blob: eacb41f86bdb329dc25120566a5b26457676738f [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
/* Copyright 2017-2019 NXP */
#include "enetc.h"
#include <linux/bpf_trace.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/vmalloc.h>
#include <linux/ptp_classify.h>
#include <net/ip6_checksum.h>
#include <net/pkt_sched.h>
#include <net/tso.h>
static int enetc_num_stack_tx_queues(struct enetc_ndev_priv *priv)
{
int num_tx_rings = priv->num_tx_rings;
int i;
for (i = 0; i < priv->num_rx_rings; i++)
if (priv->rx_ring[i]->xdp.prog)
return num_tx_rings - num_possible_cpus();
return num_tx_rings;
}
static struct enetc_bdr *enetc_rx_ring_from_xdp_tx_ring(struct enetc_ndev_priv *priv,
struct enetc_bdr *tx_ring)
{
int index = &priv->tx_ring[tx_ring->index] - priv->xdp_tx_ring;
return priv->rx_ring[index];
}
static struct sk_buff *enetc_tx_swbd_get_skb(struct enetc_tx_swbd *tx_swbd)
{
if (tx_swbd->is_xdp_tx || tx_swbd->is_xdp_redirect)
return NULL;
return tx_swbd->skb;
}
static struct xdp_frame *
enetc_tx_swbd_get_xdp_frame(struct enetc_tx_swbd *tx_swbd)
{
if (tx_swbd->is_xdp_redirect)
return tx_swbd->xdp_frame;
return NULL;
}
static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *tx_swbd)
{
/* For XDP_TX, pages come from RX, whereas for the other contexts where
* we have is_dma_page_set, those come from skb_frag_dma_map. We need
* to match the DMA mapping length, so we need to differentiate those.
*/
if (tx_swbd->is_dma_page)
dma_unmap_page(tx_ring->dev, tx_swbd->dma,
tx_swbd->is_xdp_tx ? PAGE_SIZE : tx_swbd->len,
tx_swbd->dir);
else
dma_unmap_single(tx_ring->dev, tx_swbd->dma,
tx_swbd->len, tx_swbd->dir);
tx_swbd->dma = 0;
}
static void enetc_free_tx_frame(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *tx_swbd)
{
struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
if (tx_swbd->dma)
enetc_unmap_tx_buff(tx_ring, tx_swbd);
if (xdp_frame) {
xdp_return_frame(tx_swbd->xdp_frame);
tx_swbd->xdp_frame = NULL;
} else if (skb) {
dev_kfree_skb_any(skb);
tx_swbd->skb = NULL;
}
}
/* Let H/W know BD ring has been updated */
static void enetc_update_tx_ring_tail(struct enetc_bdr *tx_ring)
{
/* includes wmb() */
enetc_wr_reg_hot(tx_ring->tpir, tx_ring->next_to_use);
}
static int enetc_ptp_parse(struct sk_buff *skb, u8 *udp,
u8 *msgtype, u8 *twostep,
u16 *correction_offset, u16 *body_offset)
{
unsigned int ptp_class;
struct ptp_header *hdr;
unsigned int type;
u8 *base;
ptp_class = ptp_classify_raw(skb);
if (ptp_class == PTP_CLASS_NONE)
return -EINVAL;
hdr = ptp_parse_header(skb, ptp_class);
if (!hdr)
return -EINVAL;
type = ptp_class & PTP_CLASS_PMASK;
if (type == PTP_CLASS_IPV4 || type == PTP_CLASS_IPV6)
*udp = 1;
else
*udp = 0;
*msgtype = ptp_get_msgtype(hdr, ptp_class);
*twostep = hdr->flag_field[0] & 0x2;
base = skb_mac_header(skb);
*correction_offset = (u8 *)&hdr->correction - base;
*body_offset = (u8 *)hdr + sizeof(struct ptp_header) - base;
return 0;
}
static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
{
bool do_vlan, do_onestep_tstamp = false, do_twostep_tstamp = false;
struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
struct enetc_hw *hw = &priv->si->hw;
struct enetc_tx_swbd *tx_swbd;
int len = skb_headlen(skb);
union enetc_tx_bd temp_bd;
u8 msgtype, twostep, udp;
union enetc_tx_bd *txbd;
u16 offset1, offset2;
int i, count = 0;
skb_frag_t *frag;
unsigned int f;
dma_addr_t dma;
u8 flags = 0;
i = tx_ring->next_to_use;
txbd = ENETC_TXBD(*tx_ring, i);
prefetchw(txbd);
dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma)))
goto dma_err;
temp_bd.addr = cpu_to_le64(dma);
temp_bd.buf_len = cpu_to_le16(len);
temp_bd.lstatus = 0;
tx_swbd = &tx_ring->tx_swbd[i];
tx_swbd->dma = dma;
tx_swbd->len = len;
tx_swbd->is_dma_page = 0;
tx_swbd->dir = DMA_TO_DEVICE;
count++;
do_vlan = skb_vlan_tag_present(skb);
if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep, &offset1,
&offset2) ||
msgtype != PTP_MSGTYPE_SYNC || twostep)
WARN_ONCE(1, "Bad packet for one-step timestamping\n");
else
do_onestep_tstamp = true;
} else if (skb->cb[0] & ENETC_F_TX_TSTAMP) {
do_twostep_tstamp = true;
}
tx_swbd->do_twostep_tstamp = do_twostep_tstamp;
tx_swbd->check_wb = tx_swbd->do_twostep_tstamp;
if (do_vlan || do_onestep_tstamp || do_twostep_tstamp)
flags |= ENETC_TXBD_FLAGS_EX;
if (tx_ring->tsd_enable)
flags |= ENETC_TXBD_FLAGS_TSE | ENETC_TXBD_FLAGS_TXSTART;
/* first BD needs frm_len and offload flags set */
temp_bd.frm_len = cpu_to_le16(skb->len);
temp_bd.flags = flags;
if (flags & ENETC_TXBD_FLAGS_TSE)
temp_bd.txstart = enetc_txbd_set_tx_start(skb->skb_mstamp_ns,
flags);
if (flags & ENETC_TXBD_FLAGS_EX) {
u8 e_flags = 0;
*txbd = temp_bd;
enetc_clear_tx_bd(&temp_bd);
/* add extension BD for VLAN and/or timestamping */
flags = 0;
tx_swbd++;
txbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
txbd = ENETC_TXBD(*tx_ring, 0);
}
prefetchw(txbd);
if (do_vlan) {
temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
temp_bd.ext.tpid = 0; /* < C-TAG */
e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
}
if (do_onestep_tstamp) {
u32 lo, hi, val;
u64 sec, nsec;
u8 *data;
lo = enetc_rd_hot(hw, ENETC_SICTR0);
hi = enetc_rd_hot(hw, ENETC_SICTR1);
sec = (u64)hi << 32 | lo;
nsec = do_div(sec, 1000000000);
/* Configure extension BD */
temp_bd.ext.tstamp = cpu_to_le32(lo & 0x3fffffff);
e_flags |= ENETC_TXBD_E_FLAGS_ONE_STEP_PTP;
/* Update originTimestamp field of Sync packet
* - 48 bits seconds field
* - 32 bits nanseconds field
*/
data = skb_mac_header(skb);
*(__be16 *)(data + offset2) =
htons((sec >> 32) & 0xffff);
*(__be32 *)(data + offset2 + 2) =
htonl(sec & 0xffffffff);
*(__be32 *)(data + offset2 + 6) = htonl(nsec);
/* Configure single-step register */
val = ENETC_PM0_SINGLE_STEP_EN;
val |= ENETC_SET_SINGLE_STEP_OFFSET(offset1);
if (udp)
val |= ENETC_PM0_SINGLE_STEP_CH;
enetc_port_wr(hw, ENETC_PM0_SINGLE_STEP, val);
enetc_port_wr(hw, ENETC_PM1_SINGLE_STEP, val);
} else if (do_twostep_tstamp) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP;
}
temp_bd.ext.e_flags = e_flags;
count++;
}
frag = &skb_shinfo(skb)->frags[0];
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) {
len = skb_frag_size(frag);
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(tx_ring->dev, dma))
goto dma_err;
*txbd = temp_bd;
enetc_clear_tx_bd(&temp_bd);
flags = 0;
tx_swbd++;
txbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
txbd = ENETC_TXBD(*tx_ring, 0);
}
prefetchw(txbd);
temp_bd.addr = cpu_to_le64(dma);
temp_bd.buf_len = cpu_to_le16(len);
tx_swbd->dma = dma;
tx_swbd->len = len;
tx_swbd->is_dma_page = 1;
tx_swbd->dir = DMA_TO_DEVICE;
count++;
}
/* last BD needs 'F' bit set */
flags |= ENETC_TXBD_FLAGS_F;
temp_bd.flags = flags;
*txbd = temp_bd;
tx_ring->tx_swbd[i].is_eof = true;
tx_ring->tx_swbd[i].skb = skb;
enetc_bdr_idx_inc(tx_ring, &i);
tx_ring->next_to_use = i;
skb_tx_timestamp(skb);
enetc_update_tx_ring_tail(tx_ring);
return count;
dma_err:
dev_err(tx_ring->dev, "DMA map error");
do {
tx_swbd = &tx_ring->tx_swbd[i];
enetc_free_tx_frame(tx_ring, tx_swbd);
if (i == 0)
i = tx_ring->bd_count;
i--;
} while (count--);
return 0;
}
static void enetc_map_tx_tso_hdr(struct enetc_bdr *tx_ring, struct sk_buff *skb,
struct enetc_tx_swbd *tx_swbd,
union enetc_tx_bd *txbd, int *i, int hdr_len,
int data_len)
{
union enetc_tx_bd txbd_tmp;
u8 flags = 0, e_flags = 0;
dma_addr_t addr;
enetc_clear_tx_bd(&txbd_tmp);
addr = tx_ring->tso_headers_dma + *i * TSO_HEADER_SIZE;
if (skb_vlan_tag_present(skb))
flags |= ENETC_TXBD_FLAGS_EX;
txbd_tmp.addr = cpu_to_le64(addr);
txbd_tmp.buf_len = cpu_to_le16(hdr_len);
/* first BD needs frm_len and offload flags set */
txbd_tmp.frm_len = cpu_to_le16(hdr_len + data_len);
txbd_tmp.flags = flags;
/* For the TSO header we do not set the dma address since we do not
* want it unmapped when we do cleanup. We still set len so that we
* count the bytes sent.
*/
tx_swbd->len = hdr_len;
tx_swbd->do_twostep_tstamp = false;
tx_swbd->check_wb = false;
/* Actually write the header in the BD */
*txbd = txbd_tmp;
/* Add extension BD for VLAN */
if (flags & ENETC_TXBD_FLAGS_EX) {
/* Get the next BD */
enetc_bdr_idx_inc(tx_ring, i);
txbd = ENETC_TXBD(*tx_ring, *i);
tx_swbd = &tx_ring->tx_swbd[*i];
prefetchw(txbd);
/* Setup the VLAN fields */
enetc_clear_tx_bd(&txbd_tmp);
txbd_tmp.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb));
txbd_tmp.ext.tpid = 0; /* < C-TAG */
e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS;
/* Write the BD */
txbd_tmp.ext.e_flags = e_flags;
*txbd = txbd_tmp;
}
}
static int enetc_map_tx_tso_data(struct enetc_bdr *tx_ring, struct sk_buff *skb,
struct enetc_tx_swbd *tx_swbd,
union enetc_tx_bd *txbd, char *data,
int size, bool last_bd)
{
union enetc_tx_bd txbd_tmp;
dma_addr_t addr;
u8 flags = 0;
enetc_clear_tx_bd(&txbd_tmp);
addr = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, addr))) {
netdev_err(tx_ring->ndev, "DMA map error\n");
return -ENOMEM;
}
if (last_bd) {
flags |= ENETC_TXBD_FLAGS_F;
tx_swbd->is_eof = 1;
}
txbd_tmp.addr = cpu_to_le64(addr);
txbd_tmp.buf_len = cpu_to_le16(size);
txbd_tmp.flags = flags;
tx_swbd->dma = addr;
tx_swbd->len = size;
tx_swbd->dir = DMA_TO_DEVICE;
*txbd = txbd_tmp;
return 0;
}
static __wsum enetc_tso_hdr_csum(struct tso_t *tso, struct sk_buff *skb,
char *hdr, int hdr_len, int *l4_hdr_len)
{
char *l4_hdr = hdr + skb_transport_offset(skb);
int mac_hdr_len = skb_network_offset(skb);
if (tso->tlen != sizeof(struct udphdr)) {
struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
tcph->check = 0;
} else {
struct udphdr *udph = (struct udphdr *)(l4_hdr);
udph->check = 0;
}
/* Compute the IP checksum. This is necessary since tso_build_hdr()
* already incremented the IP ID field.
*/
if (!tso->ipv6) {
struct iphdr *iph = (void *)(hdr + mac_hdr_len);
iph->check = 0;
iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
}
/* Compute the checksum over the L4 header. */
*l4_hdr_len = hdr_len - skb_transport_offset(skb);
return csum_partial(l4_hdr, *l4_hdr_len, 0);
}
static void enetc_tso_complete_csum(struct enetc_bdr *tx_ring, struct tso_t *tso,
struct sk_buff *skb, char *hdr, int len,
__wsum sum)
{
char *l4_hdr = hdr + skb_transport_offset(skb);
__sum16 csum_final;
/* Complete the L4 checksum by appending the pseudo-header to the
* already computed checksum.
*/
if (!tso->ipv6)
csum_final = csum_tcpudp_magic(ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
len, ip_hdr(skb)->protocol, sum);
else
csum_final = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
len, ipv6_hdr(skb)->nexthdr, sum);
if (tso->tlen != sizeof(struct udphdr)) {
struct tcphdr *tcph = (struct tcphdr *)(l4_hdr);
tcph->check = csum_final;
} else {
struct udphdr *udph = (struct udphdr *)(l4_hdr);
udph->check = csum_final;
}
}
static int enetc_map_tx_tso_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb)
{
int hdr_len, total_len, data_len;
struct enetc_tx_swbd *tx_swbd;
union enetc_tx_bd *txbd;
struct tso_t tso;
__wsum csum, csum2;
int count = 0, pos;
int err, i, bd_data_num;
/* Initialize the TSO handler, and prepare the first payload */
hdr_len = tso_start(skb, &tso);
total_len = skb->len - hdr_len;
i = tx_ring->next_to_use;
while (total_len > 0) {
char *hdr;
/* Get the BD */
txbd = ENETC_TXBD(*tx_ring, i);
tx_swbd = &tx_ring->tx_swbd[i];
prefetchw(txbd);
/* Determine the length of this packet */
data_len = min_t(int, skb_shinfo(skb)->gso_size, total_len);
total_len -= data_len;
/* prepare packet headers: MAC + IP + TCP */
hdr = tx_ring->tso_headers + i * TSO_HEADER_SIZE;
tso_build_hdr(skb, hdr, &tso, data_len, total_len == 0);
/* compute the csum over the L4 header */
csum = enetc_tso_hdr_csum(&tso, skb, hdr, hdr_len, &pos);
enetc_map_tx_tso_hdr(tx_ring, skb, tx_swbd, txbd, &i, hdr_len, data_len);
bd_data_num = 0;
count++;
while (data_len > 0) {
int size;
size = min_t(int, tso.size, data_len);
/* Advance the index in the BDR */
enetc_bdr_idx_inc(tx_ring, &i);
txbd = ENETC_TXBD(*tx_ring, i);
tx_swbd = &tx_ring->tx_swbd[i];
prefetchw(txbd);
/* Compute the checksum over this segment of data and
* add it to the csum already computed (over the L4
* header and possible other data segments).
*/
csum2 = csum_partial(tso.data, size, 0);
csum = csum_block_add(csum, csum2, pos);
pos += size;
err = enetc_map_tx_tso_data(tx_ring, skb, tx_swbd, txbd,
tso.data, size,
size == data_len);
if (err)
goto err_map_data;
data_len -= size;
count++;
bd_data_num++;
tso_build_data(skb, &tso, size);
if (unlikely(bd_data_num >= ENETC_MAX_SKB_FRAGS && data_len))
goto err_chained_bd;
}
enetc_tso_complete_csum(tx_ring, &tso, skb, hdr, pos, csum);
if (total_len == 0)
tx_swbd->skb = skb;
/* Go to the next BD */
enetc_bdr_idx_inc(tx_ring, &i);
}
tx_ring->next_to_use = i;
enetc_update_tx_ring_tail(tx_ring);
return count;
err_map_data:
dev_err(tx_ring->dev, "DMA map error");
err_chained_bd:
do {
tx_swbd = &tx_ring->tx_swbd[i];
enetc_free_tx_frame(tx_ring, tx_swbd);
if (i == 0)
i = tx_ring->bd_count;
i--;
} while (count--);
return 0;
}
static netdev_tx_t enetc_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_bdr *tx_ring;
int count, err;
/* Queue one-step Sync packet if already locked */
if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
if (test_and_set_bit_lock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS,
&priv->flags)) {
skb_queue_tail(&priv->tx_skbs, skb);
return NETDEV_TX_OK;
}
}
tx_ring = priv->tx_ring[skb->queue_mapping];
if (skb_is_gso(skb)) {
if (enetc_bd_unused(tx_ring) < tso_count_descs(skb)) {
netif_stop_subqueue(ndev, tx_ring->index);
return NETDEV_TX_BUSY;
}
enetc_lock_mdio();
count = enetc_map_tx_tso_buffs(tx_ring, skb);
enetc_unlock_mdio();
} else {
if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS))
if (unlikely(skb_linearize(skb)))
goto drop_packet_err;
count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */
if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) {
netif_stop_subqueue(ndev, tx_ring->index);
return NETDEV_TX_BUSY;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
err = skb_checksum_help(skb);
if (err)
goto drop_packet_err;
}
enetc_lock_mdio();
count = enetc_map_tx_buffs(tx_ring, skb);
enetc_unlock_mdio();
}
if (unlikely(!count))
goto drop_packet_err;
if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED)
netif_stop_subqueue(ndev, tx_ring->index);
return NETDEV_TX_OK;
drop_packet_err:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
u8 udp, msgtype, twostep;
u16 offset1, offset2;
/* Mark tx timestamp type on skb->cb[0] if requires */
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
(priv->active_offloads & ENETC_F_TX_TSTAMP_MASK)) {
skb->cb[0] = priv->active_offloads & ENETC_F_TX_TSTAMP_MASK;
} else {
skb->cb[0] = 0;
}
/* Fall back to two-step timestamp if not one-step Sync packet */
if (skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP) {
if (enetc_ptp_parse(skb, &udp, &msgtype, &twostep,
&offset1, &offset2) ||
msgtype != PTP_MSGTYPE_SYNC || twostep != 0)
skb->cb[0] = ENETC_F_TX_TSTAMP;
}
return enetc_start_xmit(skb, ndev);
}
static irqreturn_t enetc_msix(int irq, void *data)
{
struct enetc_int_vector *v = data;
int i;
enetc_lock_mdio();
/* disable interrupts */
enetc_wr_reg_hot(v->rbier, 0);
enetc_wr_reg_hot(v->ricr1, v->rx_ictt);
for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i), 0);
enetc_unlock_mdio();
napi_schedule(&v->napi);
return IRQ_HANDLED;
}
static void enetc_rx_dim_work(struct work_struct *w)
{
struct dim *dim = container_of(w, struct dim, work);
struct dim_cq_moder moder =
net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
struct enetc_int_vector *v =
container_of(dim, struct enetc_int_vector, rx_dim);
v->rx_ictt = enetc_usecs_to_cycles(moder.usec);
dim->state = DIM_START_MEASURE;
}
static void enetc_rx_net_dim(struct enetc_int_vector *v)
{
struct dim_sample dim_sample = {};
v->comp_cnt++;
if (!v->rx_napi_work)
return;
dim_update_sample(v->comp_cnt,
v->rx_ring.stats.packets,
v->rx_ring.stats.bytes,
&dim_sample);
net_dim(&v->rx_dim, dim_sample);
}
static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci)
{
int pi = enetc_rd_reg_hot(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK;
return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi;
}
static bool enetc_page_reusable(struct page *page)
{
return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1);
}
static void enetc_reuse_page(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *old)
{
struct enetc_rx_swbd *new;
new = &rx_ring->rx_swbd[rx_ring->next_to_alloc];
/* next buf that may reuse a page */
enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc);
/* copy page reference */
*new = *old;
}
static void enetc_get_tx_tstamp(struct enetc_hw *hw, union enetc_tx_bd *txbd,
u64 *tstamp)
{
u32 lo, hi, tstamp_lo;
lo = enetc_rd_hot(hw, ENETC_SICTR0);
hi = enetc_rd_hot(hw, ENETC_SICTR1);
tstamp_lo = le32_to_cpu(txbd->wb.tstamp);
if (lo <= tstamp_lo)
hi -= 1;
*tstamp = (u64)hi << 32 | tstamp_lo;
}
static void enetc_tstamp_tx(struct sk_buff *skb, u64 tstamp)
{
struct skb_shared_hwtstamps shhwtstamps;
if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
memset(&shhwtstamps, 0, sizeof(shhwtstamps));
shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
skb_txtime_consumed(skb);
skb_tstamp_tx(skb, &shhwtstamps);
}
}
static void enetc_recycle_xdp_tx_buff(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *tx_swbd)
{
struct enetc_ndev_priv *priv = netdev_priv(tx_ring->ndev);
struct enetc_rx_swbd rx_swbd = {
.dma = tx_swbd->dma,
.page = tx_swbd->page,
.page_offset = tx_swbd->page_offset,
.dir = tx_swbd->dir,
.len = tx_swbd->len,
};
struct enetc_bdr *rx_ring;
rx_ring = enetc_rx_ring_from_xdp_tx_ring(priv, tx_ring);
if (likely(enetc_swbd_unused(rx_ring))) {
enetc_reuse_page(rx_ring, &rx_swbd);
/* sync for use by the device */
dma_sync_single_range_for_device(rx_ring->dev, rx_swbd.dma,
rx_swbd.page_offset,
ENETC_RXB_DMA_SIZE_XDP,
rx_swbd.dir);
rx_ring->stats.recycles++;
} else {
/* RX ring is already full, we need to unmap and free the
* page, since there's nothing useful we can do with it.
*/
rx_ring->stats.recycle_failures++;
dma_unmap_page(rx_ring->dev, rx_swbd.dma, PAGE_SIZE,
rx_swbd.dir);
__free_page(rx_swbd.page);
}
rx_ring->xdp.xdp_tx_in_flight--;
}
static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget)
{
struct net_device *ndev = tx_ring->ndev;
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int tx_frm_cnt = 0, tx_byte_cnt = 0;
struct enetc_tx_swbd *tx_swbd;
int i, bds_to_clean;
bool do_twostep_tstamp;
u64 tstamp = 0;
i = tx_ring->next_to_clean;
tx_swbd = &tx_ring->tx_swbd[i];
bds_to_clean = enetc_bd_ready_count(tx_ring, i);
do_twostep_tstamp = false;
while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) {
struct xdp_frame *xdp_frame = enetc_tx_swbd_get_xdp_frame(tx_swbd);
struct sk_buff *skb = enetc_tx_swbd_get_skb(tx_swbd);
bool is_eof = tx_swbd->is_eof;
if (unlikely(tx_swbd->check_wb)) {
union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
if (txbd->flags & ENETC_TXBD_FLAGS_W &&
tx_swbd->do_twostep_tstamp) {
enetc_get_tx_tstamp(&priv->si->hw, txbd,
&tstamp);
do_twostep_tstamp = true;
}
}
if (tx_swbd->is_xdp_tx)
enetc_recycle_xdp_tx_buff(tx_ring, tx_swbd);
else if (likely(tx_swbd->dma))
enetc_unmap_tx_buff(tx_ring, tx_swbd);
if (xdp_frame) {
xdp_return_frame(xdp_frame);
} else if (skb) {
if (unlikely(skb->cb[0] & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)) {
/* Start work to release lock for next one-step
* timestamping packet. And send one skb in
* tx_skbs queue if has.
*/
schedule_work(&priv->tx_onestep_tstamp);
} else if (unlikely(do_twostep_tstamp)) {
enetc_tstamp_tx(skb, tstamp);
do_twostep_tstamp = false;
}
napi_consume_skb(skb, napi_budget);
}
tx_byte_cnt += tx_swbd->len;
/* Scrub the swbd here so we don't have to do that
* when we reuse it during xmit
*/
memset(tx_swbd, 0, sizeof(*tx_swbd));
bds_to_clean--;
tx_swbd++;
i++;
if (unlikely(i == tx_ring->bd_count)) {
i = 0;
tx_swbd = tx_ring->tx_swbd;
}
/* BD iteration loop end */
if (is_eof) {
tx_frm_cnt++;
/* re-arm interrupt source */
enetc_wr_reg_hot(tx_ring->idr, BIT(tx_ring->index) |
BIT(16 + tx_ring->index));
}
if (unlikely(!bds_to_clean))
bds_to_clean = enetc_bd_ready_count(tx_ring, i);
}
tx_ring->next_to_clean = i;
tx_ring->stats.packets += tx_frm_cnt;
tx_ring->stats.bytes += tx_byte_cnt;
if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) &&
__netif_subqueue_stopped(ndev, tx_ring->index) &&
(enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) {
netif_wake_subqueue(ndev, tx_ring->index);
}
return tx_frm_cnt != ENETC_DEFAULT_TX_WORK;
}
static bool enetc_new_page(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *rx_swbd)
{
bool xdp = !!(rx_ring->xdp.prog);
struct page *page;
dma_addr_t addr;
page = dev_alloc_page();
if (unlikely(!page))
return false;
/* For XDP_TX, we forgo dma_unmap -> dma_map */
rx_swbd->dir = xdp ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, rx_swbd->dir);
if (unlikely(dma_mapping_error(rx_ring->dev, addr))) {
__free_page(page);
return false;
}
rx_swbd->dma = addr;
rx_swbd->page = page;
rx_swbd->page_offset = rx_ring->buffer_offset;
return true;
}
static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt)
{
struct enetc_rx_swbd *rx_swbd;
union enetc_rx_bd *rxbd;
int i, j;
i = rx_ring->next_to_use;
rx_swbd = &rx_ring->rx_swbd[i];
rxbd = enetc_rxbd(rx_ring, i);
for (j = 0; j < buff_cnt; j++) {
/* try reuse page */
if (unlikely(!rx_swbd->page)) {
if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) {
rx_ring->stats.rx_alloc_errs++;
break;
}
}
/* update RxBD */
rxbd->w.addr = cpu_to_le64(rx_swbd->dma +
rx_swbd->page_offset);
/* clear 'R" as well */
rxbd->r.lstatus = 0;
enetc_rxbd_next(rx_ring, &rxbd, &i);
rx_swbd = &rx_ring->rx_swbd[i];
}
if (likely(j)) {
rx_ring->next_to_alloc = i; /* keep track from page reuse */
rx_ring->next_to_use = i;
/* update ENETC's consumer index */
enetc_wr_reg_hot(rx_ring->rcir, rx_ring->next_to_use);
}
return j;
}
#ifdef CONFIG_FSL_ENETC_PTP_CLOCK
static void enetc_get_rx_tstamp(struct net_device *ndev,
union enetc_rx_bd *rxbd,
struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_hw *hw = &priv->si->hw;
u32 lo, hi, tstamp_lo;
u64 tstamp;
if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TSTMP) {
lo = enetc_rd_reg_hot(hw->reg + ENETC_SICTR0);
hi = enetc_rd_reg_hot(hw->reg + ENETC_SICTR1);
rxbd = enetc_rxbd_ext(rxbd);
tstamp_lo = le32_to_cpu(rxbd->ext.tstamp);
if (lo <= tstamp_lo)
hi -= 1;
tstamp = (u64)hi << 32 | tstamp_lo;
memset(shhwtstamps, 0, sizeof(*shhwtstamps));
shhwtstamps->hwtstamp = ns_to_ktime(tstamp);
}
}
#endif
static void enetc_get_offloads(struct enetc_bdr *rx_ring,
union enetc_rx_bd *rxbd, struct sk_buff *skb)
{
struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
/* TODO: hashing */
if (rx_ring->ndev->features & NETIF_F_RXCSUM) {
u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum);
skb->csum = csum_unfold((__force __sum16)~htons(inet_csum));
skb->ip_summed = CHECKSUM_COMPLETE;
}
if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) {
__be16 tpid = 0;
switch (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_TPID) {
case 0:
tpid = htons(ETH_P_8021Q);
break;
case 1:
tpid = htons(ETH_P_8021AD);
break;
case 2:
tpid = htons(enetc_port_rd(&priv->si->hw,
ENETC_PCVLANR1));
break;
case 3:
tpid = htons(enetc_port_rd(&priv->si->hw,
ENETC_PCVLANR2));
break;
default:
break;
}
__vlan_hwaccel_put_tag(skb, tpid, le16_to_cpu(rxbd->r.vlan_opt));
}
#ifdef CONFIG_FSL_ENETC_PTP_CLOCK
if (priv->active_offloads & ENETC_F_RX_TSTAMP)
enetc_get_rx_tstamp(rx_ring->ndev, rxbd, skb);
#endif
}
/* This gets called during the non-XDP NAPI poll cycle as well as on XDP_PASS,
* so it needs to work with both DMA_FROM_DEVICE as well as DMA_BIDIRECTIONAL
* mapped buffers.
*/
static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring,
int i, u16 size)
{
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma,
rx_swbd->page_offset,
size, rx_swbd->dir);
return rx_swbd;
}
/* Reuse the current page without performing half-page buffer flipping */
static void enetc_put_rx_buff(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *rx_swbd)
{
size_t buffer_size = ENETC_RXB_TRUESIZE - rx_ring->buffer_offset;
enetc_reuse_page(rx_ring, rx_swbd);
dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma,
rx_swbd->page_offset,
buffer_size, rx_swbd->dir);
rx_swbd->page = NULL;
}
/* Reuse the current page by performing half-page buffer flipping */
static void enetc_flip_rx_buff(struct enetc_bdr *rx_ring,
struct enetc_rx_swbd *rx_swbd)
{
if (likely(enetc_page_reusable(rx_swbd->page))) {
rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE;
page_ref_inc(rx_swbd->page);
enetc_put_rx_buff(rx_ring, rx_swbd);
} else {
dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
rx_swbd->dir);
rx_swbd->page = NULL;
}
}
static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring,
int i, u16 size)
{
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
struct sk_buff *skb;
void *ba;
ba = page_address(rx_swbd->page) + rx_swbd->page_offset;
skb = build_skb(ba - rx_ring->buffer_offset, ENETC_RXB_TRUESIZE);
if (unlikely(!skb)) {
rx_ring->stats.rx_alloc_errs++;
return NULL;
}
skb_reserve(skb, rx_ring->buffer_offset);
__skb_put(skb, size);
enetc_flip_rx_buff(rx_ring, rx_swbd);
return skb;
}
static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i,
u16 size, struct sk_buff *skb)
{
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page,
rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE);
enetc_flip_rx_buff(rx_ring, rx_swbd);
}
static bool enetc_check_bd_errors_and_consume(struct enetc_bdr *rx_ring,
u32 bd_status,
union enetc_rx_bd **rxbd, int *i)
{
if (likely(!(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))))
return false;
enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
enetc_rxbd_next(rx_ring, rxbd, i);
while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
dma_rmb();
bd_status = le32_to_cpu((*rxbd)->r.lstatus);
enetc_put_rx_buff(rx_ring, &rx_ring->rx_swbd[*i]);
enetc_rxbd_next(rx_ring, rxbd, i);
}
rx_ring->ndev->stats.rx_dropped++;
rx_ring->ndev->stats.rx_errors++;
return true;
}
static struct sk_buff *enetc_build_skb(struct enetc_bdr *rx_ring,
u32 bd_status, union enetc_rx_bd **rxbd,
int *i, int *cleaned_cnt, int buffer_size)
{
struct sk_buff *skb;
u16 size;
size = le16_to_cpu((*rxbd)->r.buf_len);
skb = enetc_map_rx_buff_to_skb(rx_ring, *i, size);
if (!skb)
return NULL;
enetc_get_offloads(rx_ring, *rxbd, skb);
(*cleaned_cnt)++;
enetc_rxbd_next(rx_ring, rxbd, i);
/* not last BD in frame? */
while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
bd_status = le32_to_cpu((*rxbd)->r.lstatus);
size = buffer_size;
if (bd_status & ENETC_RXBD_LSTATUS_F) {
dma_rmb();
size = le16_to_cpu((*rxbd)->r.buf_len);
}
enetc_add_rx_buff_to_skb(rx_ring, *i, size, skb);
(*cleaned_cnt)++;
enetc_rxbd_next(rx_ring, rxbd, i);
}
skb_record_rx_queue(skb, rx_ring->index);
skb->protocol = eth_type_trans(skb, rx_ring->ndev);
return skb;
}
#define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */
static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring,
struct napi_struct *napi, int work_limit)
{
int rx_frm_cnt = 0, rx_byte_cnt = 0;
int cleaned_cnt, i;
cleaned_cnt = enetc_bd_unused(rx_ring);
/* next descriptor to process */
i = rx_ring->next_to_clean;
while (likely(rx_frm_cnt < work_limit)) {
union enetc_rx_bd *rxbd;
struct sk_buff *skb;
u32 bd_status;
if (cleaned_cnt >= ENETC_RXBD_BUNDLE)
cleaned_cnt -= enetc_refill_rx_ring(rx_ring,
cleaned_cnt);
rxbd = enetc_rxbd(rx_ring, i);
bd_status = le32_to_cpu(rxbd->r.lstatus);
if (!bd_status)
break;
enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
dma_rmb(); /* for reading other rxbd fields */
if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
&rxbd, &i))
break;
skb = enetc_build_skb(rx_ring, bd_status, &rxbd, &i,
&cleaned_cnt, ENETC_RXB_DMA_SIZE);
if (!skb)
break;
rx_byte_cnt += skb->len;
rx_frm_cnt++;
napi_gro_receive(napi, skb);
}
rx_ring->next_to_clean = i;
rx_ring->stats.packets += rx_frm_cnt;
rx_ring->stats.bytes += rx_byte_cnt;
return rx_frm_cnt;
}
static void enetc_xdp_map_tx_buff(struct enetc_bdr *tx_ring, int i,
struct enetc_tx_swbd *tx_swbd,
int frm_len)
{
union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
prefetchw(txbd);
enetc_clear_tx_bd(txbd);
txbd->addr = cpu_to_le64(tx_swbd->dma + tx_swbd->page_offset);
txbd->buf_len = cpu_to_le16(tx_swbd->len);
txbd->frm_len = cpu_to_le16(frm_len);
memcpy(&tx_ring->tx_swbd[i], tx_swbd, sizeof(*tx_swbd));
}
/* Puts in the TX ring one XDP frame, mapped as an array of TX software buffer
* descriptors.
*/
static bool enetc_xdp_tx(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *xdp_tx_arr, int num_tx_swbd)
{
struct enetc_tx_swbd *tmp_tx_swbd = xdp_tx_arr;
int i, k, frm_len = tmp_tx_swbd->len;
if (unlikely(enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(num_tx_swbd)))
return false;
while (unlikely(!tmp_tx_swbd->is_eof)) {
tmp_tx_swbd++;
frm_len += tmp_tx_swbd->len;
}
i = tx_ring->next_to_use;
for (k = 0; k < num_tx_swbd; k++) {
struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[k];
enetc_xdp_map_tx_buff(tx_ring, i, xdp_tx_swbd, frm_len);
/* last BD needs 'F' bit set */
if (xdp_tx_swbd->is_eof) {
union enetc_tx_bd *txbd = ENETC_TXBD(*tx_ring, i);
txbd->flags = ENETC_TXBD_FLAGS_F;
}
enetc_bdr_idx_inc(tx_ring, &i);
}
tx_ring->next_to_use = i;
return true;
}
static int enetc_xdp_frame_to_xdp_tx_swbd(struct enetc_bdr *tx_ring,
struct enetc_tx_swbd *xdp_tx_arr,
struct xdp_frame *xdp_frame)
{
struct enetc_tx_swbd *xdp_tx_swbd = &xdp_tx_arr[0];
struct skb_shared_info *shinfo;
void *data = xdp_frame->data;
int len = xdp_frame->len;
skb_frag_t *frag;
dma_addr_t dma;
unsigned int f;
int n = 0;
dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
netdev_err(tx_ring->ndev, "DMA map error\n");
return -1;
}
xdp_tx_swbd->dma = dma;
xdp_tx_swbd->dir = DMA_TO_DEVICE;
xdp_tx_swbd->len = len;
xdp_tx_swbd->is_xdp_redirect = true;
xdp_tx_swbd->is_eof = false;
xdp_tx_swbd->xdp_frame = NULL;
n++;
xdp_tx_swbd = &xdp_tx_arr[n];
shinfo = xdp_get_shared_info_from_frame(xdp_frame);
for (f = 0, frag = &shinfo->frags[0]; f < shinfo->nr_frags;
f++, frag++) {
data = skb_frag_address(frag);
len = skb_frag_size(frag);
dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(tx_ring->dev, dma))) {
/* Undo the DMA mapping for all fragments */
while (--n >= 0)
enetc_unmap_tx_buff(tx_ring, &xdp_tx_arr[n]);
netdev_err(tx_ring->ndev, "DMA map error\n");
return -1;
}
xdp_tx_swbd->dma = dma;
xdp_tx_swbd->dir = DMA_TO_DEVICE;
xdp_tx_swbd->len = len;
xdp_tx_swbd->is_xdp_redirect = true;
xdp_tx_swbd->is_eof = false;
xdp_tx_swbd->xdp_frame = NULL;
n++;
xdp_tx_swbd = &xdp_tx_arr[n];
}
xdp_tx_arr[n - 1].is_eof = true;
xdp_tx_arr[n - 1].xdp_frame = xdp_frame;
return n;
}
int enetc_xdp_xmit(struct net_device *ndev, int num_frames,
struct xdp_frame **frames, u32 flags)
{
struct enetc_tx_swbd xdp_redirect_arr[ENETC_MAX_SKB_FRAGS] = {0};
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_bdr *tx_ring;
int xdp_tx_bd_cnt, i, k;
int xdp_tx_frm_cnt = 0;
enetc_lock_mdio();
tx_ring = priv->xdp_tx_ring[smp_processor_id()];
prefetchw(ENETC_TXBD(*tx_ring, tx_ring->next_to_use));
for (k = 0; k < num_frames; k++) {
xdp_tx_bd_cnt = enetc_xdp_frame_to_xdp_tx_swbd(tx_ring,
xdp_redirect_arr,
frames[k]);
if (unlikely(xdp_tx_bd_cnt < 0))
break;
if (unlikely(!enetc_xdp_tx(tx_ring, xdp_redirect_arr,
xdp_tx_bd_cnt))) {
for (i = 0; i < xdp_tx_bd_cnt; i++)
enetc_unmap_tx_buff(tx_ring,
&xdp_redirect_arr[i]);
tx_ring->stats.xdp_tx_drops++;
break;
}
xdp_tx_frm_cnt++;
}
if (unlikely((flags & XDP_XMIT_FLUSH) || k != xdp_tx_frm_cnt))
enetc_update_tx_ring_tail(tx_ring);
tx_ring->stats.xdp_tx += xdp_tx_frm_cnt;
enetc_unlock_mdio();
return xdp_tx_frm_cnt;
}
static void enetc_map_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
struct xdp_buff *xdp_buff, u16 size)
{
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
void *hard_start = page_address(rx_swbd->page) + rx_swbd->page_offset;
struct skb_shared_info *shinfo;
/* To be used for XDP_TX */
rx_swbd->len = size;
xdp_prepare_buff(xdp_buff, hard_start - rx_ring->buffer_offset,
rx_ring->buffer_offset, size, false);
shinfo = xdp_get_shared_info_from_buff(xdp_buff);
shinfo->nr_frags = 0;
}
static void enetc_add_rx_buff_to_xdp(struct enetc_bdr *rx_ring, int i,
u16 size, struct xdp_buff *xdp_buff)
{
struct skb_shared_info *shinfo = xdp_get_shared_info_from_buff(xdp_buff);
struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size);
skb_frag_t *frag = &shinfo->frags[shinfo->nr_frags];
/* To be used for XDP_TX */
rx_swbd->len = size;
skb_frag_off_set(frag, rx_swbd->page_offset);
skb_frag_size_set(frag, size);
__skb_frag_set_page(frag, rx_swbd->page);
shinfo->nr_frags++;
}
static void enetc_build_xdp_buff(struct enetc_bdr *rx_ring, u32 bd_status,
union enetc_rx_bd **rxbd, int *i,
int *cleaned_cnt, struct xdp_buff *xdp_buff)
{
u16 size = le16_to_cpu((*rxbd)->r.buf_len);
xdp_init_buff(xdp_buff, ENETC_RXB_TRUESIZE, &rx_ring->xdp.rxq);
enetc_map_rx_buff_to_xdp(rx_ring, *i, xdp_buff, size);
(*cleaned_cnt)++;
enetc_rxbd_next(rx_ring, rxbd, i);
/* not last BD in frame? */
while (!(bd_status & ENETC_RXBD_LSTATUS_F)) {
bd_status = le32_to_cpu((*rxbd)->r.lstatus);
size = ENETC_RXB_DMA_SIZE_XDP;
if (bd_status & ENETC_RXBD_LSTATUS_F) {
dma_rmb();
size = le16_to_cpu((*rxbd)->r.buf_len);
}
enetc_add_rx_buff_to_xdp(rx_ring, *i, size, xdp_buff);
(*cleaned_cnt)++;
enetc_rxbd_next(rx_ring, rxbd, i);
}
}
/* Convert RX buffer descriptors to TX buffer descriptors. These will be
* recycled back into the RX ring in enetc_clean_tx_ring.
*/
static int enetc_rx_swbd_to_xdp_tx_swbd(struct enetc_tx_swbd *xdp_tx_arr,
struct enetc_bdr *rx_ring,
int rx_ring_first, int rx_ring_last)
{
int n = 0;
for (; rx_ring_first != rx_ring_last;
n++, enetc_bdr_idx_inc(rx_ring, &rx_ring_first)) {
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
struct enetc_tx_swbd *tx_swbd = &xdp_tx_arr[n];
/* No need to dma_map, we already have DMA_BIDIRECTIONAL */
tx_swbd->dma = rx_swbd->dma;
tx_swbd->dir = rx_swbd->dir;
tx_swbd->page = rx_swbd->page;
tx_swbd->page_offset = rx_swbd->page_offset;
tx_swbd->len = rx_swbd->len;
tx_swbd->is_dma_page = true;
tx_swbd->is_xdp_tx = true;
tx_swbd->is_eof = false;
}
/* We rely on caller providing an rx_ring_last > rx_ring_first */
xdp_tx_arr[n - 1].is_eof = true;
return n;
}
static void enetc_xdp_drop(struct enetc_bdr *rx_ring, int rx_ring_first,
int rx_ring_last)
{
while (rx_ring_first != rx_ring_last) {
enetc_put_rx_buff(rx_ring,
&rx_ring->rx_swbd[rx_ring_first]);
enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
}
rx_ring->stats.xdp_drops++;
}
static void enetc_xdp_free(struct enetc_bdr *rx_ring, int rx_ring_first,
int rx_ring_last)
{
while (rx_ring_first != rx_ring_last) {
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[rx_ring_first];
if (rx_swbd->page) {
dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
rx_swbd->dir);
__free_page(rx_swbd->page);
rx_swbd->page = NULL;
}
enetc_bdr_idx_inc(rx_ring, &rx_ring_first);
}
rx_ring->stats.xdp_redirect_failures++;
}
static int enetc_clean_rx_ring_xdp(struct enetc_bdr *rx_ring,
struct napi_struct *napi, int work_limit,
struct bpf_prog *prog)
{
int xdp_tx_bd_cnt, xdp_tx_frm_cnt = 0, xdp_redirect_frm_cnt = 0;
struct enetc_tx_swbd xdp_tx_arr[ENETC_MAX_SKB_FRAGS] = {0};
struct enetc_ndev_priv *priv = netdev_priv(rx_ring->ndev);
int rx_frm_cnt = 0, rx_byte_cnt = 0;
struct enetc_bdr *tx_ring;
int cleaned_cnt, i;
u32 xdp_act;
cleaned_cnt = enetc_bd_unused(rx_ring);
/* next descriptor to process */
i = rx_ring->next_to_clean;
while (likely(rx_frm_cnt < work_limit)) {
union enetc_rx_bd *rxbd, *orig_rxbd;
int orig_i, orig_cleaned_cnt;
struct xdp_buff xdp_buff;
struct sk_buff *skb;
int tmp_orig_i, err;
u32 bd_status;
rxbd = enetc_rxbd(rx_ring, i);
bd_status = le32_to_cpu(rxbd->r.lstatus);
if (!bd_status)
break;
enetc_wr_reg_hot(rx_ring->idr, BIT(rx_ring->index));
dma_rmb(); /* for reading other rxbd fields */
if (enetc_check_bd_errors_and_consume(rx_ring, bd_status,
&rxbd, &i))
break;
orig_rxbd = rxbd;
orig_cleaned_cnt = cleaned_cnt;
orig_i = i;
enetc_build_xdp_buff(rx_ring, bd_status, &rxbd, &i,
&cleaned_cnt, &xdp_buff);
xdp_act = bpf_prog_run_xdp(prog, &xdp_buff);
switch (xdp_act) {
default:
bpf_warn_invalid_xdp_action(rx_ring->ndev, prog, xdp_act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(rx_ring->ndev, prog, xdp_act);
fallthrough;
case XDP_DROP:
enetc_xdp_drop(rx_ring, orig_i, i);
break;
case XDP_PASS:
rxbd = orig_rxbd;
cleaned_cnt = orig_cleaned_cnt;
i = orig_i;
skb = enetc_build_skb(rx_ring, bd_status, &rxbd,
&i, &cleaned_cnt,
ENETC_RXB_DMA_SIZE_XDP);
if (unlikely(!skb))
goto out;
napi_gro_receive(napi, skb);
break;
case XDP_TX:
tx_ring = priv->xdp_tx_ring[rx_ring->index];
xdp_tx_bd_cnt = enetc_rx_swbd_to_xdp_tx_swbd(xdp_tx_arr,
rx_ring,
orig_i, i);
if (!enetc_xdp_tx(tx_ring, xdp_tx_arr, xdp_tx_bd_cnt)) {
enetc_xdp_drop(rx_ring, orig_i, i);
tx_ring->stats.xdp_tx_drops++;
} else {
tx_ring->stats.xdp_tx += xdp_tx_bd_cnt;
rx_ring->xdp.xdp_tx_in_flight += xdp_tx_bd_cnt;
xdp_tx_frm_cnt++;
/* The XDP_TX enqueue was successful, so we
* need to scrub the RX software BDs because
* the ownership of the buffers no longer
* belongs to the RX ring, and we must prevent
* enetc_refill_rx_ring() from reusing
* rx_swbd->page.
*/
while (orig_i != i) {
rx_ring->rx_swbd[orig_i].page = NULL;
enetc_bdr_idx_inc(rx_ring, &orig_i);
}
}
break;
case XDP_REDIRECT:
/* xdp_return_frame does not support S/G in the sense
* that it leaks the fragments (__xdp_return should not
* call page_frag_free only for the initial buffer).
* Until XDP_REDIRECT gains support for S/G let's keep
* the code structure in place, but dead. We drop the
* S/G frames ourselves to avoid memory leaks which
* would otherwise leave the kernel OOM.
*/
if (unlikely(cleaned_cnt - orig_cleaned_cnt != 1)) {
enetc_xdp_drop(rx_ring, orig_i, i);
rx_ring->stats.xdp_redirect_sg++;
break;
}
tmp_orig_i = orig_i;
while (orig_i != i) {
enetc_flip_rx_buff(rx_ring,
&rx_ring->rx_swbd[orig_i]);
enetc_bdr_idx_inc(rx_ring, &orig_i);
}
err = xdp_do_redirect(rx_ring->ndev, &xdp_buff, prog);
if (unlikely(err)) {
enetc_xdp_free(rx_ring, tmp_orig_i, i);
} else {
xdp_redirect_frm_cnt++;
rx_ring->stats.xdp_redirect++;
}
}
rx_frm_cnt++;
}
out:
rx_ring->next_to_clean = i;
rx_ring->stats.packets += rx_frm_cnt;
rx_ring->stats.bytes += rx_byte_cnt;
if (xdp_redirect_frm_cnt)
xdp_do_flush_map();
if (xdp_tx_frm_cnt)
enetc_update_tx_ring_tail(tx_ring);
if (cleaned_cnt > rx_ring->xdp.xdp_tx_in_flight)
enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring) -
rx_ring->xdp.xdp_tx_in_flight);
return rx_frm_cnt;
}
static int enetc_poll(struct napi_struct *napi, int budget)
{
struct enetc_int_vector
*v = container_of(napi, struct enetc_int_vector, napi);
struct enetc_bdr *rx_ring = &v->rx_ring;
struct bpf_prog *prog;
bool complete = true;
int work_done;
int i;
enetc_lock_mdio();
for (i = 0; i < v->count_tx_rings; i++)
if (!enetc_clean_tx_ring(&v->tx_ring[i], budget))
complete = false;
prog = rx_ring->xdp.prog;
if (prog)
work_done = enetc_clean_rx_ring_xdp(rx_ring, napi, budget, prog);
else
work_done = enetc_clean_rx_ring(rx_ring, napi, budget);
if (work_done == budget)
complete = false;
if (work_done)
v->rx_napi_work = true;
if (!complete) {
enetc_unlock_mdio();
return budget;
}
napi_complete_done(napi, work_done);
if (likely(v->rx_dim_en))
enetc_rx_net_dim(v);
v->rx_napi_work = false;
/* enable interrupts */
enetc_wr_reg_hot(v->rbier, ENETC_RBIER_RXTIE);
for_each_set_bit(i, &v->tx_rings_map, ENETC_MAX_NUM_TXQS)
enetc_wr_reg_hot(v->tbier_base + ENETC_BDR_OFF(i),
ENETC_TBIER_TXTIE);
enetc_unlock_mdio();
return work_done;
}
/* Probing and Init */
#define ENETC_MAX_RFS_SIZE 64
void enetc_get_si_caps(struct enetc_si *si)
{
struct enetc_hw *hw = &si->hw;
u32 val;
/* find out how many of various resources we have to work with */
val = enetc_rd(hw, ENETC_SICAPR0);
si->num_rx_rings = (val >> 16) & 0xff;
si->num_tx_rings = val & 0xff;
val = enetc_rd(hw, ENETC_SIRFSCAPR);
si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val);
si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE);
si->num_rss = 0;
val = enetc_rd(hw, ENETC_SIPCAPR0);
if (val & ENETC_SIPCAPR0_RSS) {
u32 rss;
rss = enetc_rd(hw, ENETC_SIRSSCAPR);
si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(rss);
}
if (val & ENETC_SIPCAPR0_QBV)
si->hw_features |= ENETC_SI_F_QBV;
if (val & ENETC_SIPCAPR0_PSFP)
si->hw_features |= ENETC_SI_F_PSFP;
}
static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size)
{
r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size,
&r->bd_dma_base, GFP_KERNEL);
if (!r->bd_base)
return -ENOMEM;
/* h/w requires 128B alignment */
if (!IS_ALIGNED(r->bd_dma_base, 128)) {
dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base,
r->bd_dma_base);
return -EINVAL;
}
return 0;
}
static int enetc_alloc_txbdr(struct enetc_bdr *txr)
{
int err;
txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd));
if (!txr->tx_swbd)
return -ENOMEM;
err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd));
if (err)
goto err_alloc_bdr;
txr->tso_headers = dma_alloc_coherent(txr->dev,
txr->bd_count * TSO_HEADER_SIZE,
&txr->tso_headers_dma,
GFP_KERNEL);
if (!txr->tso_headers) {
err = -ENOMEM;
goto err_alloc_tso;
}
txr->next_to_clean = 0;
txr->next_to_use = 0;
return 0;
err_alloc_tso:
dma_free_coherent(txr->dev, txr->bd_count * sizeof(union enetc_tx_bd),
txr->bd_base, txr->bd_dma_base);
txr->bd_base = NULL;
err_alloc_bdr:
vfree(txr->tx_swbd);
txr->tx_swbd = NULL;
return err;
}
static void enetc_free_txbdr(struct enetc_bdr *txr)
{
int size, i;
for (i = 0; i < txr->bd_count; i++)
enetc_free_tx_frame(txr, &txr->tx_swbd[i]);
size = txr->bd_count * sizeof(union enetc_tx_bd);
dma_free_coherent(txr->dev, txr->bd_count * TSO_HEADER_SIZE,
txr->tso_headers, txr->tso_headers_dma);
txr->tso_headers = NULL;
dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base);
txr->bd_base = NULL;
vfree(txr->tx_swbd);
txr->tx_swbd = NULL;
}
static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv)
{
int i, err;
for (i = 0; i < priv->num_tx_rings; i++) {
err = enetc_alloc_txbdr(priv->tx_ring[i]);
if (err)
goto fail;
}
return 0;
fail:
while (i-- > 0)
enetc_free_txbdr(priv->tx_ring[i]);
return err;
}
static void enetc_free_tx_resources(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_free_txbdr(priv->tx_ring[i]);
}
static int enetc_alloc_rxbdr(struct enetc_bdr *rxr, bool extended)
{
size_t size = sizeof(union enetc_rx_bd);
int err;
rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd));
if (!rxr->rx_swbd)
return -ENOMEM;
if (extended)
size *= 2;
err = enetc_dma_alloc_bdr(rxr, size);
if (err) {
vfree(rxr->rx_swbd);
return err;
}
rxr->next_to_clean = 0;
rxr->next_to_use = 0;
rxr->next_to_alloc = 0;
rxr->ext_en = extended;
return 0;
}
static void enetc_free_rxbdr(struct enetc_bdr *rxr)
{
int size;
size = rxr->bd_count * sizeof(union enetc_rx_bd);
dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base);
rxr->bd_base = NULL;
vfree(rxr->rx_swbd);
rxr->rx_swbd = NULL;
}
static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv)
{
bool extended = !!(priv->active_offloads & ENETC_F_RX_TSTAMP);
int i, err;
for (i = 0; i < priv->num_rx_rings; i++) {
err = enetc_alloc_rxbdr(priv->rx_ring[i], extended);
if (err)
goto fail;
}
return 0;
fail:
while (i-- > 0)
enetc_free_rxbdr(priv->rx_ring[i]);
return err;
}
static void enetc_free_rx_resources(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_rx_rings; i++)
enetc_free_rxbdr(priv->rx_ring[i]);
}
static void enetc_free_tx_ring(struct enetc_bdr *tx_ring)
{
int i;
if (!tx_ring->tx_swbd)
return;
for (i = 0; i < tx_ring->bd_count; i++) {
struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i];
enetc_free_tx_frame(tx_ring, tx_swbd);
}
tx_ring->next_to_clean = 0;
tx_ring->next_to_use = 0;
}
static void enetc_free_rx_ring(struct enetc_bdr *rx_ring)
{
int i;
if (!rx_ring->rx_swbd)
return;
for (i = 0; i < rx_ring->bd_count; i++) {
struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i];
if (!rx_swbd->page)
continue;
dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE,
rx_swbd->dir);
__free_page(rx_swbd->page);
rx_swbd->page = NULL;
}
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->next_to_alloc = 0;
}
static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_rx_rings; i++)
enetc_free_rx_ring(priv->rx_ring[i]);
for (i = 0; i < priv->num_tx_rings; i++)
enetc_free_tx_ring(priv->tx_ring[i]);
}
static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups)
{
int *rss_table;
int i;
rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL);
if (!rss_table)
return -ENOMEM;
/* Set up RSS table defaults */
for (i = 0; i < si->num_rss; i++)
rss_table[i] = i % num_groups;
enetc_set_rss_table(si, rss_table, si->num_rss);
kfree(rss_table);
return 0;
}
int enetc_configure_si(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
struct enetc_hw *hw = &si->hw;
int err;
/* set SI cache attributes */
enetc_wr(hw, ENETC_SICAR0,
ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT);
enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI);
/* enable SI */
enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN);
if (si->num_rss) {
err = enetc_setup_default_rss_table(si, priv->num_rx_rings);
if (err)
return err;
}
return 0;
}
void enetc_init_si_rings_params(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
int cpus = num_online_cpus();
priv->tx_bd_count = ENETC_TX_RING_DEFAULT_SIZE;
priv->rx_bd_count = ENETC_RX_RING_DEFAULT_SIZE;
/* Enable all available TX rings in order to configure as many
* priorities as possible, when needed.
* TODO: Make # of TX rings run-time configurable
*/
priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings);
priv->num_tx_rings = si->num_tx_rings;
priv->bdr_int_num = cpus;
priv->ic_mode = ENETC_IC_RX_ADAPTIVE | ENETC_IC_TX_MANUAL;
priv->tx_ictt = ENETC_TXIC_TIMETHR;
}
int enetc_alloc_si_resources(struct enetc_ndev_priv *priv)
{
struct enetc_si *si = priv->si;
priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules),
GFP_KERNEL);
if (!priv->cls_rules)
return -ENOMEM;
return 0;
}
void enetc_free_si_resources(struct enetc_ndev_priv *priv)
{
kfree(priv->cls_rules);
}
static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
{
int idx = tx_ring->index;
u32 tbmr;
enetc_txbdr_wr(hw, idx, ENETC_TBBAR0,
lower_32_bits(tx_ring->bd_dma_base));
enetc_txbdr_wr(hw, idx, ENETC_TBBAR1,
upper_32_bits(tx_ring->bd_dma_base));
WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */
enetc_txbdr_wr(hw, idx, ENETC_TBLENR,
ENETC_RTBLENR_LEN(tx_ring->bd_count));
/* clearing PI/CI registers for Tx not supported, adjust sw indexes */
tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR);
tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR);
/* enable Tx ints by setting pkt thr to 1 */
enetc_txbdr_wr(hw, idx, ENETC_TBICR0, ENETC_TBICR0_ICEN | 0x1);
tbmr = ENETC_TBMR_EN;
if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
tbmr |= ENETC_TBMR_VIH;
/* enable ring */
enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr);
tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR);
tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR);
tx_ring->idr = hw->reg + ENETC_SITXIDR;
}
static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
{
int idx = rx_ring->index;
u32 rbmr;
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0,
lower_32_bits(rx_ring->bd_dma_base));
enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1,
upper_32_bits(rx_ring->bd_dma_base));
WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */
enetc_rxbdr_wr(hw, idx, ENETC_RBLENR,
ENETC_RTBLENR_LEN(rx_ring->bd_count));
if (rx_ring->xdp.prog)
enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE_XDP);
else
enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE);
enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0);
/* enable Rx ints by setting pkt thr to 1 */
enetc_rxbdr_wr(hw, idx, ENETC_RBICR0, ENETC_RBICR0_ICEN | 0x1);
rbmr = ENETC_RBMR_EN;
if (rx_ring->ext_en)
rbmr |= ENETC_RBMR_BDS;
if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
rbmr |= ENETC_RBMR_VTE;
rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR);
rx_ring->idr = hw->reg + ENETC_SIRXIDR;
enetc_lock_mdio();
enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring));
enetc_unlock_mdio();
/* enable ring */
enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr);
}
static void enetc_setup_bdrs(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]);
}
static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring)
{
int idx = rx_ring->index;
/* disable EN bit on ring */
enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0);
}
static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring)
{
int delay = 8, timeout = 100;
int idx = tx_ring->index;
/* disable EN bit on ring */
enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0);
/* wait for busy to clear */
while (delay < timeout &&
enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) {
msleep(delay);
delay *= 2;
}
if (delay >= timeout)
netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n",
idx);
}
static void enetc_clear_bdrs(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]);
udelay(1);
}
static int enetc_setup_irqs(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
int i, j, err;
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
struct enetc_int_vector *v = priv->int_vector[i];
int entry = ENETC_BDR_INT_BASE_IDX + i;
struct enetc_hw *hw = &priv->si->hw;
snprintf(v->name, sizeof(v->name), "%s-rxtx%d",
priv->ndev->name, i);
err = request_irq(irq, enetc_msix, 0, v->name, v);
if (err) {
dev_err(priv->dev, "request_irq() failed!\n");
goto irq_err;
}
disable_irq(irq);
v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER);
v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER);
v->ricr1 = hw->reg + ENETC_BDR(RX, i, ENETC_RBICR1);
enetc_wr(hw, ENETC_SIMSIRRV(i), entry);
for (j = 0; j < v->count_tx_rings; j++) {
int idx = v->tx_ring[j].index;
enetc_wr(hw, ENETC_SIMSITRV(idx), entry);
}
irq_set_affinity_hint(irq, get_cpu_mask(i % num_online_cpus()));
}
return 0;
irq_err:
while (i--) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, priv->int_vector[i]);
}
return err;
}
static void enetc_free_irqs(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
int i;
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i);
irq_set_affinity_hint(irq, NULL);
free_irq(irq, priv->int_vector[i]);
}
}
static void enetc_setup_interrupts(struct enetc_ndev_priv *priv)
{
struct enetc_hw *hw = &priv->si->hw;
u32 icpt, ictt;
int i;
/* enable Tx & Rx event indication */
if (priv->ic_mode &
(ENETC_IC_RX_MANUAL | ENETC_IC_RX_ADAPTIVE)) {
icpt = ENETC_RBICR0_SET_ICPT(ENETC_RXIC_PKTTHR);
/* init to non-0 minimum, will be adjusted later */
ictt = 0x1;
} else {
icpt = 0x1; /* enable Rx ints by setting pkt thr to 1 */
ictt = 0;
}
for (i = 0; i < priv->num_rx_rings; i++) {
enetc_rxbdr_wr(hw, i, ENETC_RBICR1, ictt);
enetc_rxbdr_wr(hw, i, ENETC_RBICR0, ENETC_RBICR0_ICEN | icpt);
enetc_rxbdr_wr(hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE);
}
if (priv->ic_mode & ENETC_IC_TX_MANUAL)
icpt = ENETC_TBICR0_SET_ICPT(ENETC_TXIC_PKTTHR);
else
icpt = 0x1; /* enable Tx ints by setting pkt thr to 1 */
for (i = 0; i < priv->num_tx_rings; i++) {
enetc_txbdr_wr(hw, i, ENETC_TBICR1, priv->tx_ictt);
enetc_txbdr_wr(hw, i, ENETC_TBICR0, ENETC_TBICR0_ICEN | icpt);
enetc_txbdr_wr(hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE);
}
}
static void enetc_clear_interrupts(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0);
for (i = 0; i < priv->num_rx_rings; i++)
enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0);
}
static int enetc_phylink_connect(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct ethtool_eee edata;
int err;
if (!priv->phylink)
return 0; /* phy-less mode */
err = phylink_of_phy_connect(priv->phylink, priv->dev->of_node, 0);
if (err) {
dev_err(&ndev->dev, "could not attach to PHY\n");
return err;
}
/* disable EEE autoneg, until ENETC driver supports it */
memset(&edata, 0, sizeof(struct ethtool_eee));
phylink_ethtool_set_eee(priv->phylink, &edata);
return 0;
}
static void enetc_tx_onestep_tstamp(struct work_struct *work)
{
struct enetc_ndev_priv *priv;
struct sk_buff *skb;
priv = container_of(work, struct enetc_ndev_priv, tx_onestep_tstamp);
netif_tx_lock(priv->ndev);
clear_bit_unlock(ENETC_TX_ONESTEP_TSTAMP_IN_PROGRESS, &priv->flags);
skb = skb_dequeue(&priv->tx_skbs);
if (skb)
enetc_start_xmit(skb, priv->ndev);
netif_tx_unlock(priv->ndev);
}
static void enetc_tx_onestep_tstamp_init(struct enetc_ndev_priv *priv)
{
INIT_WORK(&priv->tx_onestep_tstamp, enetc_tx_onestep_tstamp);
skb_queue_head_init(&priv->tx_skbs);
}
void enetc_start(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i;
enetc_setup_interrupts(priv);
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(priv->si->pdev,
ENETC_BDR_INT_BASE_IDX + i);
napi_enable(&priv->int_vector[i]->napi);
enable_irq(irq);
}
if (priv->phylink)
phylink_start(priv->phylink);
else
netif_carrier_on(ndev);
netif_tx_start_all_queues(ndev);
}
int enetc_open(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int num_stack_tx_queues;
int err;
err = enetc_setup_irqs(priv);
if (err)
return err;
err = enetc_phylink_connect(ndev);
if (err)
goto err_phy_connect;
err = enetc_alloc_tx_resources(priv);
if (err)
goto err_alloc_tx;
err = enetc_alloc_rx_resources(priv);
if (err)
goto err_alloc_rx;
num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
err = netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
if (err)
goto err_set_queues;
err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings);
if (err)
goto err_set_queues;
enetc_tx_onestep_tstamp_init(priv);
enetc_setup_bdrs(priv);
enetc_start(ndev);
return 0;
err_set_queues:
enetc_free_rx_resources(priv);
err_alloc_rx:
enetc_free_tx_resources(priv);
err_alloc_tx:
if (priv->phylink)
phylink_disconnect_phy(priv->phylink);
err_phy_connect:
enetc_free_irqs(priv);
return err;
}
void enetc_stop(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i;
netif_tx_stop_all_queues(ndev);
for (i = 0; i < priv->bdr_int_num; i++) {
int irq = pci_irq_vector(priv->si->pdev,
ENETC_BDR_INT_BASE_IDX + i);
disable_irq(irq);
napi_synchronize(&priv->int_vector[i]->napi);
napi_disable(&priv->int_vector[i]->napi);
}
if (priv->phylink)
phylink_stop(priv->phylink);
else
netif_carrier_off(ndev);
enetc_clear_interrupts(priv);
}
int enetc_close(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
enetc_stop(ndev);
enetc_clear_bdrs(priv);
if (priv->phylink)
phylink_disconnect_phy(priv->phylink);
enetc_free_rxtx_rings(priv);
enetc_free_rx_resources(priv);
enetc_free_tx_resources(priv);
enetc_free_irqs(priv);
return 0;
}
static int enetc_setup_tc_mqprio(struct net_device *ndev, void *type_data)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct tc_mqprio_qopt *mqprio = type_data;
struct enetc_bdr *tx_ring;
int num_stack_tx_queues;
u8 num_tc;
int i;
num_stack_tx_queues = enetc_num_stack_tx_queues(priv);
mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
num_tc = mqprio->num_tc;
if (!num_tc) {
netdev_reset_tc(ndev);
netif_set_real_num_tx_queues(ndev, num_stack_tx_queues);
/* Reset all ring priorities to 0 */
for (i = 0; i < priv->num_tx_rings; i++) {
tx_ring = priv->tx_ring[i];
enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, 0);
}
return 0;
}
/* Check if we have enough BD rings available to accommodate all TCs */
if (num_tc > num_stack_tx_queues) {
netdev_err(ndev, "Max %d traffic classes supported\n",
priv->num_tx_rings);
return -EINVAL;
}
/* For the moment, we use only one BD ring per TC.
*
* Configure num_tc BD rings with increasing priorities.
*/
for (i = 0; i < num_tc; i++) {
tx_ring = priv->tx_ring[i];
enetc_set_bdr_prio(&priv->si->hw, tx_ring->index, i);
}
/* Reset the number of netdev queues based on the TC count */
netif_set_real_num_tx_queues(ndev, num_tc);
netdev_set_num_tc(ndev, num_tc);
/* Each TC is associated with one netdev queue */
for (i = 0; i < num_tc; i++)
netdev_set_tc_queue(ndev, i, 1, i);
return 0;
}
int enetc_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
switch (type) {
case TC_SETUP_QDISC_MQPRIO:
return enetc_setup_tc_mqprio(ndev, type_data);
case TC_SETUP_QDISC_TAPRIO:
return enetc_setup_tc_taprio(ndev, type_data);
case TC_SETUP_QDISC_CBS:
return enetc_setup_tc_cbs(ndev, type_data);
case TC_SETUP_QDISC_ETF:
return enetc_setup_tc_txtime(ndev, type_data);
case TC_SETUP_BLOCK:
return enetc_setup_tc_psfp(ndev, type_data);
default:
return -EOPNOTSUPP;
}
}
static int enetc_setup_xdp_prog(struct net_device *dev, struct bpf_prog *prog,
struct netlink_ext_ack *extack)
{
struct enetc_ndev_priv *priv = netdev_priv(dev);
struct bpf_prog *old_prog;
bool is_up;
int i;
/* The buffer layout is changing, so we need to drain the old
* RX buffers and seed new ones.
*/
is_up = netif_running(dev);
if (is_up)
dev_close(dev);
old_prog = xchg(&priv->xdp_prog, prog);
if (old_prog)
bpf_prog_put(old_prog);
for (i = 0; i < priv->num_rx_rings; i++) {
struct enetc_bdr *rx_ring = priv->rx_ring[i];
rx_ring->xdp.prog = prog;
if (prog)
rx_ring->buffer_offset = XDP_PACKET_HEADROOM;
else
rx_ring->buffer_offset = ENETC_RXB_PAD;
}
if (is_up)
return dev_open(dev, extack);
return 0;
}
int enetc_setup_bpf(struct net_device *dev, struct netdev_bpf *xdp)
{
switch (xdp->command) {
case XDP_SETUP_PROG:
return enetc_setup_xdp_prog(dev, xdp->prog, xdp->extack);
default:
return -EINVAL;
}
return 0;
}
struct net_device_stats *enetc_get_stats(struct net_device *ndev)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
unsigned long packets = 0, bytes = 0;
int i;
for (i = 0; i < priv->num_rx_rings; i++) {
packets += priv->rx_ring[i]->stats.packets;
bytes += priv->rx_ring[i]->stats.bytes;
}
stats->rx_packets = packets;
stats->rx_bytes = bytes;
bytes = 0;
packets = 0;
for (i = 0; i < priv->num_tx_rings; i++) {
packets += priv->tx_ring[i]->stats.packets;
bytes += priv->tx_ring[i]->stats.bytes;
}
stats->tx_packets = packets;
stats->tx_bytes = bytes;
return stats;
}
static int enetc_set_rss(struct net_device *ndev, int en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct enetc_hw *hw = &priv->si->hw;
u32 reg;
enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings);
reg = enetc_rd(hw, ENETC_SIMR);
reg &= ~ENETC_SIMR_RSSE;
reg |= (en) ? ENETC_SIMR_RSSE : 0;
enetc_wr(hw, ENETC_SIMR, reg);
return 0;
}
static int enetc_set_psfp(struct net_device *ndev, int en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int err;
if (en) {
err = enetc_psfp_enable(priv);
if (err)
return err;
priv->active_offloads |= ENETC_F_QCI;
return 0;
}
err = enetc_psfp_disable(priv);
if (err)
return err;
priv->active_offloads &= ~ENETC_F_QCI;
return 0;
}
static void enetc_enable_rxvlan(struct net_device *ndev, bool en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i;
for (i = 0; i < priv->num_rx_rings; i++)
enetc_bdr_enable_rxvlan(&priv->si->hw, i, en);
}
static void enetc_enable_txvlan(struct net_device *ndev, bool en)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
int i;
for (i = 0; i < priv->num_tx_rings; i++)
enetc_bdr_enable_txvlan(&priv->si->hw, i, en);
}
int enetc_set_features(struct net_device *ndev,
netdev_features_t features)
{
netdev_features_t changed = ndev->features ^ features;
int err = 0;
if (changed & NETIF_F_RXHASH)
enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH));
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
enetc_enable_rxvlan(ndev,
!!(features & NETIF_F_HW_VLAN_CTAG_RX));
if (changed & NETIF_F_HW_VLAN_CTAG_TX)
enetc_enable_txvlan(ndev,
!!(features & NETIF_F_HW_VLAN_CTAG_TX));
if (changed & NETIF_F_HW_TC)
err = enetc_set_psfp(ndev, !!(features & NETIF_F_HW_TC));
return err;
}
#ifdef CONFIG_FSL_ENETC_PTP_CLOCK
static int enetc_hwtstamp_set(struct net_device *ndev, struct ifreq *ifr)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct hwtstamp_config config;
int ao;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
switch (config.tx_type) {
case HWTSTAMP_TX_OFF:
priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
break;
case HWTSTAMP_TX_ON:
priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
priv->active_offloads |= ENETC_F_TX_TSTAMP;
break;
case HWTSTAMP_TX_ONESTEP_SYNC:
priv->active_offloads &= ~ENETC_F_TX_TSTAMP_MASK;
priv->active_offloads |= ENETC_F_TX_ONESTEP_SYNC_TSTAMP;
break;
default:
return -ERANGE;
}
ao = priv->active_offloads;
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
priv->active_offloads &= ~ENETC_F_RX_TSTAMP;
break;
default:
priv->active_offloads |= ENETC_F_RX_TSTAMP;
config.rx_filter = HWTSTAMP_FILTER_ALL;
}
if (netif_running(ndev) && ao != priv->active_offloads) {
enetc_close(ndev);
enetc_open(ndev);
}
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static int enetc_hwtstamp_get(struct net_device *ndev, struct ifreq *ifr)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
struct hwtstamp_config config;
config.flags = 0;
if (priv->active_offloads & ENETC_F_TX_ONESTEP_SYNC_TSTAMP)
config.tx_type = HWTSTAMP_TX_ONESTEP_SYNC;
else if (priv->active_offloads & ENETC_F_TX_TSTAMP)
config.tx_type = HWTSTAMP_TX_ON;
else
config.tx_type = HWTSTAMP_TX_OFF;
config.rx_filter = (priv->active_offloads & ENETC_F_RX_TSTAMP) ?
HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE;
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
#endif
int enetc_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
{
struct enetc_ndev_priv *priv = netdev_priv(ndev);
#ifdef CONFIG_FSL_ENETC_PTP_CLOCK
if (cmd == SIOCSHWTSTAMP)
return enetc_hwtstamp_set(ndev, rq);
if (cmd == SIOCGHWTSTAMP)
return enetc_hwtstamp_get(ndev, rq);
#endif
if (!priv->phylink)
return -EOPNOTSUPP;
return phylink_mii_ioctl(priv->phylink, rq, cmd);
}
int enetc_alloc_msix(struct enetc_ndev_priv *priv)
{
struct pci_dev *pdev = priv->si->pdev;
int first_xdp_tx_ring;
int i, n, err, nvec;
int v_tx_rings;
nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num;
/* allocate MSIX for both messaging and Rx/Tx interrupts */
n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX);
if (n < 0)
return n;
if (n != nvec)
return -EPERM;
/* # of tx rings per int vector */
v_tx_rings = priv->num_tx_rings / priv->bdr_int_num;
for (i = 0; i < priv->bdr_int_num; i++) {
struct enetc_int_vector *v;
struct enetc_bdr *bdr;
int j;
v = kzalloc(struct_size(v, tx_ring, v_tx_rings), GFP_KERNEL);
if (!v) {
err = -ENOMEM;
goto fail;
}
priv->int_vector[i] = v;
bdr = &v->rx_ring;
bdr->index = i;
bdr->ndev = priv->ndev;
bdr->dev = priv->dev;
bdr->bd_count = priv->rx_bd_count;
bdr->buffer_offset = ENETC_RXB_PAD;
priv->rx_ring[i] = bdr;
err = xdp_rxq_info_reg(&bdr->xdp.rxq, priv->ndev, i, 0);
if (err) {
kfree(v);
goto fail;
}
err = xdp_rxq_info_reg_mem_model(&bdr->xdp.rxq,
MEM_TYPE_PAGE_SHARED, NULL);
if (err) {
xdp_rxq_info_unreg(&bdr->xdp.rxq);
kfree(v);
goto fail;
}
/* init defaults for adaptive IC */
if (priv->ic_mode & ENETC_IC_RX_ADAPTIVE) {
v->rx_ictt = 0x1;
v->rx_dim_en = true;
}
INIT_WORK(&v->rx_dim.work, enetc_rx_dim_work);
netif_napi_add(priv->ndev, &v->napi, enetc_poll,
NAPI_POLL_WEIGHT);
v->count_tx_rings = v_tx_rings;
for (j = 0; j < v_tx_rings; j++) {
int idx;
/* default tx ring mapping policy */
idx = priv->bdr_int_num * j + i;
__set_bit(idx, &v->tx_rings_map);
bdr = &v->tx_ring[j];
bdr->index = idx;
bdr->ndev = priv->ndev;
bdr->dev = priv->dev;
bdr->bd_count = priv->tx_bd_count;
priv->tx_ring[idx] = bdr;
}
}
first_xdp_tx_ring = priv->num_tx_rings - num_possible_cpus();
priv->xdp_tx_ring = &priv->tx_ring[first_xdp_tx_ring];
return 0;
fail:
while (i--) {
struct enetc_int_vector *v = priv->int_vector[i];
struct enetc_bdr *rx_ring = &v->rx_ring;
xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
netif_napi_del(&v->napi);
cancel_work_sync(&v->rx_dim.work);
kfree(v);
}
pci_free_irq_vectors(pdev);
return err;
}
void enetc_free_msix(struct enetc_ndev_priv *priv)
{
int i;
for (i = 0; i < priv->bdr_int_num; i++) {
struct enetc_int_vector *v = priv->int_vector[i];
struct enetc_bdr *rx_ring = &v->rx_ring;
xdp_rxq_info_unreg_mem_model(&rx_ring->xdp.rxq);
xdp_rxq_info_unreg(&rx_ring->xdp.rxq);
netif_napi_del(&v->napi);
cancel_work_sync(&v->rx_dim.work);
}
for (i = 0; i < priv->num_rx_rings; i++)
priv->rx_ring[i] = NULL;
for (i = 0; i < priv->num_tx_rings; i++)
priv->tx_ring[i] = NULL;
for (i = 0; i < priv->bdr_int_num; i++) {
kfree(priv->int_vector[i]);
priv->int_vector[i] = NULL;
}
/* disable all MSIX for this device */
pci_free_irq_vectors(priv->si->pdev);
}
static void enetc_kfree_si(struct enetc_si *si)
{
char *p = (char *)si - si->pad;
kfree(p);
}
static void enetc_detect_errata(struct enetc_si *si)
{
if (si->pdev->revision == ENETC_REV1)
si->errata = ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP;
}
int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv)
{
struct enetc_si *si, *p;
struct enetc_hw *hw;
size_t alloc_size;
int err, len;
pcie_flr(pdev);
err = pci_enable_device_mem(pdev);
if (err)
return dev_err_probe(&pdev->dev, err, "device enable failed\n");
/* set up for high or low dma */
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"DMA configuration failed: 0x%x\n", err);
goto err_dma;
}
}
err = pci_request_mem_regions(pdev, name);
if (err) {
dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err);
goto err_pci_mem_reg;
}
pci_set_master(pdev);
alloc_size = sizeof(struct enetc_si);
if (sizeof_priv) {
/* align priv to 32B */
alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN);
alloc_size += sizeof_priv;
}
/* force 32B alignment for enetc_si */
alloc_size += ENETC_SI_ALIGN - 1;
p = kzalloc(alloc_size, GFP_KERNEL);
if (!p) {
err = -ENOMEM;
goto err_alloc_si;
}
si = PTR_ALIGN(p, ENETC_SI_ALIGN);
si->pad = (char *)si - (char *)p;
pci_set_drvdata(pdev, si);
si->pdev = pdev;
hw = &si->hw;
len = pci_resource_len(pdev, ENETC_BAR_REGS);
hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len);
if (!hw->reg) {
err = -ENXIO;
dev_err(&pdev->dev, "ioremap() failed\n");
goto err_ioremap;
}
if (len > ENETC_PORT_BASE)
hw->port = hw->reg + ENETC_PORT_BASE;
if (len > ENETC_GLOBAL_BASE)
hw->global = hw->reg + ENETC_GLOBAL_BASE;
enetc_detect_errata(si);
return 0;
err_ioremap:
enetc_kfree_si(si);
err_alloc_si:
pci_release_mem_regions(pdev);
err_pci_mem_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
void enetc_pci_remove(struct pci_dev *pdev)
{
struct enetc_si *si = pci_get_drvdata(pdev);
struct enetc_hw *hw = &si->hw;
iounmap(hw->reg);
enetc_kfree_si(si);
pci_release_mem_regions(pdev);
pci_disable_device(pdev);
}