|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds | 
|  | * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com> | 
|  | * Copyright (C) 2002 Andi Kleen | 
|  | * | 
|  | * This handles calls from both 32bit and 64bit mode. | 
|  | * | 
|  | * Lock order: | 
|  | *	contex.ldt_usr_sem | 
|  | *	  mmap_lock | 
|  | *	    context.lock | 
|  | */ | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/ldt.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/pgtable_areas.h> | 
|  |  | 
|  | #include <xen/xen.h> | 
|  |  | 
|  | /* This is a multiple of PAGE_SIZE. */ | 
|  | #define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE) | 
|  |  | 
|  | static inline void *ldt_slot_va(int slot) | 
|  | { | 
|  | return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot); | 
|  | } | 
|  |  | 
|  | void load_mm_ldt(struct mm_struct *mm) | 
|  | { | 
|  | struct ldt_struct *ldt; | 
|  |  | 
|  | /* READ_ONCE synchronizes with smp_store_release */ | 
|  | ldt = READ_ONCE(mm->context.ldt); | 
|  |  | 
|  | /* | 
|  | * Any change to mm->context.ldt is followed by an IPI to all | 
|  | * CPUs with the mm active.  The LDT will not be freed until | 
|  | * after the IPI is handled by all such CPUs.  This means that, | 
|  | * if the ldt_struct changes before we return, the values we see | 
|  | * will be safe, and the new values will be loaded before we run | 
|  | * any user code. | 
|  | * | 
|  | * NB: don't try to convert this to use RCU without extreme care. | 
|  | * We would still need IRQs off, because we don't want to change | 
|  | * the local LDT after an IPI loaded a newer value than the one | 
|  | * that we can see. | 
|  | */ | 
|  |  | 
|  | if (unlikely(ldt)) { | 
|  | if (static_cpu_has(X86_FEATURE_PTI)) { | 
|  | if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) { | 
|  | /* | 
|  | * Whoops -- either the new LDT isn't mapped | 
|  | * (if slot == -1) or is mapped into a bogus | 
|  | * slot (if slot > 1). | 
|  | */ | 
|  | clear_LDT(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If page table isolation is enabled, ldt->entries | 
|  | * will not be mapped in the userspace pagetables. | 
|  | * Tell the CPU to access the LDT through the alias | 
|  | * at ldt_slot_va(ldt->slot). | 
|  | */ | 
|  | set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries); | 
|  | } else { | 
|  | set_ldt(ldt->entries, ldt->nr_entries); | 
|  | } | 
|  | } else { | 
|  | clear_LDT(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void switch_ldt(struct mm_struct *prev, struct mm_struct *next) | 
|  | { | 
|  | /* | 
|  | * Load the LDT if either the old or new mm had an LDT. | 
|  | * | 
|  | * An mm will never go from having an LDT to not having an LDT.  Two | 
|  | * mms never share an LDT, so we don't gain anything by checking to | 
|  | * see whether the LDT changed.  There's also no guarantee that | 
|  | * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, | 
|  | * then prev->context.ldt will also be non-NULL. | 
|  | * | 
|  | * If we really cared, we could optimize the case where prev == next | 
|  | * and we're exiting lazy mode.  Most of the time, if this happens, | 
|  | * we don't actually need to reload LDTR, but modify_ldt() is mostly | 
|  | * used by legacy code and emulators where we don't need this level of | 
|  | * performance. | 
|  | * | 
|  | * This uses | instead of || because it generates better code. | 
|  | */ | 
|  | if (unlikely((unsigned long)prev->context.ldt | | 
|  | (unsigned long)next->context.ldt)) | 
|  | load_mm_ldt(next); | 
|  |  | 
|  | DEBUG_LOCKS_WARN_ON(preemptible()); | 
|  | } | 
|  |  | 
|  | static void refresh_ldt_segments(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned short sel; | 
|  |  | 
|  | /* | 
|  | * Make sure that the cached DS and ES descriptors match the updated | 
|  | * LDT. | 
|  | */ | 
|  | savesegment(ds, sel); | 
|  | if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) | 
|  | loadsegment(ds, sel); | 
|  |  | 
|  | savesegment(es, sel); | 
|  | if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) | 
|  | loadsegment(es, sel); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* context.lock is held by the task which issued the smp function call */ | 
|  | static void flush_ldt(void *__mm) | 
|  | { | 
|  | struct mm_struct *mm = __mm; | 
|  |  | 
|  | if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm) | 
|  | return; | 
|  |  | 
|  | load_mm_ldt(mm); | 
|  |  | 
|  | refresh_ldt_segments(); | 
|  | } | 
|  |  | 
|  | /* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */ | 
|  | static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries) | 
|  | { | 
|  | struct ldt_struct *new_ldt; | 
|  | unsigned int alloc_size; | 
|  |  | 
|  | if (num_entries > LDT_ENTRIES) | 
|  | return NULL; | 
|  |  | 
|  | new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL); | 
|  | if (!new_ldt) | 
|  | return NULL; | 
|  |  | 
|  | BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct)); | 
|  | alloc_size = num_entries * LDT_ENTRY_SIZE; | 
|  |  | 
|  | /* | 
|  | * Xen is very picky: it requires a page-aligned LDT that has no | 
|  | * trailing nonzero bytes in any page that contains LDT descriptors. | 
|  | * Keep it simple: zero the whole allocation and never allocate less | 
|  | * than PAGE_SIZE. | 
|  | */ | 
|  | if (alloc_size > PAGE_SIZE) | 
|  | new_ldt->entries = vzalloc(alloc_size); | 
|  | else | 
|  | new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL); | 
|  |  | 
|  | if (!new_ldt->entries) { | 
|  | kfree(new_ldt); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* The new LDT isn't aliased for PTI yet. */ | 
|  | new_ldt->slot = -1; | 
|  |  | 
|  | new_ldt->nr_entries = num_entries; | 
|  | return new_ldt; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PAGE_TABLE_ISOLATION | 
|  |  | 
|  | static void do_sanity_check(struct mm_struct *mm, | 
|  | bool had_kernel_mapping, | 
|  | bool had_user_mapping) | 
|  | { | 
|  | if (mm->context.ldt) { | 
|  | /* | 
|  | * We already had an LDT.  The top-level entry should already | 
|  | * have been allocated and synchronized with the usermode | 
|  | * tables. | 
|  | */ | 
|  | WARN_ON(!had_kernel_mapping); | 
|  | if (boot_cpu_has(X86_FEATURE_PTI)) | 
|  | WARN_ON(!had_user_mapping); | 
|  | } else { | 
|  | /* | 
|  | * This is the first time we're mapping an LDT for this process. | 
|  | * Sync the pgd to the usermode tables. | 
|  | */ | 
|  | WARN_ON(had_kernel_mapping); | 
|  | if (boot_cpu_has(X86_FEATURE_PTI)) | 
|  | WARN_ON(had_user_mapping); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  |  | 
|  | static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va) | 
|  | { | 
|  | p4d_t *p4d; | 
|  | pud_t *pud; | 
|  |  | 
|  | if (pgd->pgd == 0) | 
|  | return NULL; | 
|  |  | 
|  | p4d = p4d_offset(pgd, va); | 
|  | if (p4d_none(*p4d)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(p4d, va); | 
|  | if (pud_none(*pud)) | 
|  | return NULL; | 
|  |  | 
|  | return pmd_offset(pud, va); | 
|  | } | 
|  |  | 
|  | static void map_ldt_struct_to_user(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); | 
|  | pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); | 
|  | pmd_t *k_pmd, *u_pmd; | 
|  |  | 
|  | k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); | 
|  | u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) | 
|  | set_pmd(u_pmd, *k_pmd); | 
|  | } | 
|  |  | 
|  | static void sanity_check_ldt_mapping(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR); | 
|  | pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd); | 
|  | bool had_kernel, had_user; | 
|  | pmd_t *k_pmd, *u_pmd; | 
|  |  | 
|  | k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR); | 
|  | u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR); | 
|  | had_kernel = (k_pmd->pmd != 0); | 
|  | had_user   = (u_pmd->pmd != 0); | 
|  |  | 
|  | do_sanity_check(mm, had_kernel, had_user); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_X86_PAE */ | 
|  |  | 
|  | static void map_ldt_struct_to_user(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt) | 
|  | set_pgd(kernel_to_user_pgdp(pgd), *pgd); | 
|  | } | 
|  |  | 
|  | static void sanity_check_ldt_mapping(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR); | 
|  | bool had_kernel = (pgd->pgd != 0); | 
|  | bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0); | 
|  |  | 
|  | do_sanity_check(mm, had_kernel, had_user); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_X86_PAE */ | 
|  |  | 
|  | /* | 
|  | * If PTI is enabled, this maps the LDT into the kernelmode and | 
|  | * usermode tables for the given mm. | 
|  | */ | 
|  | static int | 
|  | map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) | 
|  | { | 
|  | unsigned long va; | 
|  | bool is_vmalloc; | 
|  | spinlock_t *ptl; | 
|  | int i, nr_pages; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_PTI)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Any given ldt_struct should have map_ldt_struct() called at most | 
|  | * once. | 
|  | */ | 
|  | WARN_ON(ldt->slot != -1); | 
|  |  | 
|  | /* Check if the current mappings are sane */ | 
|  | sanity_check_ldt_mapping(mm); | 
|  |  | 
|  | is_vmalloc = is_vmalloc_addr(ldt->entries); | 
|  |  | 
|  | nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned long offset = i << PAGE_SHIFT; | 
|  | const void *src = (char *)ldt->entries + offset; | 
|  | unsigned long pfn; | 
|  | pgprot_t pte_prot; | 
|  | pte_t pte, *ptep; | 
|  |  | 
|  | va = (unsigned long)ldt_slot_va(slot) + offset; | 
|  | pfn = is_vmalloc ? vmalloc_to_pfn(src) : | 
|  | page_to_pfn(virt_to_page(src)); | 
|  | /* | 
|  | * Treat the PTI LDT range as a *userspace* range. | 
|  | * get_locked_pte() will allocate all needed pagetables | 
|  | * and account for them in this mm. | 
|  | */ | 
|  | ptep = get_locked_pte(mm, va, &ptl); | 
|  | if (!ptep) | 
|  | return -ENOMEM; | 
|  | /* | 
|  | * Map it RO so the easy to find address is not a primary | 
|  | * target via some kernel interface which misses a | 
|  | * permission check. | 
|  | */ | 
|  | pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL); | 
|  | /* Filter out unsuppored __PAGE_KERNEL* bits: */ | 
|  | pgprot_val(pte_prot) &= __supported_pte_mask; | 
|  | pte = pfn_pte(pfn, pte_prot); | 
|  | set_pte_at(mm, va, ptep, pte); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | /* Propagate LDT mapping to the user page-table */ | 
|  | map_ldt_struct_to_user(mm); | 
|  |  | 
|  | ldt->slot = slot; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) | 
|  | { | 
|  | unsigned long va; | 
|  | int i, nr_pages; | 
|  |  | 
|  | if (!ldt) | 
|  | return; | 
|  |  | 
|  | /* LDT map/unmap is only required for PTI */ | 
|  | if (!boot_cpu_has(X86_FEATURE_PTI)) | 
|  | return; | 
|  |  | 
|  | nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE); | 
|  |  | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned long offset = i << PAGE_SHIFT; | 
|  | spinlock_t *ptl; | 
|  | pte_t *ptep; | 
|  |  | 
|  | va = (unsigned long)ldt_slot_va(ldt->slot) + offset; | 
|  | ptep = get_locked_pte(mm, va, &ptl); | 
|  | pte_clear(mm, va, ptep); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  |  | 
|  | va = (unsigned long)ldt_slot_va(ldt->slot); | 
|  | flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_PAGE_TABLE_ISOLATION */ | 
|  |  | 
|  | static int | 
|  | map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_PAGE_TABLE_ISOLATION */ | 
|  |  | 
|  | static void free_ldt_pgtables(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_PAGE_TABLE_ISOLATION | 
|  | struct mmu_gather tlb; | 
|  | unsigned long start = LDT_BASE_ADDR; | 
|  | unsigned long end = LDT_END_ADDR; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_PTI)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Although free_pgd_range() is intended for freeing user | 
|  | * page-tables, it also works out for kernel mappings on x86. | 
|  | * We use tlb_gather_mmu_fullmm() to avoid confusing the | 
|  | * range-tracking logic in __tlb_adjust_range(). | 
|  | */ | 
|  | tlb_gather_mmu_fullmm(&tlb, mm); | 
|  | free_pgd_range(&tlb, start, end, start, end); | 
|  | tlb_finish_mmu(&tlb); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* After calling this, the LDT is immutable. */ | 
|  | static void finalize_ldt_struct(struct ldt_struct *ldt) | 
|  | { | 
|  | paravirt_alloc_ldt(ldt->entries, ldt->nr_entries); | 
|  | } | 
|  |  | 
|  | static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt) | 
|  | { | 
|  | mutex_lock(&mm->context.lock); | 
|  |  | 
|  | /* Synchronizes with READ_ONCE in load_mm_ldt. */ | 
|  | smp_store_release(&mm->context.ldt, ldt); | 
|  |  | 
|  | /* Activate the LDT for all CPUs using currents mm. */ | 
|  | on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true); | 
|  |  | 
|  | mutex_unlock(&mm->context.lock); | 
|  | } | 
|  |  | 
|  | static void free_ldt_struct(struct ldt_struct *ldt) | 
|  | { | 
|  | if (likely(!ldt)) | 
|  | return; | 
|  |  | 
|  | paravirt_free_ldt(ldt->entries, ldt->nr_entries); | 
|  | if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE) | 
|  | vfree_atomic(ldt->entries); | 
|  | else | 
|  | free_page((unsigned long)ldt->entries); | 
|  | kfree(ldt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called on fork from arch_dup_mmap(). Just copy the current LDT state, | 
|  | * the new task is not running, so nothing can be installed. | 
|  | */ | 
|  | int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm) | 
|  | { | 
|  | struct ldt_struct *new_ldt; | 
|  | int retval = 0; | 
|  |  | 
|  | if (!old_mm) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&old_mm->context.lock); | 
|  | if (!old_mm->context.ldt) | 
|  | goto out_unlock; | 
|  |  | 
|  | new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries); | 
|  | if (!new_ldt) { | 
|  | retval = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | memcpy(new_ldt->entries, old_mm->context.ldt->entries, | 
|  | new_ldt->nr_entries * LDT_ENTRY_SIZE); | 
|  | finalize_ldt_struct(new_ldt); | 
|  |  | 
|  | retval = map_ldt_struct(mm, new_ldt, 0); | 
|  | if (retval) { | 
|  | free_ldt_pgtables(mm); | 
|  | free_ldt_struct(new_ldt); | 
|  | goto out_unlock; | 
|  | } | 
|  | mm->context.ldt = new_ldt; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&old_mm->context.lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No need to lock the MM as we are the last user | 
|  | * | 
|  | * 64bit: Don't touch the LDT register - we're already in the next thread. | 
|  | */ | 
|  | void destroy_context_ldt(struct mm_struct *mm) | 
|  | { | 
|  | free_ldt_struct(mm->context.ldt); | 
|  | mm->context.ldt = NULL; | 
|  | } | 
|  |  | 
|  | void ldt_arch_exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | free_ldt_pgtables(mm); | 
|  | } | 
|  |  | 
|  | static int read_ldt(void __user *ptr, unsigned long bytecount) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long entries_size; | 
|  | int retval; | 
|  |  | 
|  | down_read(&mm->context.ldt_usr_sem); | 
|  |  | 
|  | if (!mm->context.ldt) { | 
|  | retval = 0; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES) | 
|  | bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES; | 
|  |  | 
|  | entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE; | 
|  | if (entries_size > bytecount) | 
|  | entries_size = bytecount; | 
|  |  | 
|  | if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) { | 
|  | retval = -EFAULT; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (entries_size != bytecount) { | 
|  | /* Zero-fill the rest and pretend we read bytecount bytes. */ | 
|  | if (clear_user(ptr + entries_size, bytecount - entries_size)) { | 
|  | retval = -EFAULT; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  | retval = bytecount; | 
|  |  | 
|  | out_unlock: | 
|  | up_read(&mm->context.ldt_usr_sem); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int read_default_ldt(void __user *ptr, unsigned long bytecount) | 
|  | { | 
|  | /* CHECKME: Can we use _one_ random number ? */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | unsigned long size = 5 * sizeof(struct desc_struct); | 
|  | #else | 
|  | unsigned long size = 128; | 
|  | #endif | 
|  | if (bytecount > size) | 
|  | bytecount = size; | 
|  | if (clear_user(ptr, bytecount)) | 
|  | return -EFAULT; | 
|  | return bytecount; | 
|  | } | 
|  |  | 
|  | static bool allow_16bit_segments(void) | 
|  | { | 
|  | if (!IS_ENABLED(CONFIG_X86_16BIT)) | 
|  | return false; | 
|  |  | 
|  | #ifdef CONFIG_XEN_PV | 
|  | /* | 
|  | * Xen PV does not implement ESPFIX64, which means that 16-bit | 
|  | * segments will not work correctly.  Until either Xen PV implements | 
|  | * ESPFIX64 and can signal this fact to the guest or unless someone | 
|  | * provides compelling evidence that allowing broken 16-bit segments | 
|  | * is worthwhile, disallow 16-bit segments under Xen PV. | 
|  | */ | 
|  | if (xen_pv_domain()) { | 
|  | pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n"); | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct ldt_struct *new_ldt, *old_ldt; | 
|  | unsigned int old_nr_entries, new_nr_entries; | 
|  | struct user_desc ldt_info; | 
|  | struct desc_struct ldt; | 
|  | int error; | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (bytecount != sizeof(ldt_info)) | 
|  | goto out; | 
|  | error = -EFAULT; | 
|  | if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info))) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (ldt_info.entry_number >= LDT_ENTRIES) | 
|  | goto out; | 
|  | if (ldt_info.contents == 3) { | 
|  | if (oldmode) | 
|  | goto out; | 
|  | if (ldt_info.seg_not_present == 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) || | 
|  | LDT_empty(&ldt_info)) { | 
|  | /* The user wants to clear the entry. */ | 
|  | memset(&ldt, 0, sizeof(ldt)); | 
|  | } else { | 
|  | if (!ldt_info.seg_32bit && !allow_16bit_segments()) { | 
|  | error = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | fill_ldt(&ldt, &ldt_info); | 
|  | if (oldmode) | 
|  | ldt.avl = 0; | 
|  | } | 
|  |  | 
|  | if (down_write_killable(&mm->context.ldt_usr_sem)) | 
|  | return -EINTR; | 
|  |  | 
|  | old_ldt       = mm->context.ldt; | 
|  | old_nr_entries = old_ldt ? old_ldt->nr_entries : 0; | 
|  | new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries); | 
|  |  | 
|  | error = -ENOMEM; | 
|  | new_ldt = alloc_ldt_struct(new_nr_entries); | 
|  | if (!new_ldt) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (old_ldt) | 
|  | memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE); | 
|  |  | 
|  | new_ldt->entries[ldt_info.entry_number] = ldt; | 
|  | finalize_ldt_struct(new_ldt); | 
|  |  | 
|  | /* | 
|  | * If we are using PTI, map the new LDT into the userspace pagetables. | 
|  | * If there is already an LDT, use the other slot so that other CPUs | 
|  | * will continue to use the old LDT until install_ldt() switches | 
|  | * them over to the new LDT. | 
|  | */ | 
|  | error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0); | 
|  | if (error) { | 
|  | /* | 
|  | * This only can fail for the first LDT setup. If an LDT is | 
|  | * already installed then the PTE page is already | 
|  | * populated. Mop up a half populated page table. | 
|  | */ | 
|  | if (!WARN_ON_ONCE(old_ldt)) | 
|  | free_ldt_pgtables(mm); | 
|  | free_ldt_struct(new_ldt); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | install_ldt(mm, new_ldt); | 
|  | unmap_ldt_struct(mm, old_ldt); | 
|  | free_ldt_struct(old_ldt); | 
|  | error = 0; | 
|  |  | 
|  | out_unlock: | 
|  | up_write(&mm->context.ldt_usr_sem); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr , | 
|  | unsigned long , bytecount) | 
|  | { | 
|  | int ret = -ENOSYS; | 
|  |  | 
|  | switch (func) { | 
|  | case 0: | 
|  | ret = read_ldt(ptr, bytecount); | 
|  | break; | 
|  | case 1: | 
|  | ret = write_ldt(ptr, bytecount, 1); | 
|  | break; | 
|  | case 2: | 
|  | ret = read_default_ldt(ptr, bytecount); | 
|  | break; | 
|  | case 0x11: | 
|  | ret = write_ldt(ptr, bytecount, 0); | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * The SYSCALL_DEFINE() macros give us an 'unsigned long' | 
|  | * return type, but tht ABI for sys_modify_ldt() expects | 
|  | * 'int'.  This cast gives us an int-sized value in %rax | 
|  | * for the return code.  The 'unsigned' is necessary so | 
|  | * the compiler does not try to sign-extend the negative | 
|  | * return codes into the high half of the register when | 
|  | * taking the value from int->long. | 
|  | */ | 
|  | return (unsigned int)ret; | 
|  | } |