|  | // SPDX-License-Identifier: GPL-2.0-only | 
|  | /* Copyright (C) 2013 Cisco Systems, Inc, 2013. | 
|  | * | 
|  | * Author: Vijay Subramanian <vijaynsu@cisco.com> | 
|  | * Author: Mythili Prabhu <mysuryan@cisco.com> | 
|  | * | 
|  | * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no> | 
|  | * University of Oslo, Norway. | 
|  | * | 
|  | * References: | 
|  | * RFC 8033: https://tools.ietf.org/html/rfc8033 | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/pkt_sched.h> | 
|  | #include <net/inet_ecn.h> | 
|  | #include <net/pie.h> | 
|  |  | 
|  | /* private data for the Qdisc */ | 
|  | struct pie_sched_data { | 
|  | struct pie_vars vars; | 
|  | struct pie_params params; | 
|  | struct pie_stats stats; | 
|  | struct timer_list adapt_timer; | 
|  | struct Qdisc *sch; | 
|  | }; | 
|  |  | 
|  | bool pie_drop_early(struct Qdisc *sch, struct pie_params *params, | 
|  | struct pie_vars *vars, u32 backlog, u32 packet_size) | 
|  | { | 
|  | u64 rnd; | 
|  | u64 local_prob = vars->prob; | 
|  | u32 mtu = psched_mtu(qdisc_dev(sch)); | 
|  |  | 
|  | /* If there is still burst allowance left skip random early drop */ | 
|  | if (vars->burst_time > 0) | 
|  | return false; | 
|  |  | 
|  | /* If current delay is less than half of target, and | 
|  | * if drop prob is low already, disable early_drop | 
|  | */ | 
|  | if ((vars->qdelay < params->target / 2) && | 
|  | (vars->prob < MAX_PROB / 5)) | 
|  | return false; | 
|  |  | 
|  | /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early, | 
|  | * similar to min_th in RED | 
|  | */ | 
|  | if (backlog < 2 * mtu) | 
|  | return false; | 
|  |  | 
|  | /* If bytemode is turned on, use packet size to compute new | 
|  | * probablity. Smaller packets will have lower drop prob in this case | 
|  | */ | 
|  | if (params->bytemode && packet_size <= mtu) | 
|  | local_prob = (u64)packet_size * div_u64(local_prob, mtu); | 
|  | else | 
|  | local_prob = vars->prob; | 
|  |  | 
|  | if (local_prob == 0) | 
|  | vars->accu_prob = 0; | 
|  | else | 
|  | vars->accu_prob += local_prob; | 
|  |  | 
|  | if (vars->accu_prob < (MAX_PROB / 100) * 85) | 
|  | return false; | 
|  | if (vars->accu_prob >= (MAX_PROB / 2) * 17) | 
|  | return true; | 
|  |  | 
|  | prandom_bytes(&rnd, 8); | 
|  | if ((rnd >> BITS_PER_BYTE) < local_prob) { | 
|  | vars->accu_prob = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pie_drop_early); | 
|  |  | 
|  | static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch, | 
|  | struct sk_buff **to_free) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | bool enqueue = false; | 
|  |  | 
|  | if (unlikely(qdisc_qlen(sch) >= sch->limit)) { | 
|  | q->stats.overlimit++; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog, | 
|  | skb->len)) { | 
|  | enqueue = true; | 
|  | } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) && | 
|  | INET_ECN_set_ce(skb)) { | 
|  | /* If packet is ecn capable, mark it if drop probability | 
|  | * is lower than 10%, else drop it. | 
|  | */ | 
|  | q->stats.ecn_mark++; | 
|  | enqueue = true; | 
|  | } | 
|  |  | 
|  | /* we can enqueue the packet */ | 
|  | if (enqueue) { | 
|  | /* Set enqueue time only when dq_rate_estimator is disabled. */ | 
|  | if (!q->params.dq_rate_estimator) | 
|  | pie_set_enqueue_time(skb); | 
|  |  | 
|  | q->stats.packets_in++; | 
|  | if (qdisc_qlen(sch) > q->stats.maxq) | 
|  | q->stats.maxq = qdisc_qlen(sch); | 
|  |  | 
|  | return qdisc_enqueue_tail(skb, sch); | 
|  | } | 
|  |  | 
|  | out: | 
|  | q->stats.dropped++; | 
|  | q->vars.accu_prob = 0; | 
|  | return qdisc_drop(skb, sch, to_free); | 
|  | } | 
|  |  | 
|  | static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = { | 
|  | [TCA_PIE_TARGET]		= {.type = NLA_U32}, | 
|  | [TCA_PIE_LIMIT]			= {.type = NLA_U32}, | 
|  | [TCA_PIE_TUPDATE]		= {.type = NLA_U32}, | 
|  | [TCA_PIE_ALPHA]			= {.type = NLA_U32}, | 
|  | [TCA_PIE_BETA]			= {.type = NLA_U32}, | 
|  | [TCA_PIE_ECN]			= {.type = NLA_U32}, | 
|  | [TCA_PIE_BYTEMODE]		= {.type = NLA_U32}, | 
|  | [TCA_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32}, | 
|  | }; | 
|  |  | 
|  | static int pie_change(struct Qdisc *sch, struct nlattr *opt, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *tb[TCA_PIE_MAX + 1]; | 
|  | unsigned int qlen, dropped = 0; | 
|  | int err; | 
|  |  | 
|  | if (!opt) | 
|  | return -EINVAL; | 
|  |  | 
|  | err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy, | 
|  | NULL); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | sch_tree_lock(sch); | 
|  |  | 
|  | /* convert from microseconds to pschedtime */ | 
|  | if (tb[TCA_PIE_TARGET]) { | 
|  | /* target is in us */ | 
|  | u32 target = nla_get_u32(tb[TCA_PIE_TARGET]); | 
|  |  | 
|  | /* convert to pschedtime */ | 
|  | q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC); | 
|  | } | 
|  |  | 
|  | /* tupdate is in jiffies */ | 
|  | if (tb[TCA_PIE_TUPDATE]) | 
|  | q->params.tupdate = | 
|  | usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])); | 
|  |  | 
|  | if (tb[TCA_PIE_LIMIT]) { | 
|  | u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]); | 
|  |  | 
|  | q->params.limit = limit; | 
|  | sch->limit = limit; | 
|  | } | 
|  |  | 
|  | if (tb[TCA_PIE_ALPHA]) | 
|  | q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]); | 
|  |  | 
|  | if (tb[TCA_PIE_BETA]) | 
|  | q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]); | 
|  |  | 
|  | if (tb[TCA_PIE_ECN]) | 
|  | q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]); | 
|  |  | 
|  | if (tb[TCA_PIE_BYTEMODE]) | 
|  | q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]); | 
|  |  | 
|  | if (tb[TCA_PIE_DQ_RATE_ESTIMATOR]) | 
|  | q->params.dq_rate_estimator = | 
|  | nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]); | 
|  |  | 
|  | /* Drop excess packets if new limit is lower */ | 
|  | qlen = sch->q.qlen; | 
|  | while (sch->q.qlen > sch->limit) { | 
|  | struct sk_buff *skb = __qdisc_dequeue_head(&sch->q); | 
|  |  | 
|  | dropped += qdisc_pkt_len(skb); | 
|  | qdisc_qstats_backlog_dec(sch, skb); | 
|  | rtnl_qdisc_drop(skb, sch); | 
|  | } | 
|  | qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped); | 
|  |  | 
|  | sch_tree_unlock(sch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params, | 
|  | struct pie_vars *vars, u32 backlog) | 
|  | { | 
|  | psched_time_t now = psched_get_time(); | 
|  | u32 dtime = 0; | 
|  |  | 
|  | /* If dq_rate_estimator is disabled, calculate qdelay using the | 
|  | * packet timestamp. | 
|  | */ | 
|  | if (!params->dq_rate_estimator) { | 
|  | vars->qdelay = now - pie_get_enqueue_time(skb); | 
|  |  | 
|  | if (vars->dq_tstamp != DTIME_INVALID) | 
|  | dtime = now - vars->dq_tstamp; | 
|  |  | 
|  | vars->dq_tstamp = now; | 
|  |  | 
|  | if (backlog == 0) | 
|  | vars->qdelay = 0; | 
|  |  | 
|  | if (dtime == 0) | 
|  | return; | 
|  |  | 
|  | goto burst_allowance_reduction; | 
|  | } | 
|  |  | 
|  | /* If current queue is about 10 packets or more and dq_count is unset | 
|  | * we have enough packets to calculate the drain rate. Save | 
|  | * current time as dq_tstamp and start measurement cycle. | 
|  | */ | 
|  | if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) { | 
|  | vars->dq_tstamp = psched_get_time(); | 
|  | vars->dq_count = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the average drain rate from this value. If queue length | 
|  | * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset | 
|  | * the dq_count to -1 as we don't have enough packets to calculate the | 
|  | * drain rate anymore. The following if block is entered only when we | 
|  | * have a substantial queue built up (QUEUE_THRESHOLD bytes or more) | 
|  | * and we calculate the drain rate for the threshold here.  dq_count is | 
|  | * in bytes, time difference in psched_time, hence rate is in | 
|  | * bytes/psched_time. | 
|  | */ | 
|  | if (vars->dq_count != DQCOUNT_INVALID) { | 
|  | vars->dq_count += skb->len; | 
|  |  | 
|  | if (vars->dq_count >= QUEUE_THRESHOLD) { | 
|  | u32 count = vars->dq_count << PIE_SCALE; | 
|  |  | 
|  | dtime = now - vars->dq_tstamp; | 
|  |  | 
|  | if (dtime == 0) | 
|  | return; | 
|  |  | 
|  | count = count / dtime; | 
|  |  | 
|  | if (vars->avg_dq_rate == 0) | 
|  | vars->avg_dq_rate = count; | 
|  | else | 
|  | vars->avg_dq_rate = | 
|  | (vars->avg_dq_rate - | 
|  | (vars->avg_dq_rate >> 3)) + (count >> 3); | 
|  |  | 
|  | /* If the queue has receded below the threshold, we hold | 
|  | * on to the last drain rate calculated, else we reset | 
|  | * dq_count to 0 to re-enter the if block when the next | 
|  | * packet is dequeued | 
|  | */ | 
|  | if (backlog < QUEUE_THRESHOLD) { | 
|  | vars->dq_count = DQCOUNT_INVALID; | 
|  | } else { | 
|  | vars->dq_count = 0; | 
|  | vars->dq_tstamp = psched_get_time(); | 
|  | } | 
|  |  | 
|  | goto burst_allowance_reduction; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | burst_allowance_reduction: | 
|  | if (vars->burst_time > 0) { | 
|  | if (vars->burst_time > dtime) | 
|  | vars->burst_time -= dtime; | 
|  | else | 
|  | vars->burst_time = 0; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pie_process_dequeue); | 
|  |  | 
|  | void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars, | 
|  | u32 backlog) | 
|  | { | 
|  | psched_time_t qdelay = 0;	/* in pschedtime */ | 
|  | psched_time_t qdelay_old = 0;	/* in pschedtime */ | 
|  | s64 delta = 0;		/* determines the change in probability */ | 
|  | u64 oldprob; | 
|  | u64 alpha, beta; | 
|  | u32 power; | 
|  | bool update_prob = true; | 
|  |  | 
|  | if (params->dq_rate_estimator) { | 
|  | qdelay_old = vars->qdelay; | 
|  | vars->qdelay_old = vars->qdelay; | 
|  |  | 
|  | if (vars->avg_dq_rate > 0) | 
|  | qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate; | 
|  | else | 
|  | qdelay = 0; | 
|  | } else { | 
|  | qdelay = vars->qdelay; | 
|  | qdelay_old = vars->qdelay_old; | 
|  | } | 
|  |  | 
|  | /* If qdelay is zero and backlog is not, it means backlog is very small, | 
|  | * so we do not update probabilty in this round. | 
|  | */ | 
|  | if (qdelay == 0 && backlog != 0) | 
|  | update_prob = false; | 
|  |  | 
|  | /* In the algorithm, alpha and beta are between 0 and 2 with typical | 
|  | * value for alpha as 0.125. In this implementation, we use values 0-32 | 
|  | * passed from user space to represent this. Also, alpha and beta have | 
|  | * unit of HZ and need to be scaled before they can used to update | 
|  | * probability. alpha/beta are updated locally below by scaling down | 
|  | * by 16 to come to 0-2 range. | 
|  | */ | 
|  | alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; | 
|  | beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4; | 
|  |  | 
|  | /* We scale alpha and beta differently depending on how heavy the | 
|  | * congestion is. Please see RFC 8033 for details. | 
|  | */ | 
|  | if (vars->prob < MAX_PROB / 10) { | 
|  | alpha >>= 1; | 
|  | beta >>= 1; | 
|  |  | 
|  | power = 100; | 
|  | while (vars->prob < div_u64(MAX_PROB, power) && | 
|  | power <= 1000000) { | 
|  | alpha >>= 2; | 
|  | beta >>= 2; | 
|  | power *= 10; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* alpha and beta should be between 0 and 32, in multiples of 1/16 */ | 
|  | delta += alpha * (qdelay - params->target); | 
|  | delta += beta * (qdelay - qdelay_old); | 
|  |  | 
|  | oldprob = vars->prob; | 
|  |  | 
|  | /* to ensure we increase probability in steps of no more than 2% */ | 
|  | if (delta > (s64)(MAX_PROB / (100 / 2)) && | 
|  | vars->prob >= MAX_PROB / 10) | 
|  | delta = (MAX_PROB / 100) * 2; | 
|  |  | 
|  | /* Non-linear drop: | 
|  | * Tune drop probability to increase quickly for high delays(>= 250ms) | 
|  | * 250ms is derived through experiments and provides error protection | 
|  | */ | 
|  |  | 
|  | if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC))) | 
|  | delta += MAX_PROB / (100 / 2); | 
|  |  | 
|  | vars->prob += delta; | 
|  |  | 
|  | if (delta > 0) { | 
|  | /* prevent overflow */ | 
|  | if (vars->prob < oldprob) { | 
|  | vars->prob = MAX_PROB; | 
|  | /* Prevent normalization error. If probability is at | 
|  | * maximum value already, we normalize it here, and | 
|  | * skip the check to do a non-linear drop in the next | 
|  | * section. | 
|  | */ | 
|  | update_prob = false; | 
|  | } | 
|  | } else { | 
|  | /* prevent underflow */ | 
|  | if (vars->prob > oldprob) | 
|  | vars->prob = 0; | 
|  | } | 
|  |  | 
|  | /* Non-linear drop in probability: Reduce drop probability quickly if | 
|  | * delay is 0 for 2 consecutive Tupdate periods. | 
|  | */ | 
|  |  | 
|  | if (qdelay == 0 && qdelay_old == 0 && update_prob) | 
|  | /* Reduce drop probability to 98.4% */ | 
|  | vars->prob -= vars->prob / 64; | 
|  |  | 
|  | vars->qdelay = qdelay; | 
|  | vars->backlog_old = backlog; | 
|  |  | 
|  | /* We restart the measurement cycle if the following conditions are met | 
|  | * 1. If the delay has been low for 2 consecutive Tupdate periods | 
|  | * 2. Calculated drop probability is zero | 
|  | * 3. If average dq_rate_estimator is enabled, we have at least one | 
|  | *    estimate for the avg_dq_rate ie., is a non-zero value | 
|  | */ | 
|  | if ((vars->qdelay < params->target / 2) && | 
|  | (vars->qdelay_old < params->target / 2) && | 
|  | vars->prob == 0 && | 
|  | (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) { | 
|  | pie_vars_init(vars); | 
|  | } | 
|  |  | 
|  | if (!params->dq_rate_estimator) | 
|  | vars->qdelay_old = qdelay; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pie_calculate_probability); | 
|  |  | 
|  | static void pie_timer(struct timer_list *t) | 
|  | { | 
|  | struct pie_sched_data *q = from_timer(q, t, adapt_timer); | 
|  | struct Qdisc *sch = q->sch; | 
|  | spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch)); | 
|  |  | 
|  | spin_lock(root_lock); | 
|  | pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog); | 
|  |  | 
|  | /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */ | 
|  | if (q->params.tupdate) | 
|  | mod_timer(&q->adapt_timer, jiffies + q->params.tupdate); | 
|  | spin_unlock(root_lock); | 
|  | } | 
|  |  | 
|  | static int pie_init(struct Qdisc *sch, struct nlattr *opt, | 
|  | struct netlink_ext_ack *extack) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | pie_params_init(&q->params); | 
|  | pie_vars_init(&q->vars); | 
|  | sch->limit = q->params.limit; | 
|  |  | 
|  | q->sch = sch; | 
|  | timer_setup(&q->adapt_timer, pie_timer, 0); | 
|  |  | 
|  | if (opt) { | 
|  | int err = pie_change(sch, opt, extack); | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | mod_timer(&q->adapt_timer, jiffies + HZ / 2); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int pie_dump(struct Qdisc *sch, struct sk_buff *skb) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct nlattr *opts; | 
|  |  | 
|  | opts = nla_nest_start_noflag(skb, TCA_OPTIONS); | 
|  | if (!opts) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | /* convert target from pschedtime to us */ | 
|  | if (nla_put_u32(skb, TCA_PIE_TARGET, | 
|  | ((u32)PSCHED_TICKS2NS(q->params.target)) / | 
|  | NSEC_PER_USEC) || | 
|  | nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) || | 
|  | nla_put_u32(skb, TCA_PIE_TUPDATE, | 
|  | jiffies_to_usecs(q->params.tupdate)) || | 
|  | nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) || | 
|  | nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) || | 
|  | nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) || | 
|  | nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) || | 
|  | nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR, | 
|  | q->params.dq_rate_estimator)) | 
|  | goto nla_put_failure; | 
|  |  | 
|  | return nla_nest_end(skb, opts); | 
|  |  | 
|  | nla_put_failure: | 
|  | nla_nest_cancel(skb, opts); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct tc_pie_xstats st = { | 
|  | .prob		= q->vars.prob << BITS_PER_BYTE, | 
|  | .delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) / | 
|  | NSEC_PER_USEC, | 
|  | .packets_in	= q->stats.packets_in, | 
|  | .overlimit	= q->stats.overlimit, | 
|  | .maxq		= q->stats.maxq, | 
|  | .dropped	= q->stats.dropped, | 
|  | .ecn_mark	= q->stats.ecn_mark, | 
|  | }; | 
|  |  | 
|  | /* avg_dq_rate is only valid if dq_rate_estimator is enabled */ | 
|  | st.dq_rate_estimating = q->params.dq_rate_estimator; | 
|  |  | 
|  | /* unscale and return dq_rate in bytes per sec */ | 
|  | if (q->params.dq_rate_estimator) | 
|  | st.avg_dq_rate = q->vars.avg_dq_rate * | 
|  | (PSCHED_TICKS_PER_SEC) >> PIE_SCALE; | 
|  |  | 
|  | return gnet_stats_copy_app(d, &st, sizeof(st)); | 
|  | } | 
|  |  | 
|  | static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  | struct sk_buff *skb = qdisc_dequeue_head(sch); | 
|  |  | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog); | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | static void pie_reset(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | qdisc_reset_queue(sch); | 
|  | pie_vars_init(&q->vars); | 
|  | } | 
|  |  | 
|  | static void pie_destroy(struct Qdisc *sch) | 
|  | { | 
|  | struct pie_sched_data *q = qdisc_priv(sch); | 
|  |  | 
|  | q->params.tupdate = 0; | 
|  | del_timer_sync(&q->adapt_timer); | 
|  | } | 
|  |  | 
|  | static struct Qdisc_ops pie_qdisc_ops __read_mostly = { | 
|  | .id		= "pie", | 
|  | .priv_size	= sizeof(struct pie_sched_data), | 
|  | .enqueue	= pie_qdisc_enqueue, | 
|  | .dequeue	= pie_qdisc_dequeue, | 
|  | .peek		= qdisc_peek_dequeued, | 
|  | .init		= pie_init, | 
|  | .destroy	= pie_destroy, | 
|  | .reset		= pie_reset, | 
|  | .change		= pie_change, | 
|  | .dump		= pie_dump, | 
|  | .dump_stats	= pie_dump_stats, | 
|  | .owner		= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init pie_module_init(void) | 
|  | { | 
|  | return register_qdisc(&pie_qdisc_ops); | 
|  | } | 
|  |  | 
|  | static void __exit pie_module_exit(void) | 
|  | { | 
|  | unregister_qdisc(&pie_qdisc_ops); | 
|  | } | 
|  |  | 
|  | module_init(pie_module_init); | 
|  | module_exit(pie_module_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler"); | 
|  | MODULE_AUTHOR("Vijay Subramanian"); | 
|  | MODULE_AUTHOR("Mythili Prabhu"); | 
|  | MODULE_LICENSE("GPL"); |