| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2015, 2018, The Linux Foundation. All rights reserved. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/export.h> |
| #include <linux/clk-provider.h> |
| #include <linux/regmap.h> |
| #include <linux/delay.h> |
| |
| #include "clk-alpha-pll.h" |
| #include "common.h" |
| |
| #define PLL_MODE(p) ((p)->offset + 0x0) |
| # define PLL_OUTCTRL BIT(0) |
| # define PLL_BYPASSNL BIT(1) |
| # define PLL_RESET_N BIT(2) |
| # define PLL_OFFLINE_REQ BIT(7) |
| # define PLL_LOCK_COUNT_SHIFT 8 |
| # define PLL_LOCK_COUNT_MASK 0x3f |
| # define PLL_BIAS_COUNT_SHIFT 14 |
| # define PLL_BIAS_COUNT_MASK 0x3f |
| # define PLL_VOTE_FSM_ENA BIT(20) |
| # define PLL_FSM_ENA BIT(20) |
| # define PLL_VOTE_FSM_RESET BIT(21) |
| # define PLL_UPDATE BIT(22) |
| # define PLL_UPDATE_BYPASS BIT(23) |
| # define PLL_OFFLINE_ACK BIT(28) |
| # define ALPHA_PLL_ACK_LATCH BIT(29) |
| # define PLL_ACTIVE_FLAG BIT(30) |
| # define PLL_LOCK_DET BIT(31) |
| |
| #define PLL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_L_VAL]) |
| #define PLL_CAL_L_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_CAL_L_VAL]) |
| #define PLL_ALPHA_VAL(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL]) |
| #define PLL_ALPHA_VAL_U(p) ((p)->offset + (p)->regs[PLL_OFF_ALPHA_VAL_U]) |
| |
| #define PLL_USER_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL]) |
| # define PLL_POST_DIV_SHIFT 8 |
| # define PLL_POST_DIV_MASK(p) GENMASK((p)->width, 0) |
| # define PLL_ALPHA_EN BIT(24) |
| # define PLL_ALPHA_MODE BIT(25) |
| # define PLL_VCO_SHIFT 20 |
| # define PLL_VCO_MASK 0x3 |
| |
| #define PLL_USER_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U]) |
| #define PLL_USER_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_USER_CTL_U1]) |
| |
| #define PLL_CONFIG_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL]) |
| #define PLL_CONFIG_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U]) |
| #define PLL_CONFIG_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_CONFIG_CTL_U1]) |
| #define PLL_TEST_CTL(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL]) |
| #define PLL_TEST_CTL_U(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U]) |
| #define PLL_TEST_CTL_U1(p) ((p)->offset + (p)->regs[PLL_OFF_TEST_CTL_U1]) |
| #define PLL_STATUS(p) ((p)->offset + (p)->regs[PLL_OFF_STATUS]) |
| #define PLL_OPMODE(p) ((p)->offset + (p)->regs[PLL_OFF_OPMODE]) |
| #define PLL_FRAC(p) ((p)->offset + (p)->regs[PLL_OFF_FRAC]) |
| |
| const u8 clk_alpha_pll_regs[][PLL_OFF_MAX_REGS] = { |
| [CLK_ALPHA_PLL_TYPE_DEFAULT] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_ALPHA_VAL] = 0x08, |
| [PLL_OFF_ALPHA_VAL_U] = 0x0c, |
| [PLL_OFF_USER_CTL] = 0x10, |
| [PLL_OFF_USER_CTL_U] = 0x14, |
| [PLL_OFF_CONFIG_CTL] = 0x18, |
| [PLL_OFF_TEST_CTL] = 0x1c, |
| [PLL_OFF_TEST_CTL_U] = 0x20, |
| [PLL_OFF_STATUS] = 0x24, |
| }, |
| [CLK_ALPHA_PLL_TYPE_HUAYRA] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_ALPHA_VAL] = 0x08, |
| [PLL_OFF_USER_CTL] = 0x10, |
| [PLL_OFF_CONFIG_CTL] = 0x14, |
| [PLL_OFF_CONFIG_CTL_U] = 0x18, |
| [PLL_OFF_TEST_CTL] = 0x1c, |
| [PLL_OFF_TEST_CTL_U] = 0x20, |
| [PLL_OFF_STATUS] = 0x24, |
| }, |
| [CLK_ALPHA_PLL_TYPE_BRAMMO] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_ALPHA_VAL] = 0x08, |
| [PLL_OFF_ALPHA_VAL_U] = 0x0c, |
| [PLL_OFF_USER_CTL] = 0x10, |
| [PLL_OFF_CONFIG_CTL] = 0x18, |
| [PLL_OFF_TEST_CTL] = 0x1c, |
| [PLL_OFF_STATUS] = 0x24, |
| }, |
| [CLK_ALPHA_PLL_TYPE_FABIA] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_USER_CTL] = 0x0c, |
| [PLL_OFF_USER_CTL_U] = 0x10, |
| [PLL_OFF_CONFIG_CTL] = 0x14, |
| [PLL_OFF_CONFIG_CTL_U] = 0x18, |
| [PLL_OFF_TEST_CTL] = 0x1c, |
| [PLL_OFF_TEST_CTL_U] = 0x20, |
| [PLL_OFF_STATUS] = 0x24, |
| [PLL_OFF_OPMODE] = 0x2c, |
| [PLL_OFF_FRAC] = 0x38, |
| }, |
| [CLK_ALPHA_PLL_TYPE_TRION] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_CAL_L_VAL] = 0x08, |
| [PLL_OFF_USER_CTL] = 0x0c, |
| [PLL_OFF_USER_CTL_U] = 0x10, |
| [PLL_OFF_USER_CTL_U1] = 0x14, |
| [PLL_OFF_CONFIG_CTL] = 0x18, |
| [PLL_OFF_CONFIG_CTL_U] = 0x1c, |
| [PLL_OFF_CONFIG_CTL_U1] = 0x20, |
| [PLL_OFF_TEST_CTL] = 0x24, |
| [PLL_OFF_TEST_CTL_U] = 0x28, |
| [PLL_OFF_TEST_CTL_U1] = 0x2c, |
| [PLL_OFF_STATUS] = 0x30, |
| [PLL_OFF_OPMODE] = 0x38, |
| [PLL_OFF_ALPHA_VAL] = 0x40, |
| }, |
| [CLK_ALPHA_PLL_TYPE_AGERA] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_ALPHA_VAL] = 0x08, |
| [PLL_OFF_USER_CTL] = 0x0c, |
| [PLL_OFF_CONFIG_CTL] = 0x10, |
| [PLL_OFF_CONFIG_CTL_U] = 0x14, |
| [PLL_OFF_TEST_CTL] = 0x18, |
| [PLL_OFF_TEST_CTL_U] = 0x1c, |
| [PLL_OFF_STATUS] = 0x2c, |
| }, |
| [CLK_ALPHA_PLL_TYPE_ZONDA] = { |
| [PLL_OFF_L_VAL] = 0x04, |
| [PLL_OFF_ALPHA_VAL] = 0x08, |
| [PLL_OFF_USER_CTL] = 0x0c, |
| [PLL_OFF_CONFIG_CTL] = 0x10, |
| [PLL_OFF_CONFIG_CTL_U] = 0x14, |
| [PLL_OFF_CONFIG_CTL_U1] = 0x18, |
| [PLL_OFF_TEST_CTL] = 0x1c, |
| [PLL_OFF_TEST_CTL_U] = 0x20, |
| [PLL_OFF_TEST_CTL_U1] = 0x24, |
| [PLL_OFF_OPMODE] = 0x28, |
| [PLL_OFF_STATUS] = 0x38, |
| }, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_regs); |
| |
| /* |
| * Even though 40 bits are present, use only 32 for ease of calculation. |
| */ |
| #define ALPHA_REG_BITWIDTH 40 |
| #define ALPHA_REG_16BIT_WIDTH 16 |
| #define ALPHA_BITWIDTH 32U |
| #define ALPHA_SHIFT(w) min(w, ALPHA_BITWIDTH) |
| |
| #define PLL_HUAYRA_M_WIDTH 8 |
| #define PLL_HUAYRA_M_SHIFT 8 |
| #define PLL_HUAYRA_M_MASK 0xff |
| #define PLL_HUAYRA_N_SHIFT 0 |
| #define PLL_HUAYRA_N_MASK 0xff |
| #define PLL_HUAYRA_ALPHA_WIDTH 16 |
| |
| #define PLL_STANDBY 0x0 |
| #define PLL_RUN 0x1 |
| #define PLL_OUT_MASK 0x7 |
| #define PLL_RATE_MARGIN 500 |
| |
| /* TRION PLL specific settings and offsets */ |
| #define TRION_PLL_CAL_VAL 0x44 |
| #define TRION_PCAL_DONE BIT(26) |
| |
| /* LUCID PLL specific settings and offsets */ |
| #define LUCID_PCAL_DONE BIT(27) |
| |
| /* LUCID 5LPE PLL specific settings and offsets */ |
| #define LUCID_5LPE_PCAL_DONE BIT(11) |
| #define LUCID_5LPE_ALPHA_PLL_ACK_LATCH BIT(13) |
| #define LUCID_5LPE_PLL_LATCH_INPUT BIT(14) |
| #define LUCID_5LPE_ENABLE_VOTE_RUN BIT(21) |
| |
| /* ZONDA PLL specific */ |
| #define ZONDA_PLL_OUT_MASK 0xf |
| #define ZONDA_STAY_IN_CFA BIT(16) |
| #define ZONDA_PLL_FREQ_LOCK_DET BIT(29) |
| |
| #define pll_alpha_width(p) \ |
| ((PLL_ALPHA_VAL_U(p) - PLL_ALPHA_VAL(p) == 4) ? \ |
| ALPHA_REG_BITWIDTH : ALPHA_REG_16BIT_WIDTH) |
| |
| #define pll_has_64bit_config(p) ((PLL_CONFIG_CTL_U(p) - PLL_CONFIG_CTL(p)) == 4) |
| |
| #define to_clk_alpha_pll(_hw) container_of(to_clk_regmap(_hw), \ |
| struct clk_alpha_pll, clkr) |
| |
| #define to_clk_alpha_pll_postdiv(_hw) container_of(to_clk_regmap(_hw), \ |
| struct clk_alpha_pll_postdiv, clkr) |
| |
| static int wait_for_pll(struct clk_alpha_pll *pll, u32 mask, bool inverse, |
| const char *action) |
| { |
| u32 val; |
| int count; |
| int ret; |
| const char *name = clk_hw_get_name(&pll->clkr.hw); |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| for (count = 100; count > 0; count--) { |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| if (inverse && !(val & mask)) |
| return 0; |
| else if ((val & mask) == mask) |
| return 0; |
| |
| udelay(1); |
| } |
| |
| WARN(1, "%s failed to %s!\n", name, action); |
| return -ETIMEDOUT; |
| } |
| |
| #define wait_for_pll_enable_active(pll) \ |
| wait_for_pll(pll, PLL_ACTIVE_FLAG, 0, "enable") |
| |
| #define wait_for_pll_enable_lock(pll) \ |
| wait_for_pll(pll, PLL_LOCK_DET, 0, "enable") |
| |
| #define wait_for_zonda_pll_freq_lock(pll) \ |
| wait_for_pll(pll, ZONDA_PLL_FREQ_LOCK_DET, 0, "freq enable") |
| |
| #define wait_for_pll_disable(pll) \ |
| wait_for_pll(pll, PLL_ACTIVE_FLAG, 1, "disable") |
| |
| #define wait_for_pll_offline(pll) \ |
| wait_for_pll(pll, PLL_OFFLINE_ACK, 0, "offline") |
| |
| #define wait_for_pll_update(pll) \ |
| wait_for_pll(pll, PLL_UPDATE, 1, "update") |
| |
| #define wait_for_pll_update_ack_set(pll) \ |
| wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 0, "update_ack_set") |
| |
| #define wait_for_pll_update_ack_clear(pll) \ |
| wait_for_pll(pll, ALPHA_PLL_ACK_LATCH, 1, "update_ack_clear") |
| |
| static void clk_alpha_pll_write_config(struct regmap *regmap, unsigned int reg, |
| unsigned int val) |
| { |
| if (val) |
| regmap_write(regmap, reg, val); |
| } |
| |
| void clk_alpha_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, |
| const struct alpha_pll_config *config) |
| { |
| u32 val, mask; |
| |
| regmap_write(regmap, PLL_L_VAL(pll), config->l); |
| regmap_write(regmap, PLL_ALPHA_VAL(pll), config->alpha); |
| regmap_write(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val); |
| |
| if (pll_has_64bit_config(pll)) |
| regmap_write(regmap, PLL_CONFIG_CTL_U(pll), |
| config->config_ctl_hi_val); |
| |
| if (pll_alpha_width(pll) > 32) |
| regmap_write(regmap, PLL_ALPHA_VAL_U(pll), config->alpha_hi); |
| |
| val = config->main_output_mask; |
| val |= config->aux_output_mask; |
| val |= config->aux2_output_mask; |
| val |= config->early_output_mask; |
| val |= config->pre_div_val; |
| val |= config->post_div_val; |
| val |= config->vco_val; |
| val |= config->alpha_en_mask; |
| val |= config->alpha_mode_mask; |
| |
| mask = config->main_output_mask; |
| mask |= config->aux_output_mask; |
| mask |= config->aux2_output_mask; |
| mask |= config->early_output_mask; |
| mask |= config->pre_div_mask; |
| mask |= config->post_div_mask; |
| mask |= config->vco_mask; |
| |
| regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val); |
| |
| if (pll->flags & SUPPORTS_FSM_MODE) |
| qcom_pll_set_fsm_mode(regmap, PLL_MODE(pll), 6, 0); |
| } |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_configure); |
| |
| static int clk_alpha_pll_hwfsm_enable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| val |= PLL_FSM_ENA; |
| |
| if (pll->flags & SUPPORTS_OFFLINE_REQ) |
| val &= ~PLL_OFFLINE_REQ; |
| |
| ret = regmap_write(pll->clkr.regmap, PLL_MODE(pll), val); |
| if (ret) |
| return ret; |
| |
| /* Make sure enable request goes through before waiting for update */ |
| mb(); |
| |
| return wait_for_pll_enable_active(pll); |
| } |
| |
| static void clk_alpha_pll_hwfsm_disable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return; |
| |
| if (pll->flags & SUPPORTS_OFFLINE_REQ) { |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), |
| PLL_OFFLINE_REQ, PLL_OFFLINE_REQ); |
| if (ret) |
| return; |
| |
| ret = wait_for_pll_offline(pll); |
| if (ret) |
| return; |
| } |
| |
| /* Disable hwfsm */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), |
| PLL_FSM_ENA, 0); |
| if (ret) |
| return; |
| |
| wait_for_pll_disable(pll); |
| } |
| |
| static int pll_is_enabled(struct clk_hw *hw, u32 mask) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| return !!(val & mask); |
| } |
| |
| static int clk_alpha_pll_hwfsm_is_enabled(struct clk_hw *hw) |
| { |
| return pll_is_enabled(hw, PLL_ACTIVE_FLAG); |
| } |
| |
| static int clk_alpha_pll_is_enabled(struct clk_hw *hw) |
| { |
| return pll_is_enabled(hw, PLL_LOCK_DET); |
| } |
| |
| static int clk_alpha_pll_enable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val, mask; |
| |
| mask = PLL_OUTCTRL | PLL_RESET_N | PLL_BYPASSNL; |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| /* If in FSM mode, just vote for it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| ret = clk_enable_regmap(hw); |
| if (ret) |
| return ret; |
| return wait_for_pll_enable_active(pll); |
| } |
| |
| /* Skip if already enabled */ |
| if ((val & mask) == mask) |
| return 0; |
| |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), |
| PLL_BYPASSNL, PLL_BYPASSNL); |
| if (ret) |
| return ret; |
| |
| /* |
| * H/W requires a 5us delay between disabling the bypass and |
| * de-asserting the reset. |
| */ |
| mb(); |
| udelay(5); |
| |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), |
| PLL_RESET_N, PLL_RESET_N); |
| if (ret) |
| return ret; |
| |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), |
| PLL_OUTCTRL, PLL_OUTCTRL); |
| |
| /* Ensure that the write above goes through before returning. */ |
| mb(); |
| return ret; |
| } |
| |
| static void clk_alpha_pll_disable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val, mask; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return; |
| |
| /* If in FSM mode, just unvote it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| clk_disable_regmap(hw); |
| return; |
| } |
| |
| mask = PLL_OUTCTRL; |
| regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0); |
| |
| /* Delay of 2 output clock ticks required until output is disabled */ |
| mb(); |
| udelay(1); |
| |
| mask = PLL_RESET_N | PLL_BYPASSNL; |
| regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), mask, 0); |
| } |
| |
| static unsigned long |
| alpha_pll_calc_rate(u64 prate, u32 l, u32 a, u32 alpha_width) |
| { |
| return (prate * l) + ((prate * a) >> ALPHA_SHIFT(alpha_width)); |
| } |
| |
| static unsigned long |
| alpha_pll_round_rate(unsigned long rate, unsigned long prate, u32 *l, u64 *a, |
| u32 alpha_width) |
| { |
| u64 remainder; |
| u64 quotient; |
| |
| quotient = rate; |
| remainder = do_div(quotient, prate); |
| *l = quotient; |
| |
| if (!remainder) { |
| *a = 0; |
| return rate; |
| } |
| |
| /* Upper ALPHA_BITWIDTH bits of Alpha */ |
| quotient = remainder << ALPHA_SHIFT(alpha_width); |
| |
| remainder = do_div(quotient, prate); |
| |
| if (remainder) |
| quotient++; |
| |
| *a = quotient; |
| return alpha_pll_calc_rate(prate, *l, *a, alpha_width); |
| } |
| |
| static const struct pll_vco * |
| alpha_pll_find_vco(const struct clk_alpha_pll *pll, unsigned long rate) |
| { |
| const struct pll_vco *v = pll->vco_table; |
| const struct pll_vco *end = v + pll->num_vco; |
| |
| for (; v < end; v++) |
| if (rate >= v->min_freq && rate <= v->max_freq) |
| return v; |
| |
| return NULL; |
| } |
| |
| static unsigned long |
| clk_alpha_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| u32 l, low, high, ctl; |
| u64 a = 0, prate = parent_rate; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 alpha_width = pll_alpha_width(pll); |
| |
| regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); |
| |
| regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); |
| if (ctl & PLL_ALPHA_EN) { |
| regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &low); |
| if (alpha_width > 32) { |
| regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), |
| &high); |
| a = (u64)high << 32 | low; |
| } else { |
| a = low & GENMASK(alpha_width - 1, 0); |
| } |
| |
| if (alpha_width > ALPHA_BITWIDTH) |
| a >>= alpha_width - ALPHA_BITWIDTH; |
| } |
| |
| return alpha_pll_calc_rate(prate, l, a, alpha_width); |
| } |
| |
| |
| static int __clk_alpha_pll_update_latch(struct clk_alpha_pll *pll) |
| { |
| int ret; |
| u32 mode; |
| |
| regmap_read(pll->clkr.regmap, PLL_MODE(pll), &mode); |
| |
| /* Latch the input to the PLL */ |
| regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, |
| PLL_UPDATE); |
| |
| /* Wait for 2 reference cycle before checking ACK bit */ |
| udelay(1); |
| |
| /* |
| * PLL will latch the new L, Alpha and freq control word. |
| * PLL will respond by raising PLL_ACK_LATCH output when new programming |
| * has been latched in and PLL is being updated. When |
| * UPDATE_LOGIC_BYPASS bit is not set, PLL_UPDATE will be cleared |
| * automatically by hardware when PLL_ACK_LATCH is asserted by PLL. |
| */ |
| if (mode & PLL_UPDATE_BYPASS) { |
| ret = wait_for_pll_update_ack_set(pll); |
| if (ret) |
| return ret; |
| |
| regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_UPDATE, 0); |
| } else { |
| ret = wait_for_pll_update(pll); |
| if (ret) |
| return ret; |
| } |
| |
| ret = wait_for_pll_update_ack_clear(pll); |
| if (ret) |
| return ret; |
| |
| /* Wait for PLL output to stabilize */ |
| udelay(10); |
| |
| return 0; |
| } |
| |
| static int clk_alpha_pll_update_latch(struct clk_alpha_pll *pll, |
| int (*is_enabled)(struct clk_hw *)) |
| { |
| if (!is_enabled(&pll->clkr.hw) || |
| !(pll->flags & SUPPORTS_DYNAMIC_UPDATE)) |
| return 0; |
| |
| return __clk_alpha_pll_update_latch(pll); |
| } |
| |
| static int __clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate, |
| int (*is_enabled)(struct clk_hw *)) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| const struct pll_vco *vco; |
| u32 l, alpha_width = pll_alpha_width(pll); |
| u64 a; |
| |
| rate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); |
| vco = alpha_pll_find_vco(pll, rate); |
| if (pll->vco_table && !vco) { |
| pr_err("%s: alpha pll not in a valid vco range\n", |
| clk_hw_get_name(hw)); |
| return -EINVAL; |
| } |
| |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| |
| if (alpha_width > ALPHA_BITWIDTH) |
| a <<= alpha_width - ALPHA_BITWIDTH; |
| |
| if (alpha_width > 32) |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL_U(pll), a >> 32); |
| |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); |
| |
| if (vco) { |
| regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| PLL_VCO_MASK << PLL_VCO_SHIFT, |
| vco->val << PLL_VCO_SHIFT); |
| } |
| |
| regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| PLL_ALPHA_EN, PLL_ALPHA_EN); |
| |
| return clk_alpha_pll_update_latch(pll, is_enabled); |
| } |
| |
| static int clk_alpha_pll_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| return __clk_alpha_pll_set_rate(hw, rate, prate, |
| clk_alpha_pll_is_enabled); |
| } |
| |
| static int clk_alpha_pll_hwfsm_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| return __clk_alpha_pll_set_rate(hw, rate, prate, |
| clk_alpha_pll_hwfsm_is_enabled); |
| } |
| |
| static long clk_alpha_pll_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *prate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, alpha_width = pll_alpha_width(pll); |
| u64 a; |
| unsigned long min_freq, max_freq; |
| |
| rate = alpha_pll_round_rate(rate, *prate, &l, &a, alpha_width); |
| if (!pll->vco_table || alpha_pll_find_vco(pll, rate)) |
| return rate; |
| |
| min_freq = pll->vco_table[0].min_freq; |
| max_freq = pll->vco_table[pll->num_vco - 1].max_freq; |
| |
| return clamp(rate, min_freq, max_freq); |
| } |
| |
| static unsigned long |
| alpha_huayra_pll_calc_rate(u64 prate, u32 l, u32 a) |
| { |
| /* |
| * a contains 16 bit alpha_val in two’s complement number in the range |
| * of [-0.5, 0.5). |
| */ |
| if (a >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) |
| l -= 1; |
| |
| return (prate * l) + (prate * a >> PLL_HUAYRA_ALPHA_WIDTH); |
| } |
| |
| static unsigned long |
| alpha_huayra_pll_round_rate(unsigned long rate, unsigned long prate, |
| u32 *l, u32 *a) |
| { |
| u64 remainder; |
| u64 quotient; |
| |
| quotient = rate; |
| remainder = do_div(quotient, prate); |
| *l = quotient; |
| |
| if (!remainder) { |
| *a = 0; |
| return rate; |
| } |
| |
| quotient = remainder << PLL_HUAYRA_ALPHA_WIDTH; |
| remainder = do_div(quotient, prate); |
| |
| if (remainder) |
| quotient++; |
| |
| /* |
| * alpha_val should be in two’s complement number in the range |
| * of [-0.5, 0.5) so if quotient >= 0.5 then increment the l value |
| * since alpha value will be subtracted in this case. |
| */ |
| if (quotient >= BIT(PLL_HUAYRA_ALPHA_WIDTH - 1)) |
| *l += 1; |
| |
| *a = quotient; |
| return alpha_huayra_pll_calc_rate(prate, *l, *a); |
| } |
| |
| static unsigned long |
| alpha_pll_huayra_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| u64 rate = parent_rate, tmp; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, alpha = 0, ctl, alpha_m, alpha_n; |
| |
| regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); |
| regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); |
| |
| if (ctl & PLL_ALPHA_EN) { |
| regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &alpha); |
| /* |
| * Depending upon alpha_mode, it can be treated as M/N value or |
| * as a two’s complement number. When alpha_mode=1, |
| * pll_alpha_val<15:8>=M and pll_apla_val<7:0>=N |
| * |
| * Fout=FIN*(L+(M/N)) |
| * |
| * M is a signed number (-128 to 127) and N is unsigned |
| * (0 to 255). M/N has to be within +/-0.5. |
| * |
| * When alpha_mode=0, it is a two’s complement number in the |
| * range [-0.5, 0.5). |
| * |
| * Fout=FIN*(L+(alpha_val)/2^16) |
| * |
| * where alpha_val is two’s complement number. |
| */ |
| if (!(ctl & PLL_ALPHA_MODE)) |
| return alpha_huayra_pll_calc_rate(rate, l, alpha); |
| |
| alpha_m = alpha >> PLL_HUAYRA_M_SHIFT & PLL_HUAYRA_M_MASK; |
| alpha_n = alpha >> PLL_HUAYRA_N_SHIFT & PLL_HUAYRA_N_MASK; |
| |
| rate *= l; |
| tmp = parent_rate; |
| if (alpha_m >= BIT(PLL_HUAYRA_M_WIDTH - 1)) { |
| alpha_m = BIT(PLL_HUAYRA_M_WIDTH) - alpha_m; |
| tmp *= alpha_m; |
| do_div(tmp, alpha_n); |
| rate -= tmp; |
| } else { |
| tmp *= alpha_m; |
| do_div(tmp, alpha_n); |
| rate += tmp; |
| } |
| |
| return rate; |
| } |
| |
| return alpha_huayra_pll_calc_rate(rate, l, alpha); |
| } |
| |
| static int alpha_pll_huayra_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, a, ctl, cur_alpha = 0; |
| |
| rate = alpha_huayra_pll_round_rate(rate, prate, &l, &a); |
| |
| regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); |
| |
| if (ctl & PLL_ALPHA_EN) |
| regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &cur_alpha); |
| |
| /* |
| * Huayra PLL supports PLL dynamic programming. User can change L_VAL, |
| * without having to go through the power on sequence. |
| */ |
| if (clk_alpha_pll_is_enabled(hw)) { |
| if (cur_alpha != a) { |
| pr_err("%s: clock needs to be gated\n", |
| clk_hw_get_name(hw)); |
| return -EBUSY; |
| } |
| |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| /* Ensure that the write above goes to detect L val change. */ |
| mb(); |
| return wait_for_pll_enable_lock(pll); |
| } |
| |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); |
| |
| if (a == 0) |
| regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| PLL_ALPHA_EN, 0x0); |
| else |
| regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| PLL_ALPHA_EN | PLL_ALPHA_MODE, PLL_ALPHA_EN); |
| |
| return 0; |
| } |
| |
| static long alpha_pll_huayra_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *prate) |
| { |
| u32 l, a; |
| |
| return alpha_huayra_pll_round_rate(rate, *prate, &l, &a); |
| } |
| |
| static int trion_pll_is_enabled(struct clk_alpha_pll *pll, |
| struct regmap *regmap) |
| { |
| u32 mode_val, opmode_val; |
| int ret; |
| |
| ret = regmap_read(regmap, PLL_MODE(pll), &mode_val); |
| ret |= regmap_read(regmap, PLL_OPMODE(pll), &opmode_val); |
| if (ret) |
| return 0; |
| |
| return ((opmode_val & PLL_RUN) && (mode_val & PLL_OUTCTRL)); |
| } |
| |
| static int clk_trion_pll_is_enabled(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| |
| return trion_pll_is_enabled(pll, pll->clkr.regmap); |
| } |
| |
| static int clk_trion_pll_enable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| u32 val; |
| int ret; |
| |
| ret = regmap_read(regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| /* If in FSM mode, just vote for it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| ret = clk_enable_regmap(hw); |
| if (ret) |
| return ret; |
| return wait_for_pll_enable_active(pll); |
| } |
| |
| /* Set operation mode to RUN */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN); |
| |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| /* Enable the PLL outputs */ |
| ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), |
| PLL_OUT_MASK, PLL_OUT_MASK); |
| if (ret) |
| return ret; |
| |
| /* Enable the global PLL outputs */ |
| return regmap_update_bits(regmap, PLL_MODE(pll), |
| PLL_OUTCTRL, PLL_OUTCTRL); |
| } |
| |
| static void clk_trion_pll_disable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| u32 val; |
| int ret; |
| |
| ret = regmap_read(regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return; |
| |
| /* If in FSM mode, just unvote it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| clk_disable_regmap(hw); |
| return; |
| } |
| |
| /* Disable the global PLL output */ |
| ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| if (ret) |
| return; |
| |
| /* Disable the PLL outputs */ |
| ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), |
| PLL_OUT_MASK, 0); |
| if (ret) |
| return; |
| |
| /* Place the PLL mode in STANDBY */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| } |
| |
| static unsigned long |
| clk_trion_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, frac, alpha_width = pll_alpha_width(pll); |
| |
| regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); |
| regmap_read(pll->clkr.regmap, PLL_ALPHA_VAL(pll), &frac); |
| |
| return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width); |
| } |
| |
| const struct clk_ops clk_alpha_pll_fixed_ops = { |
| .enable = clk_alpha_pll_enable, |
| .disable = clk_alpha_pll_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .recalc_rate = clk_alpha_pll_recalc_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_ops); |
| |
| const struct clk_ops clk_alpha_pll_ops = { |
| .enable = clk_alpha_pll_enable, |
| .disable = clk_alpha_pll_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .recalc_rate = clk_alpha_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = clk_alpha_pll_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_ops); |
| |
| const struct clk_ops clk_alpha_pll_huayra_ops = { |
| .enable = clk_alpha_pll_enable, |
| .disable = clk_alpha_pll_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .recalc_rate = alpha_pll_huayra_recalc_rate, |
| .round_rate = alpha_pll_huayra_round_rate, |
| .set_rate = alpha_pll_huayra_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_huayra_ops); |
| |
| const struct clk_ops clk_alpha_pll_hwfsm_ops = { |
| .enable = clk_alpha_pll_hwfsm_enable, |
| .disable = clk_alpha_pll_hwfsm_disable, |
| .is_enabled = clk_alpha_pll_hwfsm_is_enabled, |
| .recalc_rate = clk_alpha_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = clk_alpha_pll_hwfsm_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_hwfsm_ops); |
| |
| const struct clk_ops clk_alpha_pll_fixed_trion_ops = { |
| .enable = clk_trion_pll_enable, |
| .disable = clk_trion_pll_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_trion_ops); |
| |
| static unsigned long |
| clk_alpha_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| u32 ctl; |
| |
| regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); |
| |
| ctl >>= PLL_POST_DIV_SHIFT; |
| ctl &= PLL_POST_DIV_MASK(pll); |
| |
| return parent_rate >> fls(ctl); |
| } |
| |
| static const struct clk_div_table clk_alpha_div_table[] = { |
| { 0x0, 1 }, |
| { 0x1, 2 }, |
| { 0x3, 4 }, |
| { 0x7, 8 }, |
| { 0xf, 16 }, |
| { } |
| }; |
| |
| static const struct clk_div_table clk_alpha_2bit_div_table[] = { |
| { 0x0, 1 }, |
| { 0x1, 2 }, |
| { 0x3, 4 }, |
| { } |
| }; |
| |
| static long |
| clk_alpha_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *prate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| const struct clk_div_table *table; |
| |
| if (pll->width == 2) |
| table = clk_alpha_2bit_div_table; |
| else |
| table = clk_alpha_div_table; |
| |
| return divider_round_rate(hw, rate, prate, table, |
| pll->width, CLK_DIVIDER_POWER_OF_TWO); |
| } |
| |
| static long |
| clk_alpha_pll_postdiv_round_ro_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *prate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| u32 ctl, div; |
| |
| regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &ctl); |
| |
| ctl >>= PLL_POST_DIV_SHIFT; |
| ctl &= BIT(pll->width) - 1; |
| div = 1 << fls(ctl); |
| |
| if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT) |
| *prate = clk_hw_round_rate(clk_hw_get_parent(hw), div * rate); |
| |
| return DIV_ROUND_UP_ULL((u64)*prate, div); |
| } |
| |
| static int clk_alpha_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| int div; |
| |
| /* 16 -> 0xf, 8 -> 0x7, 4 -> 0x3, 2 -> 0x1, 1 -> 0x0 */ |
| div = DIV_ROUND_UP_ULL(parent_rate, rate) - 1; |
| |
| return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT, |
| div << PLL_POST_DIV_SHIFT); |
| } |
| |
| const struct clk_ops clk_alpha_pll_postdiv_ops = { |
| .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, |
| .round_rate = clk_alpha_pll_postdiv_round_rate, |
| .set_rate = clk_alpha_pll_postdiv_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ops); |
| |
| const struct clk_ops clk_alpha_pll_postdiv_ro_ops = { |
| .round_rate = clk_alpha_pll_postdiv_round_ro_rate, |
| .recalc_rate = clk_alpha_pll_postdiv_recalc_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_ro_ops); |
| |
| void clk_fabia_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, |
| const struct alpha_pll_config *config) |
| { |
| u32 val, mask; |
| |
| clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l); |
| clk_alpha_pll_write_config(regmap, PLL_FRAC(pll), config->alpha); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), |
| config->config_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), |
| config->config_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), |
| config->user_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), |
| config->user_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), |
| config->test_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), |
| config->test_ctl_hi_val); |
| |
| if (config->post_div_mask) { |
| mask = config->post_div_mask; |
| val = config->post_div_val; |
| regmap_update_bits(regmap, PLL_USER_CTL(pll), mask, val); |
| } |
| |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS, |
| PLL_UPDATE_BYPASS); |
| |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| } |
| EXPORT_SYMBOL_GPL(clk_fabia_pll_configure); |
| |
| static int alpha_pll_fabia_enable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val, opmode_val; |
| struct regmap *regmap = pll->clkr.regmap; |
| |
| ret = regmap_read(regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| /* If in FSM mode, just vote for it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| ret = clk_enable_regmap(hw); |
| if (ret) |
| return ret; |
| return wait_for_pll_enable_active(pll); |
| } |
| |
| ret = regmap_read(regmap, PLL_OPMODE(pll), &opmode_val); |
| if (ret) |
| return ret; |
| |
| /* Skip If PLL is already running */ |
| if ((opmode_val & PLL_RUN) && (val & PLL_OUTCTRL)) |
| return 0; |
| |
| ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| if (ret) |
| return ret; |
| |
| ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| if (ret) |
| return ret; |
| |
| ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, |
| PLL_RESET_N); |
| if (ret) |
| return ret; |
| |
| ret = regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN); |
| if (ret) |
| return ret; |
| |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), |
| PLL_OUT_MASK, PLL_OUT_MASK); |
| if (ret) |
| return ret; |
| |
| return regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, |
| PLL_OUTCTRL); |
| } |
| |
| static void alpha_pll_fabia_disable(struct clk_hw *hw) |
| { |
| int ret; |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| struct regmap *regmap = pll->clkr.regmap; |
| |
| ret = regmap_read(regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return; |
| |
| /* If in FSM mode, just unvote it */ |
| if (val & PLL_FSM_ENA) { |
| clk_disable_regmap(hw); |
| return; |
| } |
| |
| ret = regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| if (ret) |
| return; |
| |
| /* Disable main outputs */ |
| ret = regmap_update_bits(regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0); |
| if (ret) |
| return; |
| |
| /* Place the PLL in STANDBY */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| } |
| |
| static unsigned long alpha_pll_fabia_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, frac, alpha_width = pll_alpha_width(pll); |
| |
| regmap_read(pll->clkr.regmap, PLL_L_VAL(pll), &l); |
| regmap_read(pll->clkr.regmap, PLL_FRAC(pll), &frac); |
| |
| return alpha_pll_calc_rate(parent_rate, l, frac, alpha_width); |
| } |
| |
| /* |
| * Due to limited number of bits for fractional rate programming, the |
| * rounded up rate could be marginally higher than the requested rate. |
| */ |
| static int alpha_pll_check_rate_margin(struct clk_hw *hw, |
| unsigned long rrate, unsigned long rate) |
| { |
| unsigned long rate_margin = rate + PLL_RATE_MARGIN; |
| |
| if (rrate > rate_margin || rrate < rate) { |
| pr_err("%s: Rounded rate %lu not within range [%lu, %lu)\n", |
| clk_hw_get_name(hw), rrate, rate, rate_margin); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int alpha_pll_fabia_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, alpha_width = pll_alpha_width(pll); |
| unsigned long rrate; |
| int ret; |
| u64 a; |
| |
| rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); |
| |
| ret = alpha_pll_check_rate_margin(hw, rrate, rate); |
| if (ret < 0) |
| return ret; |
| |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| regmap_write(pll->clkr.regmap, PLL_FRAC(pll), a); |
| |
| return __clk_alpha_pll_update_latch(pll); |
| } |
| |
| static int alpha_pll_fabia_prepare(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| const struct pll_vco *vco; |
| struct clk_hw *parent_hw; |
| unsigned long cal_freq, rrate; |
| u32 cal_l, val, alpha_width = pll_alpha_width(pll); |
| const char *name = clk_hw_get_name(hw); |
| u64 a; |
| int ret; |
| |
| /* Check if calibration needs to be done i.e. PLL is in reset */ |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| /* Return early if calibration is not needed. */ |
| if (val & PLL_RESET_N) |
| return 0; |
| |
| vco = alpha_pll_find_vco(pll, clk_hw_get_rate(hw)); |
| if (!vco) { |
| pr_err("%s: alpha pll not in a valid vco range\n", name); |
| return -EINVAL; |
| } |
| |
| cal_freq = DIV_ROUND_CLOSEST((pll->vco_table[0].min_freq + |
| pll->vco_table[0].max_freq) * 54, 100); |
| |
| parent_hw = clk_hw_get_parent(hw); |
| if (!parent_hw) |
| return -EINVAL; |
| |
| rrate = alpha_pll_round_rate(cal_freq, clk_hw_get_rate(parent_hw), |
| &cal_l, &a, alpha_width); |
| |
| ret = alpha_pll_check_rate_margin(hw, rrate, cal_freq); |
| if (ret < 0) |
| return ret; |
| |
| /* Setup PLL for calibration frequency */ |
| regmap_write(pll->clkr.regmap, PLL_CAL_L_VAL(pll), cal_l); |
| |
| /* Bringup the PLL at calibration frequency */ |
| ret = clk_alpha_pll_enable(hw); |
| if (ret) { |
| pr_err("%s: alpha pll calibration failed\n", name); |
| return ret; |
| } |
| |
| clk_alpha_pll_disable(hw); |
| |
| return 0; |
| } |
| |
| const struct clk_ops clk_alpha_pll_fabia_ops = { |
| .prepare = alpha_pll_fabia_prepare, |
| .enable = alpha_pll_fabia_enable, |
| .disable = alpha_pll_fabia_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .set_rate = alpha_pll_fabia_set_rate, |
| .recalc_rate = alpha_pll_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_fabia_ops); |
| |
| const struct clk_ops clk_alpha_pll_fixed_fabia_ops = { |
| .enable = alpha_pll_fabia_enable, |
| .disable = alpha_pll_fabia_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .recalc_rate = alpha_pll_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_fixed_fabia_ops); |
| |
| static unsigned long clk_alpha_pll_postdiv_fabia_recalc_rate(struct clk_hw *hw, |
| unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| u32 i, div = 1, val; |
| int ret; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val); |
| if (ret) |
| return ret; |
| |
| val >>= pll->post_div_shift; |
| val &= BIT(pll->width) - 1; |
| |
| for (i = 0; i < pll->num_post_div; i++) { |
| if (pll->post_div_table[i].val == val) { |
| div = pll->post_div_table[i].div; |
| break; |
| } |
| } |
| |
| return (parent_rate / div); |
| } |
| |
| static unsigned long |
| clk_trion_pll_postdiv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| u32 i, div = 1, val; |
| |
| regmap_read(regmap, PLL_USER_CTL(pll), &val); |
| |
| val >>= pll->post_div_shift; |
| val &= PLL_POST_DIV_MASK(pll); |
| |
| for (i = 0; i < pll->num_post_div; i++) { |
| if (pll->post_div_table[i].val == val) { |
| div = pll->post_div_table[i].div; |
| break; |
| } |
| } |
| |
| return (parent_rate / div); |
| } |
| |
| static long |
| clk_trion_pll_postdiv_round_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long *prate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| |
| return divider_round_rate(hw, rate, prate, pll->post_div_table, |
| pll->width, CLK_DIVIDER_ROUND_CLOSEST); |
| }; |
| |
| static int |
| clk_trion_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| int i, val = 0, div; |
| |
| div = DIV_ROUND_UP_ULL(parent_rate, rate); |
| for (i = 0; i < pll->num_post_div; i++) { |
| if (pll->post_div_table[i].div == div) { |
| val = pll->post_div_table[i].val; |
| break; |
| } |
| } |
| |
| return regmap_update_bits(regmap, PLL_USER_CTL(pll), |
| PLL_POST_DIV_MASK(pll) << PLL_POST_DIV_SHIFT, |
| val << PLL_POST_DIV_SHIFT); |
| } |
| |
| const struct clk_ops clk_alpha_pll_postdiv_trion_ops = { |
| .recalc_rate = clk_trion_pll_postdiv_recalc_rate, |
| .round_rate = clk_trion_pll_postdiv_round_rate, |
| .set_rate = clk_trion_pll_postdiv_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_trion_ops); |
| |
| static long clk_alpha_pll_postdiv_fabia_round_rate(struct clk_hw *hw, |
| unsigned long rate, unsigned long *prate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| |
| return divider_round_rate(hw, rate, prate, pll->post_div_table, |
| pll->width, CLK_DIVIDER_ROUND_CLOSEST); |
| } |
| |
| static int clk_alpha_pll_postdiv_fabia_set_rate(struct clk_hw *hw, |
| unsigned long rate, unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| int i, val = 0, div, ret; |
| |
| /* |
| * If the PLL is in FSM mode, then treat set_rate callback as a |
| * no-operation. |
| */ |
| ret = regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (ret) |
| return ret; |
| |
| if (val & PLL_VOTE_FSM_ENA) |
| return 0; |
| |
| div = DIV_ROUND_UP_ULL(parent_rate, rate); |
| for (i = 0; i < pll->num_post_div; i++) { |
| if (pll->post_div_table[i].div == div) { |
| val = pll->post_div_table[i].val; |
| break; |
| } |
| } |
| |
| return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| (BIT(pll->width) - 1) << pll->post_div_shift, |
| val << pll->post_div_shift); |
| } |
| |
| const struct clk_ops clk_alpha_pll_postdiv_fabia_ops = { |
| .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_postdiv_fabia_round_rate, |
| .set_rate = clk_alpha_pll_postdiv_fabia_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_fabia_ops); |
| |
| /** |
| * clk_lucid_pll_configure - configure the lucid pll |
| * |
| * @pll: clk alpha pll |
| * @regmap: register map |
| * @config: configuration to apply for pll |
| */ |
| void clk_trion_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, |
| const struct alpha_pll_config *config) |
| { |
| /* |
| * If the bootloader left the PLL enabled it's likely that there are |
| * RCGs that will lock up if we disable the PLL below. |
| */ |
| if (trion_pll_is_enabled(pll, regmap)) { |
| pr_debug("Trion PLL is already enabled, skipping configuration\n"); |
| return; |
| } |
| |
| clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l); |
| regmap_write(regmap, PLL_CAL_L_VAL(pll), TRION_PLL_CAL_VAL); |
| clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), |
| config->config_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), |
| config->config_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), |
| config->config_ctl_hi1_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), |
| config->user_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), |
| config->user_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), |
| config->user_ctl_hi1_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), |
| config->test_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), |
| config->test_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), |
| config->test_ctl_hi1_val); |
| |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_UPDATE_BYPASS, |
| PLL_UPDATE_BYPASS); |
| |
| /* Disable PLL output */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| |
| /* Set operation mode to OFF */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| |
| /* Place the PLL in STANDBY mode */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| } |
| EXPORT_SYMBOL_GPL(clk_trion_pll_configure); |
| |
| /* |
| * The TRION PLL requires a power-on self-calibration which happens when the |
| * PLL comes out of reset. Calibrate in case it is not completed. |
| */ |
| static int __alpha_pll_trion_prepare(struct clk_hw *hw, u32 pcal_done) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| int ret; |
| |
| /* Return early if calibration is not needed. */ |
| regmap_read(pll->clkr.regmap, PLL_STATUS(pll), &val); |
| if (val & pcal_done) |
| return 0; |
| |
| /* On/off to calibrate */ |
| ret = clk_trion_pll_enable(hw); |
| if (!ret) |
| clk_trion_pll_disable(hw); |
| |
| return ret; |
| } |
| |
| static int alpha_pll_trion_prepare(struct clk_hw *hw) |
| { |
| return __alpha_pll_trion_prepare(hw, TRION_PCAL_DONE); |
| } |
| |
| static int alpha_pll_lucid_prepare(struct clk_hw *hw) |
| { |
| return __alpha_pll_trion_prepare(hw, LUCID_PCAL_DONE); |
| } |
| |
| static int __alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate, u32 latch_bit, u32 latch_ack) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| unsigned long rrate; |
| u32 val, l, alpha_width = pll_alpha_width(pll); |
| u64 a; |
| int ret; |
| |
| rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); |
| |
| ret = alpha_pll_check_rate_margin(hw, rrate, rate); |
| if (ret < 0) |
| return ret; |
| |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); |
| |
| /* Latch the PLL input */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, latch_bit); |
| if (ret) |
| return ret; |
| |
| /* Wait for 2 reference cycles before checking the ACK bit. */ |
| udelay(1); |
| regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (!(val & latch_ack)) { |
| pr_err("Lucid PLL latch failed. Output may be unstable!\n"); |
| return -EINVAL; |
| } |
| |
| /* Return the latch input to 0 */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), latch_bit, 0); |
| if (ret) |
| return ret; |
| |
| if (clk_hw_is_enabled(hw)) { |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| } |
| |
| /* Wait for PLL output to stabilize */ |
| udelay(100); |
| return 0; |
| } |
| |
| static int alpha_pll_trion_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| return __alpha_pll_trion_set_rate(hw, rate, prate, PLL_UPDATE, ALPHA_PLL_ACK_LATCH); |
| } |
| |
| const struct clk_ops clk_alpha_pll_trion_ops = { |
| .prepare = alpha_pll_trion_prepare, |
| .enable = clk_trion_pll_enable, |
| .disable = clk_trion_pll_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = alpha_pll_trion_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_trion_ops); |
| |
| const struct clk_ops clk_alpha_pll_lucid_ops = { |
| .prepare = alpha_pll_lucid_prepare, |
| .enable = clk_trion_pll_enable, |
| .disable = clk_trion_pll_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = alpha_pll_trion_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_lucid_ops); |
| |
| const struct clk_ops clk_alpha_pll_postdiv_lucid_ops = { |
| .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_postdiv_fabia_round_rate, |
| .set_rate = clk_alpha_pll_postdiv_fabia_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_postdiv_lucid_ops); |
| |
| void clk_agera_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, |
| const struct alpha_pll_config *config) |
| { |
| clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l); |
| clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), |
| config->user_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), |
| config->config_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), |
| config->config_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), |
| config->test_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), |
| config->test_ctl_hi_val); |
| } |
| EXPORT_SYMBOL_GPL(clk_agera_pll_configure); |
| |
| static int clk_alpha_pll_agera_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 l, alpha_width = pll_alpha_width(pll); |
| int ret; |
| unsigned long rrate; |
| u64 a; |
| |
| rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); |
| ret = alpha_pll_check_rate_margin(hw, rrate, rate); |
| if (ret < 0) |
| return ret; |
| |
| /* change L_VAL without having to go through the power on sequence */ |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); |
| |
| if (clk_hw_is_enabled(hw)) |
| return wait_for_pll_enable_lock(pll); |
| |
| return 0; |
| } |
| |
| const struct clk_ops clk_alpha_pll_agera_ops = { |
| .enable = clk_alpha_pll_enable, |
| .disable = clk_alpha_pll_disable, |
| .is_enabled = clk_alpha_pll_is_enabled, |
| .recalc_rate = alpha_pll_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = clk_alpha_pll_agera_set_rate, |
| }; |
| EXPORT_SYMBOL_GPL(clk_alpha_pll_agera_ops); |
| |
| static int alpha_pll_lucid_5lpe_enable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| int ret; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val); |
| if (ret) |
| return ret; |
| |
| /* If in FSM mode, just vote for it */ |
| if (val & LUCID_5LPE_ENABLE_VOTE_RUN) { |
| ret = clk_enable_regmap(hw); |
| if (ret) |
| return ret; |
| return wait_for_pll_enable_lock(pll); |
| } |
| |
| /* Check if PLL is already enabled, return if enabled */ |
| ret = trion_pll_is_enabled(pll, pll->clkr.regmap); |
| if (ret < 0) |
| return ret; |
| |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| if (ret) |
| return ret; |
| |
| regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_RUN); |
| |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| /* Enable the PLL outputs */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, PLL_OUT_MASK); |
| if (ret) |
| return ret; |
| |
| /* Enable the global PLL outputs */ |
| return regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL); |
| } |
| |
| static void alpha_pll_lucid_5lpe_disable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| u32 val; |
| int ret; |
| |
| ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val); |
| if (ret) |
| return; |
| |
| /* If in FSM mode, just unvote it */ |
| if (val & LUCID_5LPE_ENABLE_VOTE_RUN) { |
| clk_disable_regmap(hw); |
| return; |
| } |
| |
| /* Disable the global PLL output */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| if (ret) |
| return; |
| |
| /* Disable the PLL outputs */ |
| ret = regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), PLL_OUT_MASK, 0); |
| if (ret) |
| return; |
| |
| /* Place the PLL mode in STANDBY */ |
| regmap_write(pll->clkr.regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| } |
| |
| /* |
| * The Lucid 5LPE PLL requires a power-on self-calibration which happens |
| * when the PLL comes out of reset. Calibrate in case it is not completed. |
| */ |
| static int alpha_pll_lucid_5lpe_prepare(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| struct clk_hw *p; |
| u32 val = 0; |
| int ret; |
| |
| /* Return early if calibration is not needed. */ |
| regmap_read(pll->clkr.regmap, PLL_MODE(pll), &val); |
| if (val & LUCID_5LPE_PCAL_DONE) |
| return 0; |
| |
| p = clk_hw_get_parent(hw); |
| if (!p) |
| return -EINVAL; |
| |
| ret = alpha_pll_lucid_5lpe_enable(hw); |
| if (ret) |
| return ret; |
| |
| alpha_pll_lucid_5lpe_disable(hw); |
| |
| return 0; |
| } |
| |
| static int alpha_pll_lucid_5lpe_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| return __alpha_pll_trion_set_rate(hw, rate, prate, |
| LUCID_5LPE_PLL_LATCH_INPUT, |
| LUCID_5LPE_ALPHA_PLL_ACK_LATCH); |
| } |
| |
| static int clk_lucid_5lpe_pll_postdiv_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long parent_rate) |
| { |
| struct clk_alpha_pll_postdiv *pll = to_clk_alpha_pll_postdiv(hw); |
| int i, val = 0, div, ret; |
| u32 mask; |
| |
| /* |
| * If the PLL is in FSM mode, then treat set_rate callback as a |
| * no-operation. |
| */ |
| ret = regmap_read(pll->clkr.regmap, PLL_USER_CTL(pll), &val); |
| if (ret) |
| return ret; |
| |
| if (val & LUCID_5LPE_ENABLE_VOTE_RUN) |
| return 0; |
| |
| div = DIV_ROUND_UP_ULL((u64)parent_rate, rate); |
| for (i = 0; i < pll->num_post_div; i++) { |
| if (pll->post_div_table[i].div == div) { |
| val = pll->post_div_table[i].val; |
| break; |
| } |
| } |
| |
| mask = GENMASK(pll->width + pll->post_div_shift - 1, pll->post_div_shift); |
| return regmap_update_bits(pll->clkr.regmap, PLL_USER_CTL(pll), |
| mask, val << pll->post_div_shift); |
| } |
| |
| const struct clk_ops clk_alpha_pll_lucid_5lpe_ops = { |
| .prepare = alpha_pll_lucid_5lpe_prepare, |
| .enable = alpha_pll_lucid_5lpe_enable, |
| .disable = alpha_pll_lucid_5lpe_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = alpha_pll_lucid_5lpe_set_rate, |
| }; |
| EXPORT_SYMBOL(clk_alpha_pll_lucid_5lpe_ops); |
| |
| const struct clk_ops clk_alpha_pll_fixed_lucid_5lpe_ops = { |
| .enable = alpha_pll_lucid_5lpe_enable, |
| .disable = alpha_pll_lucid_5lpe_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| }; |
| EXPORT_SYMBOL(clk_alpha_pll_fixed_lucid_5lpe_ops); |
| |
| const struct clk_ops clk_alpha_pll_postdiv_lucid_5lpe_ops = { |
| .recalc_rate = clk_alpha_pll_postdiv_fabia_recalc_rate, |
| .round_rate = clk_alpha_pll_postdiv_fabia_round_rate, |
| .set_rate = clk_lucid_5lpe_pll_postdiv_set_rate, |
| }; |
| EXPORT_SYMBOL(clk_alpha_pll_postdiv_lucid_5lpe_ops); |
| |
| void clk_zonda_pll_configure(struct clk_alpha_pll *pll, struct regmap *regmap, |
| const struct alpha_pll_config *config) |
| { |
| clk_alpha_pll_write_config(regmap, PLL_L_VAL(pll), config->l); |
| clk_alpha_pll_write_config(regmap, PLL_ALPHA_VAL(pll), config->alpha); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL(pll), config->config_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U(pll), config->config_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_CONFIG_CTL_U1(pll), config->config_ctl_hi1_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL(pll), config->user_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U(pll), config->user_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_USER_CTL_U1(pll), config->user_ctl_hi1_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL(pll), config->test_ctl_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U(pll), config->test_ctl_hi_val); |
| clk_alpha_pll_write_config(regmap, PLL_TEST_CTL_U1(pll), config->test_ctl_hi1_val); |
| |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, 0); |
| |
| /* Disable PLL output */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| |
| /* Set operation mode to OFF */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_STANDBY); |
| |
| /* Place the PLL in STANDBY mode */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| } |
| EXPORT_SYMBOL_GPL(clk_zonda_pll_configure); |
| |
| static int clk_zonda_pll_enable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| u32 val; |
| int ret; |
| |
| regmap_read(regmap, PLL_MODE(pll), &val); |
| |
| /* If in FSM mode, just vote for it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| ret = clk_enable_regmap(hw); |
| if (ret) |
| return ret; |
| return wait_for_pll_enable_active(pll); |
| } |
| |
| /* Get the PLL out of bypass mode */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_BYPASSNL, PLL_BYPASSNL); |
| |
| /* |
| * H/W requires a 1us delay between disabling the bypass and |
| * de-asserting the reset. |
| */ |
| udelay(1); |
| |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N, PLL_RESET_N); |
| |
| /* Set operation mode to RUN */ |
| regmap_write(regmap, PLL_OPMODE(pll), PLL_RUN); |
| |
| regmap_read(regmap, PLL_TEST_CTL(pll), &val); |
| |
| /* If cfa mode then poll for freq lock */ |
| if (val & ZONDA_STAY_IN_CFA) |
| ret = wait_for_zonda_pll_freq_lock(pll); |
| else |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| /* Enable the PLL outputs */ |
| regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, ZONDA_PLL_OUT_MASK); |
| |
| /* Enable the global PLL outputs */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, PLL_OUTCTRL); |
| |
| return 0; |
| } |
| |
| static void clk_zonda_pll_disable(struct clk_hw *hw) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| struct regmap *regmap = pll->clkr.regmap; |
| u32 val; |
| |
| regmap_read(regmap, PLL_MODE(pll), &val); |
| |
| /* If in FSM mode, just unvote it */ |
| if (val & PLL_VOTE_FSM_ENA) { |
| clk_disable_regmap(hw); |
| return; |
| } |
| |
| /* Disable the global PLL output */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_OUTCTRL, 0); |
| |
| /* Disable the PLL outputs */ |
| regmap_update_bits(regmap, PLL_USER_CTL(pll), ZONDA_PLL_OUT_MASK, 0); |
| |
| /* Put the PLL in bypass and reset */ |
| regmap_update_bits(regmap, PLL_MODE(pll), PLL_RESET_N | PLL_BYPASSNL, 0); |
| |
| /* Place the PLL mode in OFF state */ |
| regmap_write(regmap, PLL_OPMODE(pll), 0x0); |
| } |
| |
| static int clk_zonda_pll_set_rate(struct clk_hw *hw, unsigned long rate, |
| unsigned long prate) |
| { |
| struct clk_alpha_pll *pll = to_clk_alpha_pll(hw); |
| unsigned long rrate; |
| u32 test_ctl_val; |
| u32 l, alpha_width = pll_alpha_width(pll); |
| u64 a; |
| int ret; |
| |
| rrate = alpha_pll_round_rate(rate, prate, &l, &a, alpha_width); |
| |
| ret = alpha_pll_check_rate_margin(hw, rrate, rate); |
| if (ret < 0) |
| return ret; |
| |
| regmap_write(pll->clkr.regmap, PLL_ALPHA_VAL(pll), a); |
| regmap_write(pll->clkr.regmap, PLL_L_VAL(pll), l); |
| |
| /* Wait before polling for the frequency latch */ |
| udelay(5); |
| |
| /* Read stay in cfa mode */ |
| regmap_read(pll->clkr.regmap, PLL_TEST_CTL(pll), &test_ctl_val); |
| |
| /* If cfa mode then poll for freq lock */ |
| if (test_ctl_val & ZONDA_STAY_IN_CFA) |
| ret = wait_for_zonda_pll_freq_lock(pll); |
| else |
| ret = wait_for_pll_enable_lock(pll); |
| if (ret) |
| return ret; |
| |
| /* Wait for PLL output to stabilize */ |
| udelay(100); |
| return 0; |
| } |
| |
| const struct clk_ops clk_alpha_pll_zonda_ops = { |
| .enable = clk_zonda_pll_enable, |
| .disable = clk_zonda_pll_disable, |
| .is_enabled = clk_trion_pll_is_enabled, |
| .recalc_rate = clk_trion_pll_recalc_rate, |
| .round_rate = clk_alpha_pll_round_rate, |
| .set_rate = clk_zonda_pll_set_rate, |
| }; |
| EXPORT_SYMBOL(clk_alpha_pll_zonda_ops); |