blob: c80baf1ad90b2f0d3ec4cfd4a7cf3a94b1fe5d5c [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Marvell OcteonTX CPT driver
*
* Copyright (C) 2019 Marvell International Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include "otx_cptvf.h"
#include "otx_cptvf_algs.h"
/* Completion code size and initial value */
#define COMPLETION_CODE_SIZE 8
#define COMPLETION_CODE_INIT 0
/* SG list header size in bytes */
#define SG_LIST_HDR_SIZE 8
/* Default timeout when waiting for free pending entry in us */
#define CPT_PENTRY_TIMEOUT 1000
#define CPT_PENTRY_STEP 50
/* Default threshold for stopping and resuming sender requests */
#define CPT_IQ_STOP_MARGIN 128
#define CPT_IQ_RESUME_MARGIN 512
#define CPT_DMA_ALIGN 128
void otx_cpt_dump_sg_list(struct pci_dev *pdev, struct otx_cpt_req_info *req)
{
int i;
pr_debug("Gather list size %d\n", req->incnt);
for (i = 0; i < req->incnt; i++) {
pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
req->in[i].size, req->in[i].vptr,
(void *) req->in[i].dma_addr);
pr_debug("Buffer hexdump (%d bytes)\n",
req->in[i].size);
print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
req->in[i].vptr, req->in[i].size, false);
}
pr_debug("Scatter list size %d\n", req->outcnt);
for (i = 0; i < req->outcnt; i++) {
pr_debug("Buffer %d size %d, vptr 0x%p, dmaptr 0x%p\n", i,
req->out[i].size, req->out[i].vptr,
(void *) req->out[i].dma_addr);
pr_debug("Buffer hexdump (%d bytes)\n", req->out[i].size);
print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1,
req->out[i].vptr, req->out[i].size, false);
}
}
static inline struct otx_cpt_pending_entry *get_free_pending_entry(
struct otx_cpt_pending_queue *q,
int qlen)
{
struct otx_cpt_pending_entry *ent = NULL;
ent = &q->head[q->rear];
if (unlikely(ent->busy))
return NULL;
q->rear++;
if (unlikely(q->rear == qlen))
q->rear = 0;
return ent;
}
static inline u32 modulo_inc(u32 index, u32 length, u32 inc)
{
if (WARN_ON(inc > length))
inc = length;
index += inc;
if (unlikely(index >= length))
index -= length;
return index;
}
static inline void free_pentry(struct otx_cpt_pending_entry *pentry)
{
pentry->completion_addr = NULL;
pentry->info = NULL;
pentry->callback = NULL;
pentry->areq = NULL;
pentry->resume_sender = false;
pentry->busy = false;
}
static inline int setup_sgio_components(struct pci_dev *pdev,
struct otx_cpt_buf_ptr *list,
int buf_count, u8 *buffer)
{
struct otx_cpt_sglist_component *sg_ptr = NULL;
int ret = 0, i, j;
int components;
if (unlikely(!list)) {
dev_err(&pdev->dev, "Input list pointer is NULL\n");
return -EFAULT;
}
for (i = 0; i < buf_count; i++) {
if (likely(list[i].vptr)) {
list[i].dma_addr = dma_map_single(&pdev->dev,
list[i].vptr,
list[i].size,
DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev,
list[i].dma_addr))) {
dev_err(&pdev->dev, "Dma mapping failed\n");
ret = -EIO;
goto sg_cleanup;
}
}
}
components = buf_count / 4;
sg_ptr = (struct otx_cpt_sglist_component *)buffer;
for (i = 0; i < components; i++) {
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->u.s.len3 = cpu_to_be16(list[i * 4 + 3].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
sg_ptr->ptr3 = cpu_to_be64(list[i * 4 + 3].dma_addr);
sg_ptr++;
}
components = buf_count % 4;
switch (components) {
case 3:
sg_ptr->u.s.len2 = cpu_to_be16(list[i * 4 + 2].size);
sg_ptr->ptr2 = cpu_to_be64(list[i * 4 + 2].dma_addr);
fallthrough;
case 2:
sg_ptr->u.s.len1 = cpu_to_be16(list[i * 4 + 1].size);
sg_ptr->ptr1 = cpu_to_be64(list[i * 4 + 1].dma_addr);
fallthrough;
case 1:
sg_ptr->u.s.len0 = cpu_to_be16(list[i * 4 + 0].size);
sg_ptr->ptr0 = cpu_to_be64(list[i * 4 + 0].dma_addr);
break;
default:
break;
}
return ret;
sg_cleanup:
for (j = 0; j < i; j++) {
if (list[j].dma_addr) {
dma_unmap_single(&pdev->dev, list[i].dma_addr,
list[i].size, DMA_BIDIRECTIONAL);
}
list[j].dma_addr = 0;
}
return ret;
}
static inline int setup_sgio_list(struct pci_dev *pdev,
struct otx_cpt_info_buffer **pinfo,
struct otx_cpt_req_info *req, gfp_t gfp)
{
u32 dlen, align_dlen, info_len, rlen;
struct otx_cpt_info_buffer *info;
u16 g_sz_bytes, s_sz_bytes;
int align = CPT_DMA_ALIGN;
u32 total_mem_len;
if (unlikely(req->incnt > OTX_CPT_MAX_SG_IN_CNT ||
req->outcnt > OTX_CPT_MAX_SG_OUT_CNT)) {
dev_err(&pdev->dev, "Error too many sg components\n");
return -EINVAL;
}
g_sz_bytes = ((req->incnt + 3) / 4) *
sizeof(struct otx_cpt_sglist_component);
s_sz_bytes = ((req->outcnt + 3) / 4) *
sizeof(struct otx_cpt_sglist_component);
dlen = g_sz_bytes + s_sz_bytes + SG_LIST_HDR_SIZE;
align_dlen = ALIGN(dlen, align);
info_len = ALIGN(sizeof(*info), align);
rlen = ALIGN(sizeof(union otx_cpt_res_s), align);
total_mem_len = align_dlen + info_len + rlen + COMPLETION_CODE_SIZE;
info = kzalloc(total_mem_len, gfp);
if (unlikely(!info)) {
dev_err(&pdev->dev, "Memory allocation failed\n");
return -ENOMEM;
}
*pinfo = info;
info->dlen = dlen;
info->in_buffer = (u8 *)info + info_len;
((__be16 *)info->in_buffer)[0] = cpu_to_be16(req->outcnt);
((__be16 *)info->in_buffer)[1] = cpu_to_be16(req->incnt);
((u16 *)info->in_buffer)[2] = 0;
((u16 *)info->in_buffer)[3] = 0;
/* Setup gather (input) components */
if (setup_sgio_components(pdev, req->in, req->incnt,
&info->in_buffer[8])) {
dev_err(&pdev->dev, "Failed to setup gather list\n");
return -EFAULT;
}
if (setup_sgio_components(pdev, req->out, req->outcnt,
&info->in_buffer[8 + g_sz_bytes])) {
dev_err(&pdev->dev, "Failed to setup scatter list\n");
return -EFAULT;
}
info->dma_len = total_mem_len - info_len;
info->dptr_baddr = dma_map_single(&pdev->dev, (void *)info->in_buffer,
info->dma_len, DMA_BIDIRECTIONAL);
if (unlikely(dma_mapping_error(&pdev->dev, info->dptr_baddr))) {
dev_err(&pdev->dev, "DMA Mapping failed for cpt req\n");
return -EIO;
}
/*
* Get buffer for union otx_cpt_res_s response
* structure and its physical address
*/
info->completion_addr = (u64 *)(info->in_buffer + align_dlen);
info->comp_baddr = info->dptr_baddr + align_dlen;
/* Create and initialize RPTR */
info->out_buffer = (u8 *)info->completion_addr + rlen;
info->rptr_baddr = info->comp_baddr + rlen;
*((u64 *) info->out_buffer) = ~((u64) COMPLETION_CODE_INIT);
return 0;
}
static void cpt_fill_inst(union otx_cpt_inst_s *inst,
struct otx_cpt_info_buffer *info,
struct otx_cpt_iq_cmd *cmd)
{
inst->u[0] = 0x0;
inst->s.doneint = true;
inst->s.res_addr = (u64)info->comp_baddr;
inst->u[2] = 0x0;
inst->s.wq_ptr = 0;
inst->s.ei0 = cmd->cmd.u64;
inst->s.ei1 = cmd->dptr;
inst->s.ei2 = cmd->rptr;
inst->s.ei3 = cmd->cptr.u64;
}
/*
* On OcteonTX platform the parameter db_count is used as a count for ringing
* door bell. The valid values for db_count are:
* 0 - 1 CPT instruction will be enqueued however CPT will not be informed
* 1 - 1 CPT instruction will be enqueued and CPT will be informed
*/
static void cpt_send_cmd(union otx_cpt_inst_s *cptinst, struct otx_cptvf *cptvf)
{
struct otx_cpt_cmd_qinfo *qinfo = &cptvf->cqinfo;
struct otx_cpt_cmd_queue *queue;
struct otx_cpt_cmd_chunk *curr;
u8 *ent;
queue = &qinfo->queue[0];
/*
* cpt_send_cmd is currently called only from critical section
* therefore no locking is required for accessing instruction queue
*/
ent = &queue->qhead->head[queue->idx * OTX_CPT_INST_SIZE];
memcpy(ent, (void *) cptinst, OTX_CPT_INST_SIZE);
if (++queue->idx >= queue->qhead->size / 64) {
curr = queue->qhead;
if (list_is_last(&curr->nextchunk, &queue->chead))
queue->qhead = queue->base;
else
queue->qhead = list_next_entry(queue->qhead, nextchunk);
queue->idx = 0;
}
/* make sure all memory stores are done before ringing doorbell */
smp_wmb();
otx_cptvf_write_vq_doorbell(cptvf, 1);
}
static int process_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
struct otx_cpt_pending_queue *pqueue,
struct otx_cptvf *cptvf)
{
struct otx_cptvf_request *cpt_req = &req->req;
struct otx_cpt_pending_entry *pentry = NULL;
union otx_cpt_ctrl_info *ctrl = &req->ctrl;
struct otx_cpt_info_buffer *info = NULL;
union otx_cpt_res_s *result = NULL;
struct otx_cpt_iq_cmd iq_cmd;
union otx_cpt_inst_s cptinst;
int retry, ret = 0;
u8 resume_sender;
gfp_t gfp;
gfp = (req->areq->flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
GFP_ATOMIC;
ret = setup_sgio_list(pdev, &info, req, gfp);
if (unlikely(ret)) {
dev_err(&pdev->dev, "Setting up SG list failed\n");
goto request_cleanup;
}
cpt_req->dlen = info->dlen;
result = (union otx_cpt_res_s *) info->completion_addr;
result->s.compcode = COMPLETION_CODE_INIT;
spin_lock_bh(&pqueue->lock);
pentry = get_free_pending_entry(pqueue, pqueue->qlen);
retry = CPT_PENTRY_TIMEOUT / CPT_PENTRY_STEP;
while (unlikely(!pentry) && retry--) {
spin_unlock_bh(&pqueue->lock);
udelay(CPT_PENTRY_STEP);
spin_lock_bh(&pqueue->lock);
pentry = get_free_pending_entry(pqueue, pqueue->qlen);
}
if (unlikely(!pentry)) {
ret = -ENOSPC;
spin_unlock_bh(&pqueue->lock);
goto request_cleanup;
}
/*
* Check if we are close to filling in entire pending queue,
* if so then tell the sender to stop/sleep by returning -EBUSY
* We do it only for context which can sleep (GFP_KERNEL)
*/
if (gfp == GFP_KERNEL &&
pqueue->pending_count > (pqueue->qlen - CPT_IQ_STOP_MARGIN)) {
pentry->resume_sender = true;
} else
pentry->resume_sender = false;
resume_sender = pentry->resume_sender;
pqueue->pending_count++;
pentry->completion_addr = info->completion_addr;
pentry->info = info;
pentry->callback = req->callback;
pentry->areq = req->areq;
pentry->busy = true;
info->pentry = pentry;
info->time_in = jiffies;
info->req = req;
/* Fill in the command */
iq_cmd.cmd.u64 = 0;
iq_cmd.cmd.s.opcode = cpu_to_be16(cpt_req->opcode.flags);
iq_cmd.cmd.s.param1 = cpu_to_be16(cpt_req->param1);
iq_cmd.cmd.s.param2 = cpu_to_be16(cpt_req->param2);
iq_cmd.cmd.s.dlen = cpu_to_be16(cpt_req->dlen);
iq_cmd.dptr = info->dptr_baddr;
iq_cmd.rptr = info->rptr_baddr;
iq_cmd.cptr.u64 = 0;
iq_cmd.cptr.s.grp = ctrl->s.grp;
/* Fill in the CPT_INST_S type command for HW interpretation */
cpt_fill_inst(&cptinst, info, &iq_cmd);
/* Print debug info if enabled */
otx_cpt_dump_sg_list(pdev, req);
pr_debug("Cpt_inst_s hexdump (%d bytes)\n", OTX_CPT_INST_SIZE);
print_hex_dump_debug("", 0, 16, 1, &cptinst, OTX_CPT_INST_SIZE, false);
pr_debug("Dptr hexdump (%d bytes)\n", cpt_req->dlen);
print_hex_dump_debug("", 0, 16, 1, info->in_buffer,
cpt_req->dlen, false);
/* Send CPT command */
cpt_send_cmd(&cptinst, cptvf);
/*
* We allocate and prepare pending queue entry in critical section
* together with submitting CPT instruction to CPT instruction queue
* to make sure that order of CPT requests is the same in both
* pending and instruction queues
*/
spin_unlock_bh(&pqueue->lock);
ret = resume_sender ? -EBUSY : -EINPROGRESS;
return ret;
request_cleanup:
do_request_cleanup(pdev, info);
return ret;
}
int otx_cpt_do_request(struct pci_dev *pdev, struct otx_cpt_req_info *req,
int cpu_num)
{
struct otx_cptvf *cptvf = pci_get_drvdata(pdev);
if (!otx_cpt_device_ready(cptvf)) {
dev_err(&pdev->dev, "CPT Device is not ready\n");
return -ENODEV;
}
if ((cptvf->vftype == OTX_CPT_SE_TYPES) && (!req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of SE TYPE got AE request\n",
cptvf->vfid);
return -EINVAL;
} else if ((cptvf->vftype == OTX_CPT_AE_TYPES) &&
(req->ctrl.s.se_req)) {
dev_err(&pdev->dev, "CPTVF-%d of AE TYPE got SE request\n",
cptvf->vfid);
return -EINVAL;
}
return process_request(pdev, req, &cptvf->pqinfo.queue[0], cptvf);
}
static int cpt_process_ccode(struct pci_dev *pdev,
union otx_cpt_res_s *cpt_status,
struct otx_cpt_info_buffer *cpt_info,
struct otx_cpt_req_info *req, u32 *res_code)
{
u8 ccode = cpt_status->s.compcode;
union otx_cpt_error_code ecode;
ecode.u = be64_to_cpup((__be64 *)cpt_info->out_buffer);
switch (ccode) {
case CPT_COMP_E_FAULT:
dev_err(&pdev->dev,
"Request failed with DMA fault\n");
otx_cpt_dump_sg_list(pdev, req);
break;
case CPT_COMP_E_SWERR:
dev_err(&pdev->dev,
"Request failed with software error code %d\n",
ecode.s.ccode);
otx_cpt_dump_sg_list(pdev, req);
break;
case CPT_COMP_E_HWERR:
dev_err(&pdev->dev,
"Request failed with hardware error\n");
otx_cpt_dump_sg_list(pdev, req);
break;
case COMPLETION_CODE_INIT:
/* check for timeout */
if (time_after_eq(jiffies, cpt_info->time_in +
OTX_CPT_COMMAND_TIMEOUT * HZ))
dev_warn(&pdev->dev, "Request timed out 0x%p\n", req);
else if (cpt_info->extra_time < OTX_CPT_TIME_IN_RESET_COUNT) {
cpt_info->time_in = jiffies;
cpt_info->extra_time++;
}
return 1;
case CPT_COMP_E_GOOD:
/* Check microcode completion code */
if (ecode.s.ccode) {
/*
* If requested hmac is truncated and ucode returns
* s/g write length error then we report success
* because ucode writes as many bytes of calculated
* hmac as available in gather buffer and reports
* s/g write length error if number of bytes in gather
* buffer is less than full hmac size.
*/
if (req->is_trunc_hmac &&
ecode.s.ccode == ERR_SCATTER_GATHER_WRITE_LENGTH) {
*res_code = 0;
break;
}
dev_err(&pdev->dev,
"Request failed with software error code 0x%x\n",
ecode.s.ccode);
otx_cpt_dump_sg_list(pdev, req);
break;
}
/* Request has been processed with success */
*res_code = 0;
break;
default:
dev_err(&pdev->dev, "Request returned invalid status\n");
break;
}
return 0;
}
static inline void process_pending_queue(struct pci_dev *pdev,
struct otx_cpt_pending_queue *pqueue)
{
void (*callback)(int status, void *arg1, void *arg2);
struct otx_cpt_pending_entry *resume_pentry = NULL;
struct otx_cpt_pending_entry *pentry = NULL;
struct otx_cpt_info_buffer *cpt_info = NULL;
union otx_cpt_res_s *cpt_status = NULL;
struct otx_cpt_req_info *req = NULL;
struct crypto_async_request *areq;
u32 res_code, resume_index;
while (1) {
spin_lock_bh(&pqueue->lock);
pentry = &pqueue->head[pqueue->front];
if (WARN_ON(!pentry)) {
spin_unlock_bh(&pqueue->lock);
break;
}
res_code = -EINVAL;
if (unlikely(!pentry->busy)) {
spin_unlock_bh(&pqueue->lock);
break;
}
if (unlikely(!pentry->callback)) {
dev_err(&pdev->dev, "Callback NULL\n");
goto process_pentry;
}
cpt_info = pentry->info;
if (unlikely(!cpt_info)) {
dev_err(&pdev->dev, "Pending entry post arg NULL\n");
goto process_pentry;
}
req = cpt_info->req;
if (unlikely(!req)) {
dev_err(&pdev->dev, "Request NULL\n");
goto process_pentry;
}
cpt_status = (union otx_cpt_res_s *) pentry->completion_addr;
if (unlikely(!cpt_status)) {
dev_err(&pdev->dev, "Completion address NULL\n");
goto process_pentry;
}
if (cpt_process_ccode(pdev, cpt_status, cpt_info, req,
&res_code)) {
spin_unlock_bh(&pqueue->lock);
return;
}
cpt_info->pdev = pdev;
process_pentry:
/*
* Check if we should inform sending side to resume
* We do it CPT_IQ_RESUME_MARGIN elements in advance before
* pending queue becomes empty
*/
resume_index = modulo_inc(pqueue->front, pqueue->qlen,
CPT_IQ_RESUME_MARGIN);
resume_pentry = &pqueue->head[resume_index];
if (resume_pentry &&
resume_pentry->resume_sender) {
resume_pentry->resume_sender = false;
callback = resume_pentry->callback;
areq = resume_pentry->areq;
if (callback) {
spin_unlock_bh(&pqueue->lock);
/*
* EINPROGRESS is an indication for sending
* side that it can resume sending requests
*/
callback(-EINPROGRESS, areq, cpt_info);
spin_lock_bh(&pqueue->lock);
}
}
callback = pentry->callback;
areq = pentry->areq;
free_pentry(pentry);
pqueue->pending_count--;
pqueue->front = modulo_inc(pqueue->front, pqueue->qlen, 1);
spin_unlock_bh(&pqueue->lock);
/*
* Call callback after current pending entry has been
* processed, we don't do it if the callback pointer is
* invalid.
*/
if (callback)
callback(res_code, areq, cpt_info);
}
}
void otx_cpt_post_process(struct otx_cptvf_wqe *wqe)
{
process_pending_queue(wqe->cptvf->pdev, &wqe->cptvf->pqinfo.queue[0]);
}