blob: 34ab5ff9823b734aa09b2671ebd18471512a479b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2013 - 2019 Intel Corporation. */
#include "fm10k.h"
#include <linux/vmalloc.h>
#include <net/udp_tunnel.h>
#include <linux/if_macvlan.h>
/**
* fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int size;
size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
tx_ring->tx_buffer = vzalloc(size);
if (!tx_ring->tx_buffer)
goto err;
u64_stats_init(&tx_ring->syncp);
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
&tx_ring->dma, GFP_KERNEL);
if (!tx_ring->desc)
goto err;
return 0;
err:
vfree(tx_ring->tx_buffer);
tx_ring->tx_buffer = NULL;
return -ENOMEM;
}
/**
* fm10k_setup_all_tx_resources - allocate all queues Tx resources
* @interface: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
{
int i, err;
for (i = 0; i < interface->num_tx_queues; i++) {
err = fm10k_setup_tx_resources(interface->tx_ring[i]);
if (!err)
continue;
netif_err(interface, probe, interface->netdev,
"Allocation for Tx Queue %u failed\n", i);
goto err_setup_tx;
}
return 0;
err_setup_tx:
/* rewind the index freeing the rings as we go */
while (i--)
fm10k_free_tx_resources(interface->tx_ring[i]);
return err;
}
/**
* fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int size;
size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
rx_ring->rx_buffer = vzalloc(size);
if (!rx_ring->rx_buffer)
goto err;
u64_stats_init(&rx_ring->syncp);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
&rx_ring->dma, GFP_KERNEL);
if (!rx_ring->desc)
goto err;
return 0;
err:
vfree(rx_ring->rx_buffer);
rx_ring->rx_buffer = NULL;
return -ENOMEM;
}
/**
* fm10k_setup_all_rx_resources - allocate all queues Rx resources
* @interface: board private structure
*
* If this function returns with an error, then it's possible one or
* more of the rings is populated (while the rest are not). It is the
* callers duty to clean those orphaned rings.
*
* Return 0 on success, negative on failure
**/
static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
{
int i, err;
for (i = 0; i < interface->num_rx_queues; i++) {
err = fm10k_setup_rx_resources(interface->rx_ring[i]);
if (!err)
continue;
netif_err(interface, probe, interface->netdev,
"Allocation for Rx Queue %u failed\n", i);
goto err_setup_rx;
}
return 0;
err_setup_rx:
/* rewind the index freeing the rings as we go */
while (i--)
fm10k_free_rx_resources(interface->rx_ring[i]);
return err;
}
void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
struct fm10k_tx_buffer *tx_buffer)
{
if (tx_buffer->skb) {
dev_kfree_skb_any(tx_buffer->skb);
if (dma_unmap_len(tx_buffer, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buffer, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buffer, dma),
dma_unmap_len(tx_buffer, len),
DMA_TO_DEVICE);
}
tx_buffer->next_to_watch = NULL;
tx_buffer->skb = NULL;
dma_unmap_len_set(tx_buffer, len, 0);
/* tx_buffer must be completely set up in the transmit path */
}
/**
* fm10k_clean_tx_ring - Free Tx Buffers
* @tx_ring: ring to be cleaned
**/
static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
{
unsigned long size;
u16 i;
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buffer)
return;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
struct fm10k_tx_buffer *tx_buffer = &tx_ring->tx_buffer[i];
fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
}
/* reset BQL values */
netdev_tx_reset_queue(txring_txq(tx_ring));
size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
memset(tx_ring->tx_buffer, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
}
/**
* fm10k_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
{
fm10k_clean_tx_ring(tx_ring);
vfree(tx_ring->tx_buffer);
tx_ring->tx_buffer = NULL;
/* if not set, then don't free */
if (!tx_ring->desc)
return;
dma_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
* @interface: board private structure
**/
void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
{
int i;
for (i = 0; i < interface->num_tx_queues; i++)
fm10k_clean_tx_ring(interface->tx_ring[i]);
}
/**
* fm10k_free_all_tx_resources - Free Tx Resources for All Queues
* @interface: board private structure
*
* Free all transmit software resources
**/
static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
{
int i = interface->num_tx_queues;
while (i--)
fm10k_free_tx_resources(interface->tx_ring[i]);
}
/**
* fm10k_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: ring to free buffers from
**/
static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
{
unsigned long size;
u16 i;
if (!rx_ring->rx_buffer)
return;
dev_kfree_skb(rx_ring->skb);
rx_ring->skb = NULL;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
/* clean-up will only set page pointer to NULL */
if (!buffer->page)
continue;
dma_unmap_page(rx_ring->dev, buffer->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
__free_page(buffer->page);
buffer->page = NULL;
}
size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
memset(rx_ring->rx_buffer, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* fm10k_free_rx_resources - Free Rx Resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
{
fm10k_clean_rx_ring(rx_ring);
vfree(rx_ring->rx_buffer);
rx_ring->rx_buffer = NULL;
/* if not set, then don't free */
if (!rx_ring->desc)
return;
dma_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
* @interface: board private structure
**/
void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
{
int i;
for (i = 0; i < interface->num_rx_queues; i++)
fm10k_clean_rx_ring(interface->rx_ring[i]);
}
/**
* fm10k_free_all_rx_resources - Free Rx Resources for All Queues
* @interface: board private structure
*
* Free all receive software resources
**/
static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
{
int i = interface->num_rx_queues;
while (i--)
fm10k_free_rx_resources(interface->rx_ring[i]);
}
/**
* fm10k_request_glort_range - Request GLORTs for use in configuring rules
* @interface: board private structure
*
* This function allocates a range of glorts for this interface to use.
**/
static void fm10k_request_glort_range(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
/* establish GLORT base */
interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
interface->glort_count = 0;
/* nothing we can do until mask is allocated */
if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
return;
/* we support 3 possible GLORT configurations.
* 1: VFs consume all but the last 1
* 2: VFs and PF split glorts with possible gap between
* 3: VFs allocated first 64, all others belong to PF
*/
if (mask <= hw->iov.total_vfs) {
interface->glort_count = 1;
interface->glort += mask;
} else if (mask < 64) {
interface->glort_count = (mask + 1) / 2;
interface->glort += interface->glort_count;
} else {
interface->glort_count = mask - 63;
interface->glort += 64;
}
}
/**
* fm10k_restore_udp_port_info
* @interface: board private structure
*
* This function restores the value in the tunnel_cfg register(s) after reset
**/
static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
/* only the PF supports configuring tunnels */
if (hw->mac.type != fm10k_mac_pf)
return;
/* restore tunnel configuration register */
fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
ntohs(interface->vxlan_port) |
(ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
/* restore Geneve tunnel configuration register */
fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
ntohs(interface->geneve_port));
}
/**
* fm10k_udp_tunnel_sync - Called when UDP tunnel ports change
* @dev: network interface device structure
* @table: Tunnel table (according to tables of @fm10k_udp_tunnels)
*
* This function is called when a new UDP tunnel port is added or deleted.
* Due to hardware restrictions, only one port per type can be offloaded at
* once. Core will send to the driver a port of its choice.
**/
static int fm10k_udp_tunnel_sync(struct net_device *dev, unsigned int table)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct udp_tunnel_info ti;
udp_tunnel_nic_get_port(dev, table, 0, &ti);
if (!table)
interface->vxlan_port = ti.port;
else
interface->geneve_port = ti.port;
fm10k_restore_udp_port_info(interface);
return 0;
}
static const struct udp_tunnel_nic_info fm10k_udp_tunnels = {
.sync_table = fm10k_udp_tunnel_sync,
.tables = {
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_VXLAN, },
{ .n_entries = 1, .tunnel_types = UDP_TUNNEL_TYPE_GENEVE, },
},
};
/**
* fm10k_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
int fm10k_open(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
int err;
/* allocate transmit descriptors */
err = fm10k_setup_all_tx_resources(interface);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = fm10k_setup_all_rx_resources(interface);
if (err)
goto err_setup_rx;
/* allocate interrupt resources */
err = fm10k_qv_request_irq(interface);
if (err)
goto err_req_irq;
/* setup GLORT assignment for this port */
fm10k_request_glort_range(interface);
/* Notify the stack of the actual queue counts */
err = netif_set_real_num_tx_queues(netdev,
interface->num_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(netdev,
interface->num_rx_queues);
if (err)
goto err_set_queues;
fm10k_up(interface);
return 0;
err_set_queues:
fm10k_qv_free_irq(interface);
err_req_irq:
fm10k_free_all_rx_resources(interface);
err_setup_rx:
fm10k_free_all_tx_resources(interface);
err_setup_tx:
return err;
}
/**
* fm10k_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
int fm10k_close(struct net_device *netdev)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
fm10k_down(interface);
fm10k_qv_free_irq(interface);
fm10k_free_all_tx_resources(interface);
fm10k_free_all_rx_resources(interface);
return 0;
}
static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
int num_tx_queues = READ_ONCE(interface->num_tx_queues);
unsigned int r_idx = skb->queue_mapping;
int err;
if (!num_tx_queues)
return NETDEV_TX_BUSY;
if ((skb->protocol == htons(ETH_P_8021Q)) &&
!skb_vlan_tag_present(skb)) {
/* FM10K only supports hardware tagging, any tags in frame
* are considered 2nd level or "outer" tags
*/
struct vlan_hdr *vhdr;
__be16 proto;
/* make sure skb is not shared */
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
return NETDEV_TX_OK;
/* make sure there is enough room to move the ethernet header */
if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
return NETDEV_TX_OK;
/* verify the skb head is not shared */
err = skb_cow_head(skb, 0);
if (err) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* locate VLAN header */
vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
/* pull the 2 key pieces of data out of it */
__vlan_hwaccel_put_tag(skb,
htons(ETH_P_8021Q),
ntohs(vhdr->h_vlan_TCI));
proto = vhdr->h_vlan_encapsulated_proto;
skb->protocol = (ntohs(proto) >= 1536) ? proto :
htons(ETH_P_802_2);
/* squash it by moving the ethernet addresses up 4 bytes */
memmove(skb->data + VLAN_HLEN, skb->data, 12);
__skb_pull(skb, VLAN_HLEN);
skb_reset_mac_header(skb);
}
/* The minimum packet size for a single buffer is 17B so pad the skb
* in order to meet this minimum size requirement.
*/
if (unlikely(skb->len < 17)) {
int pad_len = 17 - skb->len;
if (skb_pad(skb, pad_len))
return NETDEV_TX_OK;
__skb_put(skb, pad_len);
}
if (r_idx >= num_tx_queues)
r_idx %= num_tx_queues;
err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
return err;
}
/**
* fm10k_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
* @txqueue: the index of the Tx queue that timed out
**/
static void fm10k_tx_timeout(struct net_device *netdev, unsigned int txqueue)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_ring *tx_ring;
bool real_tx_hang = false;
if (txqueue >= interface->num_tx_queues) {
WARN(1, "invalid Tx queue index %d", txqueue);
return;
}
tx_ring = interface->tx_ring[txqueue];
if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
real_tx_hang = true;
#define TX_TIMEO_LIMIT 16000
if (real_tx_hang) {
fm10k_tx_timeout_reset(interface);
} else {
netif_info(interface, drv, netdev,
"Fake Tx hang detected with timeout of %d seconds\n",
netdev->watchdog_timeo / HZ);
/* fake Tx hang - increase the kernel timeout */
if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
netdev->watchdog_timeo *= 2;
}
}
/**
* fm10k_host_mbx_ready - Check PF interface's mailbox readiness
* @interface: board private structure
*
* This function checks if the PF interface's mailbox is ready before queueing
* mailbox messages for transmission. This will prevent filling the TX mailbox
* queue when the receiver is not ready. VF interfaces are exempt from this
* check since it will block all PF-VF mailbox messages from being sent from
* the VF to the PF at initialization.
**/
static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
{
struct fm10k_hw *hw = &interface->hw;
return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
}
/**
* fm10k_queue_vlan_request - Queue a VLAN update request
* @interface: the fm10k interface structure
* @vid: the VLAN vid
* @vsi: VSI index number
* @set: whether to set or clear
*
* This function queues up a VLAN update. For VFs, this must be sent to the
* managing PF over the mailbox. For PFs, we'll use the same handling so that
* it's similar to the VF. This avoids storming the PF<->VF mailbox with too
* many VLAN updates during reset.
*/
int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
u32 vid, u8 vsi, bool set)
{
struct fm10k_macvlan_request *request;
unsigned long flags;
/* This must be atomic since we may be called while the netdev
* addr_list_lock is held
*/
request = kzalloc(sizeof(*request), GFP_ATOMIC);
if (!request)
return -ENOMEM;
request->type = FM10K_VLAN_REQUEST;
request->vlan.vid = vid;
request->vlan.vsi = vsi;
request->set = set;
spin_lock_irqsave(&interface->macvlan_lock, flags);
list_add_tail(&request->list, &interface->macvlan_requests);
spin_unlock_irqrestore(&interface->macvlan_lock, flags);
fm10k_macvlan_schedule(interface);
return 0;
}
/**
* fm10k_queue_mac_request - Queue a MAC update request
* @interface: the fm10k interface structure
* @glort: the target glort for this update
* @addr: the address to update
* @vid: the vid to update
* @set: whether to add or remove
*
* This function queues up a MAC request for sending to the switch manager.
* A separate thread monitors the queue and sends updates to the switch
* manager. Return 0 on success, and negative error code on failure.
**/
int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
const unsigned char *addr, u16 vid, bool set)
{
struct fm10k_macvlan_request *request;
unsigned long flags;
/* This must be atomic since we may be called while the netdev
* addr_list_lock is held
*/
request = kzalloc(sizeof(*request), GFP_ATOMIC);
if (!request)
return -ENOMEM;
if (is_multicast_ether_addr(addr))
request->type = FM10K_MC_MAC_REQUEST;
else
request->type = FM10K_UC_MAC_REQUEST;
ether_addr_copy(request->mac.addr, addr);
request->mac.glort = glort;
request->mac.vid = vid;
request->set = set;
spin_lock_irqsave(&interface->macvlan_lock, flags);
list_add_tail(&request->list, &interface->macvlan_requests);
spin_unlock_irqrestore(&interface->macvlan_lock, flags);
fm10k_macvlan_schedule(interface);
return 0;
}
/**
* fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
* @interface: the fm10k interface structure
* @glort: the target glort to clear
* @vlans: true to clear VLAN messages, false to ignore them
*
* Cancel any outstanding MAC/VLAN requests for a given glort. This is
* expected to be called when a logical port goes down.
**/
void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
u16 glort, bool vlans)
{
struct fm10k_macvlan_request *r, *tmp;
unsigned long flags;
spin_lock_irqsave(&interface->macvlan_lock, flags);
/* Free any outstanding MAC/VLAN requests for this interface */
list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
switch (r->type) {
case FM10K_MC_MAC_REQUEST:
case FM10K_UC_MAC_REQUEST:
/* Don't free requests for other interfaces */
if (r->mac.glort != glort)
break;
fallthrough;
case FM10K_VLAN_REQUEST:
if (vlans) {
list_del(&r->list);
kfree(r);
}
break;
}
}
spin_unlock_irqrestore(&interface->macvlan_lock, flags);
}
static int fm10k_uc_vlan_unsync(struct net_device *netdev,
const unsigned char *uc_addr)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
u16 glort = interface->glort;
u16 vid = interface->vid;
bool set = !!(vid / VLAN_N_VID);
int err;
/* drop any leading bits on the VLAN ID */
vid &= VLAN_N_VID - 1;
err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
if (err)
return err;
/* return non-zero value as we are only doing a partial sync/unsync */
return 1;
}
static int fm10k_mc_vlan_unsync(struct net_device *netdev,
const unsigned char *mc_addr)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
u16 glort = interface->glort;
u16 vid = interface->vid;
bool set = !!(vid / VLAN_N_VID);
int err;
/* drop any leading bits on the VLAN ID */
vid &= VLAN_N_VID - 1;
err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
if (err)
return err;
/* return non-zero value as we are only doing a partial sync/unsync */
return 1;
}
static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_l2_accel *l2_accel = interface->l2_accel;
struct fm10k_hw *hw = &interface->hw;
u16 glort;
s32 err;
int i;
/* updates do not apply to VLAN 0 */
if (!vid)
return 0;
if (vid >= VLAN_N_VID)
return -EINVAL;
/* Verify that we have permission to add VLANs. If this is a request
* to remove a VLAN, we still want to allow the user to remove the
* VLAN device. In that case, we need to clear the bit in the
* active_vlans bitmask.
*/
if (set && hw->mac.vlan_override)
return -EACCES;
/* update active_vlans bitmask */
set_bit(vid, interface->active_vlans);
if (!set)
clear_bit(vid, interface->active_vlans);
/* disable the default VLAN ID on ring if we have an active VLAN */
for (i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *rx_ring = interface->rx_ring[i];
u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
if (test_bit(rx_vid, interface->active_vlans))
rx_ring->vid |= FM10K_VLAN_CLEAR;
else
rx_ring->vid &= ~FM10K_VLAN_CLEAR;
}
/* If our VLAN has been overridden, there is no reason to send VLAN
* removal requests as they will be silently ignored.
*/
if (hw->mac.vlan_override)
return 0;
/* Do not remove default VLAN ID related entries from VLAN and MAC
* tables
*/
if (!set && vid == hw->mac.default_vid)
return 0;
/* Do not throw an error if the interface is down. We will sync once
* we come up
*/
if (test_bit(__FM10K_DOWN, interface->state))
return 0;
fm10k_mbx_lock(interface);
/* only need to update the VLAN if not in promiscuous mode */
if (!(netdev->flags & IFF_PROMISC)) {
err = fm10k_queue_vlan_request(interface, vid, 0, set);
if (err)
goto err_out;
}
/* Update our base MAC address */
err = fm10k_queue_mac_request(interface, interface->glort,
hw->mac.addr, vid, set);
if (err)
goto err_out;
/* Update L2 accelerated macvlan addresses */
if (l2_accel) {
for (i = 0; i < l2_accel->size; i++) {
struct net_device *sdev = l2_accel->macvlan[i];
if (!sdev)
continue;
glort = l2_accel->dglort + 1 + i;
fm10k_queue_mac_request(interface, glort,
sdev->dev_addr,
vid, set);
}
}
/* set VLAN ID prior to syncing/unsyncing the VLAN */
interface->vid = vid + (set ? VLAN_N_VID : 0);
/* Update the unicast and multicast address list to add/drop VLAN */
__dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
__dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
err_out:
fm10k_mbx_unlock(interface);
return err;
}
static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
/* update VLAN and address table based on changes */
return fm10k_update_vid(netdev, vid, true);
}
static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
/* update VLAN and address table based on changes */
return fm10k_update_vid(netdev, vid, false);
}
static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
{
struct fm10k_hw *hw = &interface->hw;
u16 default_vid = hw->mac.default_vid;
u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
return vid;
}
static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
{
u32 vid, prev_vid;
/* loop through and find any gaps in the table */
for (vid = 0, prev_vid = 0;
prev_vid < VLAN_N_VID;
prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
if (prev_vid == vid)
continue;
/* send request to clear multiple bits at a time */
prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
fm10k_queue_vlan_request(interface, prev_vid, 0, false);
}
}
static int __fm10k_uc_sync(struct net_device *dev,
const unsigned char *addr, bool sync)
{
struct fm10k_intfc *interface = netdev_priv(dev);
u16 vid, glort = interface->glort;
s32 err;
if (!is_valid_ether_addr(addr))
return -EADDRNOTAVAIL;
for (vid = fm10k_find_next_vlan(interface, 0);
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
err = fm10k_queue_mac_request(interface, glort,
addr, vid, sync);
if (err)
return err;
}
return 0;
}
static int fm10k_uc_sync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_uc_sync(dev, addr, true);
}
static int fm10k_uc_unsync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_uc_sync(dev, addr, false);
}
static int fm10k_set_mac(struct net_device *dev, void *p)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
struct sockaddr *addr = p;
s32 err = 0;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (dev->flags & IFF_UP) {
/* setting MAC address requires mailbox */
fm10k_mbx_lock(interface);
err = fm10k_uc_sync(dev, addr->sa_data);
if (!err)
fm10k_uc_unsync(dev, hw->mac.addr);
fm10k_mbx_unlock(interface);
}
if (!err) {
eth_hw_addr_set(dev, addr->sa_data);
ether_addr_copy(hw->mac.addr, addr->sa_data);
dev->addr_assign_type &= ~NET_ADDR_RANDOM;
}
/* if we had a mailbox error suggest trying again */
return err ? -EAGAIN : 0;
}
static int __fm10k_mc_sync(struct net_device *dev,
const unsigned char *addr, bool sync)
{
struct fm10k_intfc *interface = netdev_priv(dev);
u16 vid, glort = interface->glort;
s32 err;
if (!is_multicast_ether_addr(addr))
return -EADDRNOTAVAIL;
for (vid = fm10k_find_next_vlan(interface, 0);
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
err = fm10k_queue_mac_request(interface, glort,
addr, vid, sync);
if (err)
return err;
}
return 0;
}
static int fm10k_mc_sync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_mc_sync(dev, addr, true);
}
static int fm10k_mc_unsync(struct net_device *dev,
const unsigned char *addr)
{
return __fm10k_mc_sync(dev, addr, false);
}
static void fm10k_set_rx_mode(struct net_device *dev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_hw *hw = &interface->hw;
int xcast_mode;
/* no need to update the harwdare if we are not running */
if (!(dev->flags & IFF_UP))
return;
/* determine new mode based on flags */
xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
(dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
(dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(interface);
/* update xcast mode first, but only if it changed */
if (interface->xcast_mode != xcast_mode) {
/* update VLAN table when entering promiscuous mode */
if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
0, true);
/* clear VLAN table when exiting promiscuous mode */
if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
fm10k_clear_unused_vlans(interface);
/* update xcast mode if host's mailbox is ready */
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_xcast_mode(hw, interface->glort,
xcast_mode);
/* record updated xcast mode state */
interface->xcast_mode = xcast_mode;
}
/* synchronize all of the addresses */
__dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
__dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
fm10k_mbx_unlock(interface);
}
void fm10k_restore_rx_state(struct fm10k_intfc *interface)
{
struct fm10k_l2_accel *l2_accel = interface->l2_accel;
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
int xcast_mode, i;
u16 vid, glort;
/* record glort for this interface */
glort = interface->glort;
/* convert interface flags to xcast mode */
if (netdev->flags & IFF_PROMISC)
xcast_mode = FM10K_XCAST_MODE_PROMISC;
else if (netdev->flags & IFF_ALLMULTI)
xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
xcast_mode = FM10K_XCAST_MODE_MULTI;
else
xcast_mode = FM10K_XCAST_MODE_NONE;
fm10k_mbx_lock(interface);
/* Enable logical port if host's mailbox is ready */
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_lport_state(hw, glort,
interface->glort_count, true);
/* update VLAN table */
fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
xcast_mode == FM10K_XCAST_MODE_PROMISC);
/* update table with current entries */
for (vid = fm10k_find_next_vlan(interface, 0);
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid)) {
fm10k_queue_vlan_request(interface, vid, 0, true);
fm10k_queue_mac_request(interface, glort,
hw->mac.addr, vid, true);
/* synchronize macvlan addresses */
if (l2_accel) {
for (i = 0; i < l2_accel->size; i++) {
struct net_device *sdev = l2_accel->macvlan[i];
if (!sdev)
continue;
glort = l2_accel->dglort + 1 + i;
fm10k_queue_mac_request(interface, glort,
sdev->dev_addr,
vid, true);
}
}
}
/* update xcast mode before synchronizing addresses if host's mailbox
* is ready
*/
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
/* synchronize all of the addresses */
__dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
__dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
/* synchronize macvlan addresses */
if (l2_accel) {
for (i = 0; i < l2_accel->size; i++) {
struct net_device *sdev = l2_accel->macvlan[i];
if (!sdev)
continue;
glort = l2_accel->dglort + 1 + i;
hw->mac.ops.update_xcast_mode(hw, glort,
FM10K_XCAST_MODE_NONE);
fm10k_queue_mac_request(interface, glort,
sdev->dev_addr,
hw->mac.default_vid, true);
}
}
fm10k_mbx_unlock(interface);
/* record updated xcast mode state */
interface->xcast_mode = xcast_mode;
/* Restore tunnel configuration */
fm10k_restore_udp_port_info(interface);
}
void fm10k_reset_rx_state(struct fm10k_intfc *interface)
{
struct net_device *netdev = interface->netdev;
struct fm10k_hw *hw = &interface->hw;
/* Wait for MAC/VLAN work to finish */
while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
usleep_range(1000, 2000);
/* Cancel pending MAC/VLAN requests */
fm10k_clear_macvlan_queue(interface, interface->glort, true);
fm10k_mbx_lock(interface);
/* clear the logical port state on lower device if host's mailbox is
* ready
*/
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_lport_state(hw, interface->glort,
interface->glort_count, false);
fm10k_mbx_unlock(interface);
/* reset flags to default state */
interface->xcast_mode = FM10K_XCAST_MODE_NONE;
/* clear the sync flag since the lport has been dropped */
__dev_uc_unsync(netdev, NULL);
__dev_mc_unsync(netdev, NULL);
}
/**
* fm10k_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: storage space for 64bit statistics
*
* Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
* architectures.
*/
static void fm10k_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct fm10k_intfc *interface = netdev_priv(netdev);
struct fm10k_ring *ring;
unsigned int start, i;
u64 bytes, packets;
rcu_read_lock();
for (i = 0; i < interface->num_rx_queues; i++) {
ring = READ_ONCE(interface->rx_ring[i]);
if (!ring)
continue;
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp, start));
stats->rx_packets += packets;
stats->rx_bytes += bytes;
}
for (i = 0; i < interface->num_tx_queues; i++) {
ring = READ_ONCE(interface->tx_ring[i]);
if (!ring)
continue;
do {
start = u64_stats_fetch_begin(&ring->syncp);
packets = ring->stats.packets;
bytes = ring->stats.bytes;
} while (u64_stats_fetch_retry(&ring->syncp, start));
stats->tx_packets += packets;
stats->tx_bytes += bytes;
}
rcu_read_unlock();
/* following stats updated by fm10k_service_task() */
stats->rx_missed_errors = netdev->stats.rx_missed_errors;
}
int fm10k_setup_tc(struct net_device *dev, u8 tc)
{
struct fm10k_intfc *interface = netdev_priv(dev);
int err;
/* Currently only the PF supports priority classes */
if (tc && (interface->hw.mac.type != fm10k_mac_pf))
return -EINVAL;
/* Hardware supports up to 8 traffic classes */
if (tc > 8)
return -EINVAL;
/* Hardware has to reinitialize queues to match packet
* buffer alignment. Unfortunately, the hardware is not
* flexible enough to do this dynamically.
*/
if (netif_running(dev))
fm10k_close(dev);
fm10k_mbx_free_irq(interface);
fm10k_clear_queueing_scheme(interface);
/* we expect the prio_tc map to be repopulated later */
netdev_reset_tc(dev);
netdev_set_num_tc(dev, tc);
err = fm10k_init_queueing_scheme(interface);
if (err)
goto err_queueing_scheme;
err = fm10k_mbx_request_irq(interface);
if (err)
goto err_mbx_irq;
err = netif_running(dev) ? fm10k_open(dev) : 0;
if (err)
goto err_open;
/* flag to indicate SWPRI has yet to be updated */
set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
return 0;
err_open:
fm10k_mbx_free_irq(interface);
err_mbx_irq:
fm10k_clear_queueing_scheme(interface);
err_queueing_scheme:
netif_device_detach(dev);
return err;
}
static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
struct tc_mqprio_qopt *mqprio = type_data;
if (type != TC_SETUP_QDISC_MQPRIO)
return -EOPNOTSUPP;
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
return fm10k_setup_tc(dev, mqprio->num_tc);
}
static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
struct fm10k_l2_accel *l2_accel)
{
int i;
for (i = 0; i < interface->num_rx_queues; i++) {
struct fm10k_ring *ring = interface->rx_ring[i];
rcu_assign_pointer(ring->l2_accel, l2_accel);
}
interface->l2_accel = l2_accel;
}
static void *fm10k_dfwd_add_station(struct net_device *dev,
struct net_device *sdev)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_l2_accel *l2_accel = interface->l2_accel;
struct fm10k_l2_accel *old_l2_accel = NULL;
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
int size, i;
u16 vid, glort;
/* The hardware supported by fm10k only filters on the destination MAC
* address. In order to avoid issues we only support offloading modes
* where the hardware can actually provide the functionality.
*/
if (!macvlan_supports_dest_filter(sdev))
return ERR_PTR(-EMEDIUMTYPE);
/* allocate l2 accel structure if it is not available */
if (!l2_accel) {
/* verify there is enough free GLORTs to support l2_accel */
if (interface->glort_count < 7)
return ERR_PTR(-EBUSY);
size = offsetof(struct fm10k_l2_accel, macvlan[7]);
l2_accel = kzalloc(size, GFP_KERNEL);
if (!l2_accel)
return ERR_PTR(-ENOMEM);
l2_accel->size = 7;
l2_accel->dglort = interface->glort;
/* update pointers */
fm10k_assign_l2_accel(interface, l2_accel);
/* do not expand if we are at our limit */
} else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
(l2_accel->count == (interface->glort_count - 1))) {
return ERR_PTR(-EBUSY);
/* expand if we have hit the size limit */
} else if (l2_accel->count == l2_accel->size) {
old_l2_accel = l2_accel;
size = offsetof(struct fm10k_l2_accel,
macvlan[(l2_accel->size * 2) + 1]);
l2_accel = kzalloc(size, GFP_KERNEL);
if (!l2_accel)
return ERR_PTR(-ENOMEM);
memcpy(l2_accel, old_l2_accel,
offsetof(struct fm10k_l2_accel,
macvlan[old_l2_accel->size]));
l2_accel->size = (old_l2_accel->size * 2) + 1;
/* update pointers */
fm10k_assign_l2_accel(interface, l2_accel);
kfree_rcu(old_l2_accel, rcu);
}
/* add macvlan to accel table, and record GLORT for position */
for (i = 0; i < l2_accel->size; i++) {
if (!l2_accel->macvlan[i])
break;
}
/* record station */
l2_accel->macvlan[i] = sdev;
l2_accel->count++;
/* configure default DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
dglort.glort = interface->glort;
dglort.shared_l = fls(l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* Add rules for this specific dglort to the switch */
fm10k_mbx_lock(interface);
glort = l2_accel->dglort + 1 + i;
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_xcast_mode(hw, glort,
FM10K_XCAST_MODE_NONE);
fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
hw->mac.default_vid, true);
for (vid = fm10k_find_next_vlan(interface, 0);
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid))
fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
vid, true);
fm10k_mbx_unlock(interface);
return sdev;
}
static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
{
struct fm10k_intfc *interface = netdev_priv(dev);
struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
struct fm10k_dglort_cfg dglort = { 0 };
struct fm10k_hw *hw = &interface->hw;
struct net_device *sdev = priv;
u16 vid, glort;
int i;
if (!l2_accel)
return;
/* search table for matching interface */
for (i = 0; i < l2_accel->size; i++) {
if (l2_accel->macvlan[i] == sdev)
break;
}
/* exit if macvlan not found */
if (i == l2_accel->size)
return;
/* Remove any rules specific to this dglort */
fm10k_mbx_lock(interface);
glort = l2_accel->dglort + 1 + i;
if (fm10k_host_mbx_ready(interface))
hw->mac.ops.update_xcast_mode(hw, glort,
FM10K_XCAST_MODE_NONE);
fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
hw->mac.default_vid, false);
for (vid = fm10k_find_next_vlan(interface, 0);
vid < VLAN_N_VID;
vid = fm10k_find_next_vlan(interface, vid))
fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
vid, false);
fm10k_mbx_unlock(interface);
/* record removal */
l2_accel->macvlan[i] = NULL;
l2_accel->count--;
/* configure default DGLORT mapping for RSS/DCB */
dglort.idx = fm10k_dglort_pf_rss;
dglort.inner_rss = 1;
dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
dglort.glort = interface->glort;
dglort.shared_l = fls(l2_accel->size);
hw->mac.ops.configure_dglort_map(hw, &dglort);
/* If table is empty remove it */
if (l2_accel->count == 0) {
fm10k_assign_l2_accel(interface, NULL);
kfree_rcu(l2_accel, rcu);
}
}
static netdev_features_t fm10k_features_check(struct sk_buff *skb,
struct net_device *dev,
netdev_features_t features)
{
if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
return features;
return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
}
static const struct net_device_ops fm10k_netdev_ops = {
.ndo_open = fm10k_open,
.ndo_stop = fm10k_close,
.ndo_validate_addr = eth_validate_addr,
.ndo_start_xmit = fm10k_xmit_frame,
.ndo_set_mac_address = fm10k_set_mac,
.ndo_tx_timeout = fm10k_tx_timeout,
.ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
.ndo_set_rx_mode = fm10k_set_rx_mode,
.ndo_get_stats64 = fm10k_get_stats64,
.ndo_setup_tc = __fm10k_setup_tc,
.ndo_set_vf_mac = fm10k_ndo_set_vf_mac,
.ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan,
.ndo_set_vf_rate = fm10k_ndo_set_vf_bw,
.ndo_get_vf_config = fm10k_ndo_get_vf_config,
.ndo_get_vf_stats = fm10k_ndo_get_vf_stats,
.ndo_dfwd_add_station = fm10k_dfwd_add_station,
.ndo_dfwd_del_station = fm10k_dfwd_del_station,
.ndo_features_check = fm10k_features_check,
};
#define DEFAULT_DEBUG_LEVEL_SHIFT 3
struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
{
netdev_features_t hw_features;
struct fm10k_intfc *interface;
struct net_device *dev;
dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
if (!dev)
return NULL;
/* set net device and ethtool ops */
dev->netdev_ops = &fm10k_netdev_ops;
fm10k_set_ethtool_ops(dev);
/* configure default debug level */
interface = netdev_priv(dev);
interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
/* configure default features */
dev->features |= NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_TSO_ECN |
NETIF_F_RXHASH |
NETIF_F_RXCSUM;
/* Only the PF can support VXLAN and NVGRE tunnel offloads */
if (info->mac == fm10k_mac_pf) {
dev->hw_enc_features = NETIF_F_IP_CSUM |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_TSO_ECN |
NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_IPV6_CSUM |
NETIF_F_SG;
dev->features |= NETIF_F_GSO_UDP_TUNNEL;
dev->udp_tunnel_nic_info = &fm10k_udp_tunnels;
}
/* all features defined to this point should be changeable */
hw_features = dev->features;
/* allow user to enable L2 forwarding acceleration */
hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
/* configure VLAN features */
dev->vlan_features |= dev->features;
/* we want to leave these both on as we cannot disable VLAN tag
* insertion or stripping on the hardware since it is contained
* in the FTAG and not in the frame itself.
*/
dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_FILTER;
dev->priv_flags |= IFF_UNICAST_FLT;
dev->hw_features |= hw_features;
/* MTU range: 68 - 15342 */
dev->min_mtu = ETH_MIN_MTU;
dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
return dev;
}