| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright(c) 2013 - 2019 Intel Corporation. */ |
| |
| #include <linux/types.h> |
| #include <linux/module.h> |
| #include <net/ipv6.h> |
| #include <net/ip.h> |
| #include <net/tcp.h> |
| #include <linux/if_macvlan.h> |
| #include <linux/prefetch.h> |
| |
| #include "fm10k.h" |
| |
| #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver" |
| char fm10k_driver_name[] = "fm10k"; |
| static const char fm10k_driver_string[] = DRV_SUMMARY; |
| static const char fm10k_copyright[] = |
| "Copyright(c) 2013 - 2019 Intel Corporation."; |
| |
| MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); |
| MODULE_DESCRIPTION(DRV_SUMMARY); |
| MODULE_LICENSE("GPL v2"); |
| |
| /* single workqueue for entire fm10k driver */ |
| struct workqueue_struct *fm10k_workqueue; |
| |
| /** |
| * fm10k_init_module - Driver Registration Routine |
| * |
| * fm10k_init_module is the first routine called when the driver is |
| * loaded. All it does is register with the PCI subsystem. |
| **/ |
| static int __init fm10k_init_module(void) |
| { |
| int ret; |
| |
| pr_info("%s\n", fm10k_driver_string); |
| pr_info("%s\n", fm10k_copyright); |
| |
| /* create driver workqueue */ |
| fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, |
| fm10k_driver_name); |
| if (!fm10k_workqueue) |
| return -ENOMEM; |
| |
| fm10k_dbg_init(); |
| |
| ret = fm10k_register_pci_driver(); |
| if (ret) { |
| fm10k_dbg_exit(); |
| destroy_workqueue(fm10k_workqueue); |
| } |
| |
| return ret; |
| } |
| module_init(fm10k_init_module); |
| |
| /** |
| * fm10k_exit_module - Driver Exit Cleanup Routine |
| * |
| * fm10k_exit_module is called just before the driver is removed |
| * from memory. |
| **/ |
| static void __exit fm10k_exit_module(void) |
| { |
| fm10k_unregister_pci_driver(); |
| |
| fm10k_dbg_exit(); |
| |
| /* destroy driver workqueue */ |
| destroy_workqueue(fm10k_workqueue); |
| } |
| module_exit(fm10k_exit_module); |
| |
| static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring, |
| struct fm10k_rx_buffer *bi) |
| { |
| struct page *page = bi->page; |
| dma_addr_t dma; |
| |
| /* Only page will be NULL if buffer was consumed */ |
| if (likely(page)) |
| return true; |
| |
| /* alloc new page for storage */ |
| page = dev_alloc_page(); |
| if (unlikely(!page)) { |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| |
| /* map page for use */ |
| dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); |
| |
| /* if mapping failed free memory back to system since |
| * there isn't much point in holding memory we can't use |
| */ |
| if (dma_mapping_error(rx_ring->dev, dma)) { |
| __free_page(page); |
| |
| rx_ring->rx_stats.alloc_failed++; |
| return false; |
| } |
| |
| bi->dma = dma; |
| bi->page = page; |
| bi->page_offset = 0; |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_alloc_rx_buffers - Replace used receive buffers |
| * @rx_ring: ring to place buffers on |
| * @cleaned_count: number of buffers to replace |
| **/ |
| void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count) |
| { |
| union fm10k_rx_desc *rx_desc; |
| struct fm10k_rx_buffer *bi; |
| u16 i = rx_ring->next_to_use; |
| |
| /* nothing to do */ |
| if (!cleaned_count) |
| return; |
| |
| rx_desc = FM10K_RX_DESC(rx_ring, i); |
| bi = &rx_ring->rx_buffer[i]; |
| i -= rx_ring->count; |
| |
| do { |
| if (!fm10k_alloc_mapped_page(rx_ring, bi)) |
| break; |
| |
| /* Refresh the desc even if buffer_addrs didn't change |
| * because each write-back erases this info. |
| */ |
| rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); |
| |
| rx_desc++; |
| bi++; |
| i++; |
| if (unlikely(!i)) { |
| rx_desc = FM10K_RX_DESC(rx_ring, 0); |
| bi = rx_ring->rx_buffer; |
| i -= rx_ring->count; |
| } |
| |
| /* clear the status bits for the next_to_use descriptor */ |
| rx_desc->d.staterr = 0; |
| |
| cleaned_count--; |
| } while (cleaned_count); |
| |
| i += rx_ring->count; |
| |
| if (rx_ring->next_to_use != i) { |
| /* record the next descriptor to use */ |
| rx_ring->next_to_use = i; |
| |
| /* update next to alloc since we have filled the ring */ |
| rx_ring->next_to_alloc = i; |
| |
| /* Force memory writes to complete before letting h/w |
| * know there are new descriptors to fetch. (Only |
| * applicable for weak-ordered memory model archs, |
| * such as IA-64). |
| */ |
| wmb(); |
| |
| /* notify hardware of new descriptors */ |
| writel(i, rx_ring->tail); |
| } |
| } |
| |
| /** |
| * fm10k_reuse_rx_page - page flip buffer and store it back on the ring |
| * @rx_ring: rx descriptor ring to store buffers on |
| * @old_buff: donor buffer to have page reused |
| * |
| * Synchronizes page for reuse by the interface |
| **/ |
| static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring, |
| struct fm10k_rx_buffer *old_buff) |
| { |
| struct fm10k_rx_buffer *new_buff; |
| u16 nta = rx_ring->next_to_alloc; |
| |
| new_buff = &rx_ring->rx_buffer[nta]; |
| |
| /* update, and store next to alloc */ |
| nta++; |
| rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; |
| |
| /* transfer page from old buffer to new buffer */ |
| *new_buff = *old_buff; |
| |
| /* sync the buffer for use by the device */ |
| dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, |
| old_buff->page_offset, |
| FM10K_RX_BUFSZ, |
| DMA_FROM_DEVICE); |
| } |
| |
| static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer, |
| struct page *page, |
| unsigned int __maybe_unused truesize) |
| { |
| /* avoid re-using remote and pfmemalloc pages */ |
| if (!dev_page_is_reusable(page)) |
| return false; |
| |
| #if (PAGE_SIZE < 8192) |
| /* if we are only owner of page we can reuse it */ |
| if (unlikely(page_count(page) != 1)) |
| return false; |
| |
| /* flip page offset to other buffer */ |
| rx_buffer->page_offset ^= FM10K_RX_BUFSZ; |
| #else |
| /* move offset up to the next cache line */ |
| rx_buffer->page_offset += truesize; |
| |
| if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ)) |
| return false; |
| #endif |
| |
| /* Even if we own the page, we are not allowed to use atomic_set() |
| * This would break get_page_unless_zero() users. |
| */ |
| page_ref_inc(page); |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff |
| * @rx_buffer: buffer containing page to add |
| * @size: packet size from rx_desc |
| * @rx_desc: descriptor containing length of buffer written by hardware |
| * @skb: sk_buff to place the data into |
| * |
| * This function will add the data contained in rx_buffer->page to the skb. |
| * This is done either through a direct copy if the data in the buffer is |
| * less than the skb header size, otherwise it will just attach the page as |
| * a frag to the skb. |
| * |
| * The function will then update the page offset if necessary and return |
| * true if the buffer can be reused by the interface. |
| **/ |
| static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer, |
| unsigned int size, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct page *page = rx_buffer->page; |
| unsigned char *va = page_address(page) + rx_buffer->page_offset; |
| #if (PAGE_SIZE < 8192) |
| unsigned int truesize = FM10K_RX_BUFSZ; |
| #else |
| unsigned int truesize = ALIGN(size, 512); |
| #endif |
| unsigned int pull_len; |
| |
| if (unlikely(skb_is_nonlinear(skb))) |
| goto add_tail_frag; |
| |
| if (likely(size <= FM10K_RX_HDR_LEN)) { |
| memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); |
| |
| /* page is reusable, we can reuse buffer as-is */ |
| if (dev_page_is_reusable(page)) |
| return true; |
| |
| /* this page cannot be reused so discard it */ |
| __free_page(page); |
| return false; |
| } |
| |
| /* we need the header to contain the greater of either ETH_HLEN or |
| * 60 bytes if the skb->len is less than 60 for skb_pad. |
| */ |
| pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN); |
| |
| /* align pull length to size of long to optimize memcpy performance */ |
| memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); |
| |
| /* update all of the pointers */ |
| va += pull_len; |
| size -= pull_len; |
| |
| add_tail_frag: |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, |
| (unsigned long)va & ~PAGE_MASK, size, truesize); |
| |
| return fm10k_can_reuse_rx_page(rx_buffer, page, truesize); |
| } |
| |
| static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| unsigned int size = le16_to_cpu(rx_desc->w.length); |
| struct fm10k_rx_buffer *rx_buffer; |
| struct page *page; |
| |
| rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean]; |
| page = rx_buffer->page; |
| prefetchw(page); |
| |
| if (likely(!skb)) { |
| void *page_addr = page_address(page) + |
| rx_buffer->page_offset; |
| |
| /* prefetch first cache line of first page */ |
| net_prefetch(page_addr); |
| |
| /* allocate a skb to store the frags */ |
| skb = napi_alloc_skb(&rx_ring->q_vector->napi, |
| FM10K_RX_HDR_LEN); |
| if (unlikely(!skb)) { |
| rx_ring->rx_stats.alloc_failed++; |
| return NULL; |
| } |
| |
| /* we will be copying header into skb->data in |
| * pskb_may_pull so it is in our interest to prefetch |
| * it now to avoid a possible cache miss |
| */ |
| prefetchw(skb->data); |
| } |
| |
| /* we are reusing so sync this buffer for CPU use */ |
| dma_sync_single_range_for_cpu(rx_ring->dev, |
| rx_buffer->dma, |
| rx_buffer->page_offset, |
| size, |
| DMA_FROM_DEVICE); |
| |
| /* pull page into skb */ |
| if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) { |
| /* hand second half of page back to the ring */ |
| fm10k_reuse_rx_page(rx_ring, rx_buffer); |
| } else { |
| /* we are not reusing the buffer so unmap it */ |
| dma_unmap_page(rx_ring->dev, rx_buffer->dma, |
| PAGE_SIZE, DMA_FROM_DEVICE); |
| } |
| |
| /* clear contents of rx_buffer */ |
| rx_buffer->page = NULL; |
| |
| return skb; |
| } |
| |
| static inline void fm10k_rx_checksum(struct fm10k_ring *ring, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| skb_checksum_none_assert(skb); |
| |
| /* Rx checksum disabled via ethtool */ |
| if (!(ring->netdev->features & NETIF_F_RXCSUM)) |
| return; |
| |
| /* TCP/UDP checksum error bit is set */ |
| if (fm10k_test_staterr(rx_desc, |
| FM10K_RXD_STATUS_L4E | |
| FM10K_RXD_STATUS_L4E2 | |
| FM10K_RXD_STATUS_IPE | |
| FM10K_RXD_STATUS_IPE2)) { |
| ring->rx_stats.csum_err++; |
| return; |
| } |
| |
| /* It must be a TCP or UDP packet with a valid checksum */ |
| if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2)) |
| skb->encapsulation = true; |
| else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS)) |
| return; |
| |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| |
| ring->rx_stats.csum_good++; |
| } |
| |
| #define FM10K_RSS_L4_TYPES_MASK \ |
| (BIT(FM10K_RSSTYPE_IPV4_TCP) | \ |
| BIT(FM10K_RSSTYPE_IPV4_UDP) | \ |
| BIT(FM10K_RSSTYPE_IPV6_TCP) | \ |
| BIT(FM10K_RSSTYPE_IPV6_UDP)) |
| |
| static inline void fm10k_rx_hash(struct fm10k_ring *ring, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| u16 rss_type; |
| |
| if (!(ring->netdev->features & NETIF_F_RXHASH)) |
| return; |
| |
| rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK; |
| if (!rss_type) |
| return; |
| |
| skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss), |
| (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ? |
| PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); |
| } |
| |
| static void fm10k_type_trans(struct fm10k_ring *rx_ring, |
| union fm10k_rx_desc __maybe_unused *rx_desc, |
| struct sk_buff *skb) |
| { |
| struct net_device *dev = rx_ring->netdev; |
| struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel); |
| |
| /* check to see if DGLORT belongs to a MACVLAN */ |
| if (l2_accel) { |
| u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1; |
| |
| idx -= l2_accel->dglort; |
| if (idx < l2_accel->size && l2_accel->macvlan[idx]) |
| dev = l2_accel->macvlan[idx]; |
| else |
| l2_accel = NULL; |
| } |
| |
| /* Record Rx queue, or update macvlan statistics */ |
| if (!l2_accel) |
| skb_record_rx_queue(skb, rx_ring->queue_index); |
| else |
| macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true, |
| false); |
| |
| skb->protocol = eth_type_trans(skb, dev); |
| } |
| |
| /** |
| * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being populated |
| * |
| * This function checks the ring, descriptor, and packet information in |
| * order to populate the hash, checksum, VLAN, timestamp, protocol, and |
| * other fields within the skb. |
| **/ |
| static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| unsigned int len = skb->len; |
| |
| fm10k_rx_hash(rx_ring, rx_desc, skb); |
| |
| fm10k_rx_checksum(rx_ring, rx_desc, skb); |
| |
| FM10K_CB(skb)->tstamp = rx_desc->q.timestamp; |
| |
| FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan; |
| |
| FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort; |
| |
| if (rx_desc->w.vlan) { |
| u16 vid = le16_to_cpu(rx_desc->w.vlan); |
| |
| if ((vid & VLAN_VID_MASK) != rx_ring->vid) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); |
| else if (vid & VLAN_PRIO_MASK) |
| __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), |
| vid & VLAN_PRIO_MASK); |
| } |
| |
| fm10k_type_trans(rx_ring, rx_desc, skb); |
| |
| return len; |
| } |
| |
| /** |
| * fm10k_is_non_eop - process handling of non-EOP buffers |
| * @rx_ring: Rx ring being processed |
| * @rx_desc: Rx descriptor for current buffer |
| * |
| * This function updates next to clean. If the buffer is an EOP buffer |
| * this function exits returning false, otherwise it will place the |
| * sk_buff in the next buffer to be chained and return true indicating |
| * that this is in fact a non-EOP buffer. |
| **/ |
| static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring, |
| union fm10k_rx_desc *rx_desc) |
| { |
| u32 ntc = rx_ring->next_to_clean + 1; |
| |
| /* fetch, update, and store next to clean */ |
| ntc = (ntc < rx_ring->count) ? ntc : 0; |
| rx_ring->next_to_clean = ntc; |
| |
| prefetch(FM10K_RX_DESC(rx_ring, ntc)); |
| |
| if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP))) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_cleanup_headers - Correct corrupted or empty headers |
| * @rx_ring: rx descriptor ring packet is being transacted on |
| * @rx_desc: pointer to the EOP Rx descriptor |
| * @skb: pointer to current skb being fixed |
| * |
| * Address the case where we are pulling data in on pages only |
| * and as such no data is present in the skb header. |
| * |
| * In addition if skb is not at least 60 bytes we need to pad it so that |
| * it is large enough to qualify as a valid Ethernet frame. |
| * |
| * Returns true if an error was encountered and skb was freed. |
| **/ |
| static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring, |
| union fm10k_rx_desc *rx_desc, |
| struct sk_buff *skb) |
| { |
| if (unlikely((fm10k_test_staterr(rx_desc, |
| FM10K_RXD_STATUS_RXE)))) { |
| #define FM10K_TEST_RXD_BIT(rxd, bit) \ |
| ((rxd)->w.csum_err & cpu_to_le16(bit)) |
| if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR)) |
| rx_ring->rx_stats.switch_errors++; |
| if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR)) |
| rx_ring->rx_stats.drops++; |
| if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR)) |
| rx_ring->rx_stats.pp_errors++; |
| if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY)) |
| rx_ring->rx_stats.link_errors++; |
| if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG)) |
| rx_ring->rx_stats.length_errors++; |
| dev_kfree_skb_any(skb); |
| rx_ring->rx_stats.errors++; |
| return true; |
| } |
| |
| /* if eth_skb_pad returns an error the skb was freed */ |
| if (eth_skb_pad(skb)) |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * fm10k_receive_skb - helper function to handle rx indications |
| * @q_vector: structure containing interrupt and ring information |
| * @skb: packet to send up |
| **/ |
| static void fm10k_receive_skb(struct fm10k_q_vector *q_vector, |
| struct sk_buff *skb) |
| { |
| napi_gro_receive(&q_vector->napi, skb); |
| } |
| |
| static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector, |
| struct fm10k_ring *rx_ring, |
| int budget) |
| { |
| struct sk_buff *skb = rx_ring->skb; |
| unsigned int total_bytes = 0, total_packets = 0; |
| u16 cleaned_count = fm10k_desc_unused(rx_ring); |
| |
| while (likely(total_packets < budget)) { |
| union fm10k_rx_desc *rx_desc; |
| |
| /* return some buffers to hardware, one at a time is too slow */ |
| if (cleaned_count >= FM10K_RX_BUFFER_WRITE) { |
| fm10k_alloc_rx_buffers(rx_ring, cleaned_count); |
| cleaned_count = 0; |
| } |
| |
| rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean); |
| |
| if (!rx_desc->d.staterr) |
| break; |
| |
| /* This memory barrier is needed to keep us from reading |
| * any other fields out of the rx_desc until we know the |
| * descriptor has been written back |
| */ |
| dma_rmb(); |
| |
| /* retrieve a buffer from the ring */ |
| skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb); |
| |
| /* exit if we failed to retrieve a buffer */ |
| if (!skb) |
| break; |
| |
| cleaned_count++; |
| |
| /* fetch next buffer in frame if non-eop */ |
| if (fm10k_is_non_eop(rx_ring, rx_desc)) |
| continue; |
| |
| /* verify the packet layout is correct */ |
| if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) { |
| skb = NULL; |
| continue; |
| } |
| |
| /* populate checksum, timestamp, VLAN, and protocol */ |
| total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb); |
| |
| fm10k_receive_skb(q_vector, skb); |
| |
| /* reset skb pointer */ |
| skb = NULL; |
| |
| /* update budget accounting */ |
| total_packets++; |
| } |
| |
| /* place incomplete frames back on ring for completion */ |
| rx_ring->skb = skb; |
| |
| u64_stats_update_begin(&rx_ring->syncp); |
| rx_ring->stats.packets += total_packets; |
| rx_ring->stats.bytes += total_bytes; |
| u64_stats_update_end(&rx_ring->syncp); |
| q_vector->rx.total_packets += total_packets; |
| q_vector->rx.total_bytes += total_bytes; |
| |
| return total_packets; |
| } |
| |
| #define VXLAN_HLEN (sizeof(struct udphdr) + 8) |
| static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb) |
| { |
| struct fm10k_intfc *interface = netdev_priv(skb->dev); |
| |
| if (interface->vxlan_port != udp_hdr(skb)->dest) |
| return NULL; |
| |
| /* return offset of udp_hdr plus 8 bytes for VXLAN header */ |
| return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN); |
| } |
| |
| #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF) |
| #define NVGRE_TNI htons(0x2000) |
| struct fm10k_nvgre_hdr { |
| __be16 flags; |
| __be16 proto; |
| __be32 tni; |
| }; |
| |
| static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb) |
| { |
| struct fm10k_nvgre_hdr *nvgre_hdr; |
| int hlen = ip_hdrlen(skb); |
| |
| /* currently only IPv4 is supported due to hlen above */ |
| if (vlan_get_protocol(skb) != htons(ETH_P_IP)) |
| return NULL; |
| |
| /* our transport header should be NVGRE */ |
| nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen); |
| |
| /* verify all reserved flags are 0 */ |
| if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS) |
| return NULL; |
| |
| /* report start of ethernet header */ |
| if (nvgre_hdr->flags & NVGRE_TNI) |
| return (struct ethhdr *)(nvgre_hdr + 1); |
| |
| return (struct ethhdr *)(&nvgre_hdr->tni); |
| } |
| |
| __be16 fm10k_tx_encap_offload(struct sk_buff *skb) |
| { |
| u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen; |
| struct ethhdr *eth_hdr; |
| |
| if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || |
| skb->inner_protocol != htons(ETH_P_TEB)) |
| return 0; |
| |
| switch (vlan_get_protocol(skb)) { |
| case htons(ETH_P_IP): |
| l4_hdr = ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| l4_hdr = ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (l4_hdr) { |
| case IPPROTO_UDP: |
| eth_hdr = fm10k_port_is_vxlan(skb); |
| break; |
| case IPPROTO_GRE: |
| eth_hdr = fm10k_gre_is_nvgre(skb); |
| break; |
| default: |
| return 0; |
| } |
| |
| if (!eth_hdr) |
| return 0; |
| |
| switch (eth_hdr->h_proto) { |
| case htons(ETH_P_IP): |
| inner_l4_hdr = inner_ip_hdr(skb)->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr; |
| break; |
| default: |
| return 0; |
| } |
| |
| switch (inner_l4_hdr) { |
| case IPPROTO_TCP: |
| inner_l4_hlen = inner_tcp_hdrlen(skb); |
| break; |
| case IPPROTO_UDP: |
| inner_l4_hlen = 8; |
| break; |
| default: |
| return 0; |
| } |
| |
| /* The hardware allows tunnel offloads only if the combined inner and |
| * outer header is 184 bytes or less |
| */ |
| if (skb_inner_transport_header(skb) + inner_l4_hlen - |
| skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH) |
| return 0; |
| |
| return eth_hdr->h_proto; |
| } |
| |
| static int fm10k_tso(struct fm10k_ring *tx_ring, |
| struct fm10k_tx_buffer *first) |
| { |
| struct sk_buff *skb = first->skb; |
| struct fm10k_tx_desc *tx_desc; |
| unsigned char *th; |
| u8 hdrlen; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| return 0; |
| |
| if (!skb_is_gso(skb)) |
| return 0; |
| |
| /* compute header lengths */ |
| if (skb->encapsulation) { |
| if (!fm10k_tx_encap_offload(skb)) |
| goto err_vxlan; |
| th = skb_inner_transport_header(skb); |
| } else { |
| th = skb_transport_header(skb); |
| } |
| |
| /* compute offset from SOF to transport header and add header len */ |
| hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2); |
| |
| first->tx_flags |= FM10K_TX_FLAGS_CSUM; |
| |
| /* update gso size and bytecount with header size */ |
| first->gso_segs = skb_shinfo(skb)->gso_segs; |
| first->bytecount += (first->gso_segs - 1) * hdrlen; |
| |
| /* populate Tx descriptor header size and mss */ |
| tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); |
| tx_desc->hdrlen = hdrlen; |
| tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size); |
| |
| return 1; |
| |
| err_vxlan: |
| tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL; |
| if (net_ratelimit()) |
| netdev_err(tx_ring->netdev, |
| "TSO requested for unsupported tunnel, disabling offload\n"); |
| return -1; |
| } |
| |
| static void fm10k_tx_csum(struct fm10k_ring *tx_ring, |
| struct fm10k_tx_buffer *first) |
| { |
| struct sk_buff *skb = first->skb; |
| struct fm10k_tx_desc *tx_desc; |
| union { |
| struct iphdr *ipv4; |
| struct ipv6hdr *ipv6; |
| u8 *raw; |
| } network_hdr; |
| u8 *transport_hdr; |
| __be16 frag_off; |
| __be16 protocol; |
| u8 l4_hdr = 0; |
| |
| if (skb->ip_summed != CHECKSUM_PARTIAL) |
| goto no_csum; |
| |
| if (skb->encapsulation) { |
| protocol = fm10k_tx_encap_offload(skb); |
| if (!protocol) { |
| if (skb_checksum_help(skb)) { |
| dev_warn(tx_ring->dev, |
| "failed to offload encap csum!\n"); |
| tx_ring->tx_stats.csum_err++; |
| } |
| goto no_csum; |
| } |
| network_hdr.raw = skb_inner_network_header(skb); |
| transport_hdr = skb_inner_transport_header(skb); |
| } else { |
| protocol = vlan_get_protocol(skb); |
| network_hdr.raw = skb_network_header(skb); |
| transport_hdr = skb_transport_header(skb); |
| } |
| |
| switch (protocol) { |
| case htons(ETH_P_IP): |
| l4_hdr = network_hdr.ipv4->protocol; |
| break; |
| case htons(ETH_P_IPV6): |
| l4_hdr = network_hdr.ipv6->nexthdr; |
| if (likely((transport_hdr - network_hdr.raw) == |
| sizeof(struct ipv6hdr))) |
| break; |
| ipv6_skip_exthdr(skb, network_hdr.raw - skb->data + |
| sizeof(struct ipv6hdr), |
| &l4_hdr, &frag_off); |
| if (unlikely(frag_off)) |
| l4_hdr = NEXTHDR_FRAGMENT; |
| break; |
| default: |
| break; |
| } |
| |
| switch (l4_hdr) { |
| case IPPROTO_TCP: |
| case IPPROTO_UDP: |
| break; |
| case IPPROTO_GRE: |
| if (skb->encapsulation) |
| break; |
| fallthrough; |
| default: |
| if (unlikely(net_ratelimit())) { |
| dev_warn(tx_ring->dev, |
| "partial checksum, version=%d l4 proto=%x\n", |
| protocol, l4_hdr); |
| } |
| skb_checksum_help(skb); |
| tx_ring->tx_stats.csum_err++; |
| goto no_csum; |
| } |
| |
| /* update TX checksum flag */ |
| first->tx_flags |= FM10K_TX_FLAGS_CSUM; |
| tx_ring->tx_stats.csum_good++; |
| |
| no_csum: |
| /* populate Tx descriptor header size and mss */ |
| tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use); |
| tx_desc->hdrlen = 0; |
| tx_desc->mss = 0; |
| } |
| |
| #define FM10K_SET_FLAG(_input, _flag, _result) \ |
| ((_flag <= _result) ? \ |
| ((u32)(_input & _flag) * (_result / _flag)) : \ |
| ((u32)(_input & _flag) / (_flag / _result))) |
| |
| static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags) |
| { |
| /* set type for advanced descriptor with frame checksum insertion */ |
| u32 desc_flags = 0; |
| |
| /* set checksum offload bits */ |
| desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM, |
| FM10K_TXD_FLAG_CSUM); |
| |
| return desc_flags; |
| } |
| |
| static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring, |
| struct fm10k_tx_desc *tx_desc, u16 i, |
| dma_addr_t dma, unsigned int size, u8 desc_flags) |
| { |
| /* set RS and INT for last frame in a cache line */ |
| if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0) |
| desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT; |
| |
| /* record values to descriptor */ |
| tx_desc->buffer_addr = cpu_to_le64(dma); |
| tx_desc->flags = desc_flags; |
| tx_desc->buflen = cpu_to_le16(size); |
| |
| /* return true if we just wrapped the ring */ |
| return i == tx_ring->count; |
| } |
| |
| static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) |
| { |
| netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| |
| /* Memory barrier before checking head and tail */ |
| smp_mb(); |
| |
| /* Check again in a case another CPU has just made room available */ |
| if (likely(fm10k_desc_unused(tx_ring) < size)) |
| return -EBUSY; |
| |
| /* A reprieve! - use start_queue because it doesn't call schedule */ |
| netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| return 0; |
| } |
| |
| static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size) |
| { |
| if (likely(fm10k_desc_unused(tx_ring) >= size)) |
| return 0; |
| return __fm10k_maybe_stop_tx(tx_ring, size); |
| } |
| |
| static void fm10k_tx_map(struct fm10k_ring *tx_ring, |
| struct fm10k_tx_buffer *first) |
| { |
| struct sk_buff *skb = first->skb; |
| struct fm10k_tx_buffer *tx_buffer; |
| struct fm10k_tx_desc *tx_desc; |
| skb_frag_t *frag; |
| unsigned char *data; |
| dma_addr_t dma; |
| unsigned int data_len, size; |
| u32 tx_flags = first->tx_flags; |
| u16 i = tx_ring->next_to_use; |
| u8 flags = fm10k_tx_desc_flags(skb, tx_flags); |
| |
| tx_desc = FM10K_TX_DESC(tx_ring, i); |
| |
| /* add HW VLAN tag */ |
| if (skb_vlan_tag_present(skb)) |
| tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); |
| else |
| tx_desc->vlan = 0; |
| |
| size = skb_headlen(skb); |
| data = skb->data; |
| |
| dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE); |
| |
| data_len = skb->data_len; |
| tx_buffer = first; |
| |
| for (frag = &skb_shinfo(skb)->frags[0];; frag++) { |
| if (dma_mapping_error(tx_ring->dev, dma)) |
| goto dma_error; |
| |
| /* record length, and DMA address */ |
| dma_unmap_len_set(tx_buffer, len, size); |
| dma_unmap_addr_set(tx_buffer, dma, dma); |
| |
| while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) { |
| if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma, |
| FM10K_MAX_DATA_PER_TXD, flags)) { |
| tx_desc = FM10K_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| dma += FM10K_MAX_DATA_PER_TXD; |
| size -= FM10K_MAX_DATA_PER_TXD; |
| } |
| |
| if (likely(!data_len)) |
| break; |
| |
| if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, |
| dma, size, flags)) { |
| tx_desc = FM10K_TX_DESC(tx_ring, 0); |
| i = 0; |
| } |
| |
| size = skb_frag_size(frag); |
| data_len -= size; |
| |
| dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, |
| DMA_TO_DEVICE); |
| |
| tx_buffer = &tx_ring->tx_buffer[i]; |
| } |
| |
| /* write last descriptor with LAST bit set */ |
| flags |= FM10K_TXD_FLAG_LAST; |
| |
| if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags)) |
| i = 0; |
| |
| /* record bytecount for BQL */ |
| netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); |
| |
| /* record SW timestamp if HW timestamp is not available */ |
| skb_tx_timestamp(first->skb); |
| |
| /* Force memory writes to complete before letting h/w know there |
| * are new descriptors to fetch. (Only applicable for weak-ordered |
| * memory model archs, such as IA-64). |
| * |
| * We also need this memory barrier to make certain all of the |
| * status bits have been updated before next_to_watch is written. |
| */ |
| wmb(); |
| |
| /* set next_to_watch value indicating a packet is present */ |
| first->next_to_watch = tx_desc; |
| |
| tx_ring->next_to_use = i; |
| |
| /* Make sure there is space in the ring for the next send. */ |
| fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED); |
| |
| /* notify HW of packet */ |
| if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) { |
| writel(i, tx_ring->tail); |
| } |
| |
| return; |
| dma_error: |
| dev_err(tx_ring->dev, "TX DMA map failed\n"); |
| |
| /* clear dma mappings for failed tx_buffer map */ |
| for (;;) { |
| tx_buffer = &tx_ring->tx_buffer[i]; |
| fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); |
| if (tx_buffer == first) |
| break; |
| if (i == 0) |
| i = tx_ring->count; |
| i--; |
| } |
| |
| tx_ring->next_to_use = i; |
| } |
| |
| netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb, |
| struct fm10k_ring *tx_ring) |
| { |
| u16 count = TXD_USE_COUNT(skb_headlen(skb)); |
| struct fm10k_tx_buffer *first; |
| unsigned short f; |
| u32 tx_flags = 0; |
| int tso; |
| |
| /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD, |
| * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD, |
| * + 2 desc gap to keep tail from touching head |
| * otherwise try next time |
| */ |
| for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { |
| skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; |
| |
| count += TXD_USE_COUNT(skb_frag_size(frag)); |
| } |
| |
| if (fm10k_maybe_stop_tx(tx_ring, count + 3)) { |
| tx_ring->tx_stats.tx_busy++; |
| return NETDEV_TX_BUSY; |
| } |
| |
| /* record the location of the first descriptor for this packet */ |
| first = &tx_ring->tx_buffer[tx_ring->next_to_use]; |
| first->skb = skb; |
| first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN); |
| first->gso_segs = 1; |
| |
| /* record initial flags and protocol */ |
| first->tx_flags = tx_flags; |
| |
| tso = fm10k_tso(tx_ring, first); |
| if (tso < 0) |
| goto out_drop; |
| else if (!tso) |
| fm10k_tx_csum(tx_ring, first); |
| |
| fm10k_tx_map(tx_ring, first); |
| |
| return NETDEV_TX_OK; |
| |
| out_drop: |
| dev_kfree_skb_any(first->skb); |
| first->skb = NULL; |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static u64 fm10k_get_tx_completed(struct fm10k_ring *ring) |
| { |
| return ring->stats.packets; |
| } |
| |
| /** |
| * fm10k_get_tx_pending - how many Tx descriptors not processed |
| * @ring: the ring structure |
| * @in_sw: is tx_pending being checked in SW or in HW? |
| */ |
| u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw) |
| { |
| struct fm10k_intfc *interface = ring->q_vector->interface; |
| struct fm10k_hw *hw = &interface->hw; |
| u32 head, tail; |
| |
| if (likely(in_sw)) { |
| head = ring->next_to_clean; |
| tail = ring->next_to_use; |
| } else { |
| head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx)); |
| tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx)); |
| } |
| |
| return ((head <= tail) ? tail : tail + ring->count) - head; |
| } |
| |
| bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring) |
| { |
| u32 tx_done = fm10k_get_tx_completed(tx_ring); |
| u32 tx_done_old = tx_ring->tx_stats.tx_done_old; |
| u32 tx_pending = fm10k_get_tx_pending(tx_ring, true); |
| |
| clear_check_for_tx_hang(tx_ring); |
| |
| /* Check for a hung queue, but be thorough. This verifies |
| * that a transmit has been completed since the previous |
| * check AND there is at least one packet pending. By |
| * requiring this to fail twice we avoid races with |
| * clearing the ARMED bit and conditions where we |
| * run the check_tx_hang logic with a transmit completion |
| * pending but without time to complete it yet. |
| */ |
| if (!tx_pending || (tx_done_old != tx_done)) { |
| /* update completed stats and continue */ |
| tx_ring->tx_stats.tx_done_old = tx_done; |
| /* reset the countdown */ |
| clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); |
| |
| return false; |
| } |
| |
| /* make sure it is true for two checks in a row */ |
| return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state); |
| } |
| |
| /** |
| * fm10k_tx_timeout_reset - initiate reset due to Tx timeout |
| * @interface: driver private struct |
| **/ |
| void fm10k_tx_timeout_reset(struct fm10k_intfc *interface) |
| { |
| /* Do the reset outside of interrupt context */ |
| if (!test_bit(__FM10K_DOWN, interface->state)) { |
| interface->tx_timeout_count++; |
| set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags); |
| fm10k_service_event_schedule(interface); |
| } |
| } |
| |
| /** |
| * fm10k_clean_tx_irq - Reclaim resources after transmit completes |
| * @q_vector: structure containing interrupt and ring information |
| * @tx_ring: tx ring to clean |
| * @napi_budget: Used to determine if we are in netpoll |
| **/ |
| static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector, |
| struct fm10k_ring *tx_ring, int napi_budget) |
| { |
| struct fm10k_intfc *interface = q_vector->interface; |
| struct fm10k_tx_buffer *tx_buffer; |
| struct fm10k_tx_desc *tx_desc; |
| unsigned int total_bytes = 0, total_packets = 0; |
| unsigned int budget = q_vector->tx.work_limit; |
| unsigned int i = tx_ring->next_to_clean; |
| |
| if (test_bit(__FM10K_DOWN, interface->state)) |
| return true; |
| |
| tx_buffer = &tx_ring->tx_buffer[i]; |
| tx_desc = FM10K_TX_DESC(tx_ring, i); |
| i -= tx_ring->count; |
| |
| do { |
| struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch; |
| |
| /* if next_to_watch is not set then there is no work pending */ |
| if (!eop_desc) |
| break; |
| |
| /* prevent any other reads prior to eop_desc */ |
| smp_rmb(); |
| |
| /* if DD is not set pending work has not been completed */ |
| if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE)) |
| break; |
| |
| /* clear next_to_watch to prevent false hangs */ |
| tx_buffer->next_to_watch = NULL; |
| |
| /* update the statistics for this packet */ |
| total_bytes += tx_buffer->bytecount; |
| total_packets += tx_buffer->gso_segs; |
| |
| /* free the skb */ |
| napi_consume_skb(tx_buffer->skb, napi_budget); |
| |
| /* unmap skb header data */ |
| dma_unmap_single(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| |
| /* clear tx_buffer data */ |
| tx_buffer->skb = NULL; |
| dma_unmap_len_set(tx_buffer, len, 0); |
| |
| /* unmap remaining buffers */ |
| while (tx_desc != eop_desc) { |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer; |
| tx_desc = FM10K_TX_DESC(tx_ring, 0); |
| } |
| |
| /* unmap any remaining paged data */ |
| if (dma_unmap_len(tx_buffer, len)) { |
| dma_unmap_page(tx_ring->dev, |
| dma_unmap_addr(tx_buffer, dma), |
| dma_unmap_len(tx_buffer, len), |
| DMA_TO_DEVICE); |
| dma_unmap_len_set(tx_buffer, len, 0); |
| } |
| } |
| |
| /* move us one more past the eop_desc for start of next pkt */ |
| tx_buffer++; |
| tx_desc++; |
| i++; |
| if (unlikely(!i)) { |
| i -= tx_ring->count; |
| tx_buffer = tx_ring->tx_buffer; |
| tx_desc = FM10K_TX_DESC(tx_ring, 0); |
| } |
| |
| /* issue prefetch for next Tx descriptor */ |
| prefetch(tx_desc); |
| |
| /* update budget accounting */ |
| budget--; |
| } while (likely(budget)); |
| |
| i += tx_ring->count; |
| tx_ring->next_to_clean = i; |
| u64_stats_update_begin(&tx_ring->syncp); |
| tx_ring->stats.bytes += total_bytes; |
| tx_ring->stats.packets += total_packets; |
| u64_stats_update_end(&tx_ring->syncp); |
| q_vector->tx.total_bytes += total_bytes; |
| q_vector->tx.total_packets += total_packets; |
| |
| if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) { |
| /* schedule immediate reset if we believe we hung */ |
| struct fm10k_hw *hw = &interface->hw; |
| |
| netif_err(interface, drv, tx_ring->netdev, |
| "Detected Tx Unit Hang\n" |
| " Tx Queue <%d>\n" |
| " TDH, TDT <%x>, <%x>\n" |
| " next_to_use <%x>\n" |
| " next_to_clean <%x>\n", |
| tx_ring->queue_index, |
| fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)), |
| fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)), |
| tx_ring->next_to_use, i); |
| |
| netif_stop_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| |
| netif_info(interface, probe, tx_ring->netdev, |
| "tx hang %d detected on queue %d, resetting interface\n", |
| interface->tx_timeout_count + 1, |
| tx_ring->queue_index); |
| |
| fm10k_tx_timeout_reset(interface); |
| |
| /* the netdev is about to reset, no point in enabling stuff */ |
| return true; |
| } |
| |
| /* notify netdev of completed buffers */ |
| netdev_tx_completed_queue(txring_txq(tx_ring), |
| total_packets, total_bytes); |
| |
| #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2) |
| if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && |
| (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { |
| /* Make sure that anybody stopping the queue after this |
| * sees the new next_to_clean. |
| */ |
| smp_mb(); |
| if (__netif_subqueue_stopped(tx_ring->netdev, |
| tx_ring->queue_index) && |
| !test_bit(__FM10K_DOWN, interface->state)) { |
| netif_wake_subqueue(tx_ring->netdev, |
| tx_ring->queue_index); |
| ++tx_ring->tx_stats.restart_queue; |
| } |
| } |
| |
| return !!budget; |
| } |
| |
| /** |
| * fm10k_update_itr - update the dynamic ITR value based on packet size |
| * |
| * Stores a new ITR value based on strictly on packet size. The |
| * divisors and thresholds used by this function were determined based |
| * on theoretical maximum wire speed and testing data, in order to |
| * minimize response time while increasing bulk throughput. |
| * |
| * @ring_container: Container for rings to have ITR updated |
| **/ |
| static void fm10k_update_itr(struct fm10k_ring_container *ring_container) |
| { |
| unsigned int avg_wire_size, packets, itr_round; |
| |
| /* Only update ITR if we are using adaptive setting */ |
| if (!ITR_IS_ADAPTIVE(ring_container->itr)) |
| goto clear_counts; |
| |
| packets = ring_container->total_packets; |
| if (!packets) |
| goto clear_counts; |
| |
| avg_wire_size = ring_container->total_bytes / packets; |
| |
| /* The following is a crude approximation of: |
| * wmem_default / (size + overhead) = desired_pkts_per_int |
| * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate |
| * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value |
| * |
| * Assuming wmem_default is 212992 and overhead is 640 bytes per |
| * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the |
| * formula down to |
| * |
| * (34 * (size + 24)) / (size + 640) = ITR |
| * |
| * We first do some math on the packet size and then finally bitshift |
| * by 8 after rounding up. We also have to account for PCIe link speed |
| * difference as ITR scales based on this. |
| */ |
| if (avg_wire_size <= 360) { |
| /* Start at 250K ints/sec and gradually drop to 77K ints/sec */ |
| avg_wire_size *= 8; |
| avg_wire_size += 376; |
| } else if (avg_wire_size <= 1152) { |
| /* 77K ints/sec to 45K ints/sec */ |
| avg_wire_size *= 3; |
| avg_wire_size += 2176; |
| } else if (avg_wire_size <= 1920) { |
| /* 45K ints/sec to 38K ints/sec */ |
| avg_wire_size += 4480; |
| } else { |
| /* plateau at a limit of 38K ints/sec */ |
| avg_wire_size = 6656; |
| } |
| |
| /* Perform final bitshift for division after rounding up to ensure |
| * that the calculation will never get below a 1. The bit shift |
| * accounts for changes in the ITR due to PCIe link speed. |
| */ |
| itr_round = READ_ONCE(ring_container->itr_scale) + 8; |
| avg_wire_size += BIT(itr_round) - 1; |
| avg_wire_size >>= itr_round; |
| |
| /* write back value and retain adaptive flag */ |
| ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE; |
| |
| clear_counts: |
| ring_container->total_bytes = 0; |
| ring_container->total_packets = 0; |
| } |
| |
| static void fm10k_qv_enable(struct fm10k_q_vector *q_vector) |
| { |
| /* Enable auto-mask and clear the current mask */ |
| u32 itr = FM10K_ITR_ENABLE; |
| |
| /* Update Tx ITR */ |
| fm10k_update_itr(&q_vector->tx); |
| |
| /* Update Rx ITR */ |
| fm10k_update_itr(&q_vector->rx); |
| |
| /* Store Tx itr in timer slot 0 */ |
| itr |= (q_vector->tx.itr & FM10K_ITR_MAX); |
| |
| /* Shift Rx itr to timer slot 1 */ |
| itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT; |
| |
| /* Write the final value to the ITR register */ |
| writel(itr, q_vector->itr); |
| } |
| |
| static int fm10k_poll(struct napi_struct *napi, int budget) |
| { |
| struct fm10k_q_vector *q_vector = |
| container_of(napi, struct fm10k_q_vector, napi); |
| struct fm10k_ring *ring; |
| int per_ring_budget, work_done = 0; |
| bool clean_complete = true; |
| |
| fm10k_for_each_ring(ring, q_vector->tx) { |
| if (!fm10k_clean_tx_irq(q_vector, ring, budget)) |
| clean_complete = false; |
| } |
| |
| /* Handle case where we are called by netpoll with a budget of 0 */ |
| if (budget <= 0) |
| return budget; |
| |
| /* attempt to distribute budget to each queue fairly, but don't |
| * allow the budget to go below 1 because we'll exit polling |
| */ |
| if (q_vector->rx.count > 1) |
| per_ring_budget = max(budget / q_vector->rx.count, 1); |
| else |
| per_ring_budget = budget; |
| |
| fm10k_for_each_ring(ring, q_vector->rx) { |
| int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget); |
| |
| work_done += work; |
| if (work >= per_ring_budget) |
| clean_complete = false; |
| } |
| |
| /* If all work not completed, return budget and keep polling */ |
| if (!clean_complete) |
| return budget; |
| |
| /* Exit the polling mode, but don't re-enable interrupts if stack might |
| * poll us due to busy-polling |
| */ |
| if (likely(napi_complete_done(napi, work_done))) |
| fm10k_qv_enable(q_vector); |
| |
| return min(work_done, budget - 1); |
| } |
| |
| /** |
| * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device |
| * @interface: board private structure to initialize |
| * |
| * When QoS (Quality of Service) is enabled, allocate queues for |
| * each traffic class. If multiqueue isn't available,then abort QoS |
| * initialization. |
| * |
| * This function handles all combinations of Qos and RSS. |
| * |
| **/ |
| static bool fm10k_set_qos_queues(struct fm10k_intfc *interface) |
| { |
| struct net_device *dev = interface->netdev; |
| struct fm10k_ring_feature *f; |
| int rss_i, i; |
| int pcs; |
| |
| /* Map queue offset and counts onto allocated tx queues */ |
| pcs = netdev_get_num_tc(dev); |
| |
| if (pcs <= 1) |
| return false; |
| |
| /* set QoS mask and indices */ |
| f = &interface->ring_feature[RING_F_QOS]; |
| f->indices = pcs; |
| f->mask = BIT(fls(pcs - 1)) - 1; |
| |
| /* determine the upper limit for our current DCB mode */ |
| rss_i = interface->hw.mac.max_queues / pcs; |
| rss_i = BIT(fls(rss_i) - 1); |
| |
| /* set RSS mask and indices */ |
| f = &interface->ring_feature[RING_F_RSS]; |
| rss_i = min_t(u16, rss_i, f->limit); |
| f->indices = rss_i; |
| f->mask = BIT(fls(rss_i - 1)) - 1; |
| |
| /* configure pause class to queue mapping */ |
| for (i = 0; i < pcs; i++) |
| netdev_set_tc_queue(dev, i, rss_i, rss_i * i); |
| |
| interface->num_rx_queues = rss_i * pcs; |
| interface->num_tx_queues = rss_i * pcs; |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_set_rss_queues: Allocate queues for RSS |
| * @interface: board private structure to initialize |
| * |
| * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try |
| * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU. |
| * |
| **/ |
| static bool fm10k_set_rss_queues(struct fm10k_intfc *interface) |
| { |
| struct fm10k_ring_feature *f; |
| u16 rss_i; |
| |
| f = &interface->ring_feature[RING_F_RSS]; |
| rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit); |
| |
| /* record indices and power of 2 mask for RSS */ |
| f->indices = rss_i; |
| f->mask = BIT(fls(rss_i - 1)) - 1; |
| |
| interface->num_rx_queues = rss_i; |
| interface->num_tx_queues = rss_i; |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_set_num_queues: Allocate queues for device, feature dependent |
| * @interface: board private structure to initialize |
| * |
| * This is the top level queue allocation routine. The order here is very |
| * important, starting with the "most" number of features turned on at once, |
| * and ending with the smallest set of features. This way large combinations |
| * can be allocated if they're turned on, and smaller combinations are the |
| * fall through conditions. |
| * |
| **/ |
| static void fm10k_set_num_queues(struct fm10k_intfc *interface) |
| { |
| /* Attempt to setup QoS and RSS first */ |
| if (fm10k_set_qos_queues(interface)) |
| return; |
| |
| /* If we don't have QoS, just fallback to only RSS. */ |
| fm10k_set_rss_queues(interface); |
| } |
| |
| /** |
| * fm10k_reset_num_queues - Reset the number of queues to zero |
| * @interface: board private structure |
| * |
| * This function should be called whenever we need to reset the number of |
| * queues after an error condition. |
| */ |
| static void fm10k_reset_num_queues(struct fm10k_intfc *interface) |
| { |
| interface->num_tx_queues = 0; |
| interface->num_rx_queues = 0; |
| interface->num_q_vectors = 0; |
| } |
| |
| /** |
| * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector |
| * @interface: board private structure to initialize |
| * @v_count: q_vectors allocated on interface, used for ring interleaving |
| * @v_idx: index of vector in interface struct |
| * @txr_count: total number of Tx rings to allocate |
| * @txr_idx: index of first Tx ring to allocate |
| * @rxr_count: total number of Rx rings to allocate |
| * @rxr_idx: index of first Rx ring to allocate |
| * |
| * We allocate one q_vector. If allocation fails we return -ENOMEM. |
| **/ |
| static int fm10k_alloc_q_vector(struct fm10k_intfc *interface, |
| unsigned int v_count, unsigned int v_idx, |
| unsigned int txr_count, unsigned int txr_idx, |
| unsigned int rxr_count, unsigned int rxr_idx) |
| { |
| struct fm10k_q_vector *q_vector; |
| struct fm10k_ring *ring; |
| int ring_count; |
| |
| ring_count = txr_count + rxr_count; |
| |
| /* allocate q_vector and rings */ |
| q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL); |
| if (!q_vector) |
| return -ENOMEM; |
| |
| /* initialize NAPI */ |
| netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll); |
| |
| /* tie q_vector and interface together */ |
| interface->q_vector[v_idx] = q_vector; |
| q_vector->interface = interface; |
| q_vector->v_idx = v_idx; |
| |
| /* initialize pointer to rings */ |
| ring = q_vector->ring; |
| |
| /* save Tx ring container info */ |
| q_vector->tx.ring = ring; |
| q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK; |
| q_vector->tx.itr = interface->tx_itr; |
| q_vector->tx.itr_scale = interface->hw.mac.itr_scale; |
| q_vector->tx.count = txr_count; |
| |
| while (txr_count) { |
| /* assign generic ring traits */ |
| ring->dev = &interface->pdev->dev; |
| ring->netdev = interface->netdev; |
| |
| /* configure backlink on ring */ |
| ring->q_vector = q_vector; |
| |
| /* apply Tx specific ring traits */ |
| ring->count = interface->tx_ring_count; |
| ring->queue_index = txr_idx; |
| |
| /* assign ring to interface */ |
| interface->tx_ring[txr_idx] = ring; |
| |
| /* update count and index */ |
| txr_count--; |
| txr_idx += v_count; |
| |
| /* push pointer to next ring */ |
| ring++; |
| } |
| |
| /* save Rx ring container info */ |
| q_vector->rx.ring = ring; |
| q_vector->rx.itr = interface->rx_itr; |
| q_vector->rx.itr_scale = interface->hw.mac.itr_scale; |
| q_vector->rx.count = rxr_count; |
| |
| while (rxr_count) { |
| /* assign generic ring traits */ |
| ring->dev = &interface->pdev->dev; |
| ring->netdev = interface->netdev; |
| rcu_assign_pointer(ring->l2_accel, interface->l2_accel); |
| |
| /* configure backlink on ring */ |
| ring->q_vector = q_vector; |
| |
| /* apply Rx specific ring traits */ |
| ring->count = interface->rx_ring_count; |
| ring->queue_index = rxr_idx; |
| |
| /* assign ring to interface */ |
| interface->rx_ring[rxr_idx] = ring; |
| |
| /* update count and index */ |
| rxr_count--; |
| rxr_idx += v_count; |
| |
| /* push pointer to next ring */ |
| ring++; |
| } |
| |
| fm10k_dbg_q_vector_init(q_vector); |
| |
| return 0; |
| } |
| |
| /** |
| * fm10k_free_q_vector - Free memory allocated for specific interrupt vector |
| * @interface: board private structure to initialize |
| * @v_idx: Index of vector to be freed |
| * |
| * This function frees the memory allocated to the q_vector. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx) |
| { |
| struct fm10k_q_vector *q_vector = interface->q_vector[v_idx]; |
| struct fm10k_ring *ring; |
| |
| fm10k_dbg_q_vector_exit(q_vector); |
| |
| fm10k_for_each_ring(ring, q_vector->tx) |
| interface->tx_ring[ring->queue_index] = NULL; |
| |
| fm10k_for_each_ring(ring, q_vector->rx) |
| interface->rx_ring[ring->queue_index] = NULL; |
| |
| interface->q_vector[v_idx] = NULL; |
| netif_napi_del(&q_vector->napi); |
| kfree_rcu(q_vector, rcu); |
| } |
| |
| /** |
| * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors |
| * @interface: board private structure to initialize |
| * |
| * We allocate one q_vector per queue interrupt. If allocation fails we |
| * return -ENOMEM. |
| **/ |
| static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface) |
| { |
| unsigned int q_vectors = interface->num_q_vectors; |
| unsigned int rxr_remaining = interface->num_rx_queues; |
| unsigned int txr_remaining = interface->num_tx_queues; |
| unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0; |
| int err; |
| |
| if (q_vectors >= (rxr_remaining + txr_remaining)) { |
| for (; rxr_remaining; v_idx++) { |
| err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, |
| 0, 0, 1, rxr_idx); |
| if (err) |
| goto err_out; |
| |
| /* update counts and index */ |
| rxr_remaining--; |
| rxr_idx++; |
| } |
| } |
| |
| for (; v_idx < q_vectors; v_idx++) { |
| int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); |
| int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); |
| |
| err = fm10k_alloc_q_vector(interface, q_vectors, v_idx, |
| tqpv, txr_idx, |
| rqpv, rxr_idx); |
| |
| if (err) |
| goto err_out; |
| |
| /* update counts and index */ |
| rxr_remaining -= rqpv; |
| txr_remaining -= tqpv; |
| rxr_idx++; |
| txr_idx++; |
| } |
| |
| return 0; |
| |
| err_out: |
| fm10k_reset_num_queues(interface); |
| |
| while (v_idx--) |
| fm10k_free_q_vector(interface, v_idx); |
| |
| return -ENOMEM; |
| } |
| |
| /** |
| * fm10k_free_q_vectors - Free memory allocated for interrupt vectors |
| * @interface: board private structure to initialize |
| * |
| * This function frees the memory allocated to the q_vectors. In addition if |
| * NAPI is enabled it will delete any references to the NAPI struct prior |
| * to freeing the q_vector. |
| **/ |
| static void fm10k_free_q_vectors(struct fm10k_intfc *interface) |
| { |
| int v_idx = interface->num_q_vectors; |
| |
| fm10k_reset_num_queues(interface); |
| |
| while (v_idx--) |
| fm10k_free_q_vector(interface, v_idx); |
| } |
| |
| /** |
| * fm10k_reset_msix_capability - reset MSI-X capability |
| * @interface: board private structure to initialize |
| * |
| * Reset the MSI-X capability back to its starting state |
| **/ |
| static void fm10k_reset_msix_capability(struct fm10k_intfc *interface) |
| { |
| pci_disable_msix(interface->pdev); |
| kfree(interface->msix_entries); |
| interface->msix_entries = NULL; |
| } |
| |
| /** |
| * fm10k_init_msix_capability - configure MSI-X capability |
| * @interface: board private structure to initialize |
| * |
| * Attempt to configure the interrupts using the best available |
| * capabilities of the hardware and the kernel. |
| **/ |
| static int fm10k_init_msix_capability(struct fm10k_intfc *interface) |
| { |
| struct fm10k_hw *hw = &interface->hw; |
| int v_budget, vector; |
| |
| /* It's easy to be greedy for MSI-X vectors, but it really |
| * doesn't do us much good if we have a lot more vectors |
| * than CPU's. So let's be conservative and only ask for |
| * (roughly) the same number of vectors as there are CPU's. |
| * the default is to use pairs of vectors |
| */ |
| v_budget = max(interface->num_rx_queues, interface->num_tx_queues); |
| v_budget = min_t(u16, v_budget, num_online_cpus()); |
| |
| /* account for vectors not related to queues */ |
| v_budget += NON_Q_VECTORS; |
| |
| /* At the same time, hardware can only support a maximum of |
| * hw.mac->max_msix_vectors vectors. With features |
| * such as RSS and VMDq, we can easily surpass the number of Rx and Tx |
| * descriptor queues supported by our device. Thus, we cap it off in |
| * those rare cases where the cpu count also exceeds our vector limit. |
| */ |
| v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors); |
| |
| /* A failure in MSI-X entry allocation is fatal. */ |
| interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry), |
| GFP_KERNEL); |
| if (!interface->msix_entries) |
| return -ENOMEM; |
| |
| /* populate entry values */ |
| for (vector = 0; vector < v_budget; vector++) |
| interface->msix_entries[vector].entry = vector; |
| |
| /* Attempt to enable MSI-X with requested value */ |
| v_budget = pci_enable_msix_range(interface->pdev, |
| interface->msix_entries, |
| MIN_MSIX_COUNT(hw), |
| v_budget); |
| if (v_budget < 0) { |
| kfree(interface->msix_entries); |
| interface->msix_entries = NULL; |
| return v_budget; |
| } |
| |
| /* record the number of queues available for q_vectors */ |
| interface->num_q_vectors = v_budget - NON_Q_VECTORS; |
| |
| return 0; |
| } |
| |
| /** |
| * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS |
| * @interface: Interface structure continaining rings and devices |
| * |
| * Cache the descriptor ring offsets for Qos |
| **/ |
| static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface) |
| { |
| struct net_device *dev = interface->netdev; |
| int pc, offset, rss_i, i; |
| u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1; |
| u8 num_pcs = netdev_get_num_tc(dev); |
| |
| if (num_pcs <= 1) |
| return false; |
| |
| rss_i = interface->ring_feature[RING_F_RSS].indices; |
| |
| for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) { |
| int q_idx = pc; |
| |
| for (i = 0; i < rss_i; i++) { |
| interface->tx_ring[offset + i]->reg_idx = q_idx; |
| interface->tx_ring[offset + i]->qos_pc = pc; |
| interface->rx_ring[offset + i]->reg_idx = q_idx; |
| interface->rx_ring[offset + i]->qos_pc = pc; |
| q_idx += pc_stride; |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS |
| * @interface: Interface structure continaining rings and devices |
| * |
| * Cache the descriptor ring offsets for RSS |
| **/ |
| static void fm10k_cache_ring_rss(struct fm10k_intfc *interface) |
| { |
| int i; |
| |
| for (i = 0; i < interface->num_rx_queues; i++) |
| interface->rx_ring[i]->reg_idx = i; |
| |
| for (i = 0; i < interface->num_tx_queues; i++) |
| interface->tx_ring[i]->reg_idx = i; |
| } |
| |
| /** |
| * fm10k_assign_rings - Map rings to network devices |
| * @interface: Interface structure containing rings and devices |
| * |
| * This function is meant to go though and configure both the network |
| * devices so that they contain rings, and configure the rings so that |
| * they function with their network devices. |
| **/ |
| static void fm10k_assign_rings(struct fm10k_intfc *interface) |
| { |
| if (fm10k_cache_ring_qos(interface)) |
| return; |
| |
| fm10k_cache_ring_rss(interface); |
| } |
| |
| static void fm10k_init_reta(struct fm10k_intfc *interface) |
| { |
| u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices; |
| u32 reta; |
| |
| /* If the Rx flow indirection table has been configured manually, we |
| * need to maintain it when possible. |
| */ |
| if (netif_is_rxfh_configured(interface->netdev)) { |
| for (i = FM10K_RETA_SIZE; i--;) { |
| reta = interface->reta[i]; |
| if ((((reta << 24) >> 24) < rss_i) && |
| (((reta << 16) >> 24) < rss_i) && |
| (((reta << 8) >> 24) < rss_i) && |
| (((reta) >> 24) < rss_i)) |
| continue; |
| |
| /* this should never happen */ |
| dev_err(&interface->pdev->dev, |
| "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n"); |
| goto repopulate_reta; |
| } |
| |
| /* do nothing if all of the elements are in bounds */ |
| return; |
| } |
| |
| repopulate_reta: |
| fm10k_write_reta(interface, NULL); |
| } |
| |
| /** |
| * fm10k_init_queueing_scheme - Determine proper queueing scheme |
| * @interface: board private structure to initialize |
| * |
| * We determine which queueing scheme to use based on... |
| * - Hardware queue count (num_*_queues) |
| * - defined by miscellaneous hardware support/features (RSS, etc.) |
| **/ |
| int fm10k_init_queueing_scheme(struct fm10k_intfc *interface) |
| { |
| int err; |
| |
| /* Number of supported queues */ |
| fm10k_set_num_queues(interface); |
| |
| /* Configure MSI-X capability */ |
| err = fm10k_init_msix_capability(interface); |
| if (err) { |
| dev_err(&interface->pdev->dev, |
| "Unable to initialize MSI-X capability\n"); |
| goto err_init_msix; |
| } |
| |
| /* Allocate memory for queues */ |
| err = fm10k_alloc_q_vectors(interface); |
| if (err) { |
| dev_err(&interface->pdev->dev, |
| "Unable to allocate queue vectors\n"); |
| goto err_alloc_q_vectors; |
| } |
| |
| /* Map rings to devices, and map devices to physical queues */ |
| fm10k_assign_rings(interface); |
| |
| /* Initialize RSS redirection table */ |
| fm10k_init_reta(interface); |
| |
| return 0; |
| |
| err_alloc_q_vectors: |
| fm10k_reset_msix_capability(interface); |
| err_init_msix: |
| fm10k_reset_num_queues(interface); |
| return err; |
| } |
| |
| /** |
| * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings |
| * @interface: board private structure to clear queueing scheme on |
| * |
| * We go through and clear queueing specific resources and reset the structure |
| * to pre-load conditions |
| **/ |
| void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface) |
| { |
| fm10k_free_q_vectors(interface); |
| fm10k_reset_msix_capability(interface); |
| } |