NOIO |
| * PF_MEMALLOC_NOFS implies GFP_NOFS |
| * PF_MEMALLOC_PIN implies !GFP_MOVABLE |
| */ |
| static inline gfp_t current_gfp_context(gfp_t flags) |
| { |
| unsigned int pflags = READ_ONCE(current->flags); |
| |
| if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) { |
| /* |
| * NOIO implies both NOIO and NOFS and it is a weaker context |
| * so always make sure it makes precedence |
| */ |
| if (pflags & PF_MEMALLOC_NOIO) |
| flags &= ~(__GFP_IO | __GFP_FS); |
| else if (pflags & PF_MEMALLOC_NOFS) |
| flags &= ~__GFP_FS; |
| |
| if (pflags & PF_MEMALLOC_PIN) |
| flags &= ~__GFP_MOVABLE; |
| } |
| return flags; |
| } |
| |
| #ifdef CONFIG_LOCKDEP |
| extern void __fs_reclaim_acquire(unsigned long ip); |
| extern void __fs_reclaim_release(unsigned long ip); |
| extern void fs_reclaim_acquire(gfp_t gfp_mask); |
| extern void fs_reclaim_release(gfp_t gfp_mask); |
| #else |
| static inline void __fs_reclaim_acquire(unsigned long ip) { } |
| static inline void __fs_reclaim_release(unsigned long ip) { } |
| static inline void fs_reclaim_acquire(gfp_t gfp_mask) { } |
| static inline void fs_reclaim_release(gfp_t gfp_mask) { } |
| #endif |
| |
| /* Any memory-allocation retry loop should use |
| * memalloc_retry_wait(), and pass the flags for the most |
| * constrained allocation attempt that might have failed. |
| * This provides useful documentation of where loops are, |
| * and a central place to fine tune the waiting as the MM |
| * implementation changes. |
| */ |
| static inline void memalloc_retry_wait(gfp_t gfp_flags) |
| { |
| /* We use io_schedule_timeout because waiting for memory |
| * typically included waiting for dirty pages to be |
| * written out, which requires IO. |
| */ |
| __set_current_state(TASK_UNINTERRUPTIBLE); |
| gfp_flags = current_gfp_context(gfp_flags); |
| if (gfpflags_allow_blocking(gfp_flags) && |
| !(gfp_flags & __GFP_NORETRY)) |
| /* Probably waited already, no need for much more */ |
| io_schedule_timeout(1); |
| else |
| /* Probably didn't wait, and has now released a lock, |
| * so now is a good time to wait |
| */ |
| io_schedule_timeout(HZ/50); |
| } |
| |
| /** |
| * might_alloc - Mark possible allocation sites |
| * @gfp_mask: gfp_t flags that would be used to allocate |
| * |
| * Similar to might_sleep() and other annotations, this can be used in functions |
| * that might allocate, but often don't. Compiles to nothing without |
| * CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking. |
| */ |
| static inline void might_alloc(gfp_t gfp_mask) |
| { |
| fs_reclaim_acquire(gfp_mask); |
| fs_reclaim_release(gfp_mask); |
| |
| might_sleep_if(gfpflags_allow_blocking(gfp_mask)); |
| } |
| |
| /** |
| * memalloc_noio_save - Marks implicit GFP_NOIO allocation scope. |
| * |
| * This functions marks the beginning of the GFP_NOIO allocation scope. |
| * All further allocations will implicitly drop __GFP_IO flag and so |
| * they are safe for the IO critical section from the allocation recursion |
| * point of view. Use memalloc_noio_restore to end the scope with flags |
| * returned by this function. |
| * |
| * This function is safe to be used from any context. |
| */ |
| static inline unsigned int memalloc_noio_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_NOIO; |
| current->flags |= PF_MEMALLOC_NOIO; |
| return flags; |
| } |
| |
| /** |
| * memalloc_noio_restore - Ends the implicit GFP_NOIO scope. |
| * @flags: Flags to restore. |
| * |
| * Ends the implicit GFP_NOIO scope started by memalloc_noio_save function. |
| * Always make sure that the given flags is the return value from the |
| * pairing memalloc_noio_save call. |
| */ |
| static inline void memalloc_noio_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; |
| } |
| |
| /** |
| * memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope. |
| * |
| * This functions marks the beginning of the GFP_NOFS allocation scope. |
| * All further allocations will implicitly drop __GFP_FS flag and so |
| * they are safe for the FS critical section from the allocation recursion |
| * point of view. Use memalloc_nofs_restore to end the scope with flags |
| * returned by this function. |
| * |
| * This function is safe to be used from any context. |
| */ |
| static inline unsigned int memalloc_nofs_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_NOFS; |
| current->flags |= PF_MEMALLOC_NOFS; |
| return flags; |
| } |
| |
| /** |
| * memalloc_nofs_restore - Ends the implicit GFP_NOFS scope. |
| * @flags: Flags to restore. |
| * |
| * Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function. |
| * Always make sure that the given flags is the return value from the |
| * pairing memalloc_nofs_save call. |
| */ |
| static inline void memalloc_nofs_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags; |
| } |
| |
| static inline unsigned int memalloc_noreclaim_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC; |
| current->flags |= PF_MEMALLOC; |
| return flags; |
| } |
| |
| static inline void memalloc_noreclaim_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC) | flags; |
| } |
| |
| static inline unsigned int memalloc_pin_save(void) |
| { |
| unsigned int flags = current->flags & PF_MEMALLOC_PIN; |
| |
| current->flags |= PF_MEMALLOC_PIN; |
| return flags; |
| } |
| |
| static inline void memalloc_pin_restore(unsigned int flags) |
| { |
| current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags; |
| } |
| |
| #ifdef CONFIG_MEMCG |
| DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg); |
| /** |
| * set_active_memcg - Starts the remote memcg charging scope. |
| * @memcg: memcg to charge. |
| * |
| * This function marks the beginning of the remote memcg charging scope. All the |
| * __GFP_ACCOUNT allocations till the end of the scope will be charged to the |
| * given memcg. |
| * |
| * NOTE: This function can nest. Users must save the return value and |
| * reset the previous value after their own charging scope is over. |
| */ |
| static inline struct mem_cgroup * |
| set_active_memcg(struct mem_cgroup *memcg) |
| { |
| struct mem_cgroup *old; |
| |
| if (!in_task()) { |
| old = this_cpu_read(int_active_memcg); |
| this_cpu_write(int_active_memcg, memcg); |
| } else { |
| old = current->active_memcg; |
| current->active_memcg = memcg; |
| } |
| |
| return old; |
| } |
| #else |
| static inline struct mem_cgroup * |
| set_active_memcg(struct mem_cgroup *memcg) |
| { |
| return NULL; |
| } |
| #endif |
| |
| #ifdef CONFIG_MEMBARRIER |
| enum { |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0), |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1), |
| MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2), |
| MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3), |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4), |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5), |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6), |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7), |
| }; |
| |
| enum { |
| MEMBARRIER_FLAG_SYNC_CORE = (1U << 0), |
| MEMBARRIER_FLAG_RSEQ = (1U << 1), |
| }; |
| |
| #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS |
| #include <asm/membarrier.h> |
| #endif |
| |
| static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) |
| { |
| if (current->mm != mm) |
| return; |
| if (likely(!(atomic_read(&mm->membarrier_state) & |
| MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE))) |
| return; |
| sync_core_before_usermode(); |
| } |
| |
| extern void membarrier_exec_mmap(struct mm_struct *mm); |
| |
| extern void membarrier_update_current_mm(struct mm_struct *next_mm); |
| |
| #else |
| #ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS |
| static inline void membarrier_arch_switch_mm(struct mm_struct *prev, |
| struct mm_struct *next, |
| struct task_struct *tsk) |
| { |
| } |
| #endif |
| static inline void membarrier_exec_mmap(struct mm_struct *mm) |
| { |
| } |
| static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm) |
| { |
| } |
| static inline void membarrier_update_current_mm(struct mm_struct *next_mm) |
| { |
| } |
| #endif |
| |
| #endif /* _LINUX_SCHED_MM_H */ |