| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* Google virtual Ethernet (gve) driver |
| * |
| * Copyright (C) 2015-2021 Google, Inc. |
| */ |
| |
| #include "gve.h" |
| #include "gve_adminq.h" |
| #include "gve_utils.h" |
| #include <linux/etherdevice.h> |
| |
| static void gve_rx_free_buffer(struct device *dev, |
| struct gve_rx_slot_page_info *page_info, |
| union gve_rx_data_slot *data_slot) |
| { |
| dma_addr_t dma = (dma_addr_t)(be64_to_cpu(data_slot->addr) & |
| GVE_DATA_SLOT_ADDR_PAGE_MASK); |
| |
| page_ref_sub(page_info->page, page_info->pagecnt_bias - 1); |
| gve_free_page(dev, page_info->page, dma, DMA_FROM_DEVICE); |
| } |
| |
| static void gve_rx_unfill_pages(struct gve_priv *priv, struct gve_rx_ring *rx) |
| { |
| u32 slots = rx->mask + 1; |
| int i; |
| |
| if (rx->data.raw_addressing) { |
| for (i = 0; i < slots; i++) |
| gve_rx_free_buffer(&priv->pdev->dev, &rx->data.page_info[i], |
| &rx->data.data_ring[i]); |
| } else { |
| for (i = 0; i < slots; i++) |
| page_ref_sub(rx->data.page_info[i].page, |
| rx->data.page_info[i].pagecnt_bias - 1); |
| gve_unassign_qpl(priv, rx->data.qpl->id); |
| rx->data.qpl = NULL; |
| } |
| kvfree(rx->data.page_info); |
| rx->data.page_info = NULL; |
| } |
| |
| static void gve_rx_free_ring(struct gve_priv *priv, int idx) |
| { |
| struct gve_rx_ring *rx = &priv->rx[idx]; |
| struct device *dev = &priv->pdev->dev; |
| u32 slots = rx->mask + 1; |
| size_t bytes; |
| |
| gve_rx_remove_from_block(priv, idx); |
| |
| bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt; |
| dma_free_coherent(dev, bytes, rx->desc.desc_ring, rx->desc.bus); |
| rx->desc.desc_ring = NULL; |
| |
| dma_free_coherent(dev, sizeof(*rx->q_resources), |
| rx->q_resources, rx->q_resources_bus); |
| rx->q_resources = NULL; |
| |
| gve_rx_unfill_pages(priv, rx); |
| |
| bytes = sizeof(*rx->data.data_ring) * slots; |
| dma_free_coherent(dev, bytes, rx->data.data_ring, |
| rx->data.data_bus); |
| rx->data.data_ring = NULL; |
| netif_dbg(priv, drv, priv->dev, "freed rx ring %d\n", idx); |
| } |
| |
| static void gve_setup_rx_buffer(struct gve_rx_slot_page_info *page_info, |
| dma_addr_t addr, struct page *page, __be64 *slot_addr) |
| { |
| page_info->page = page; |
| page_info->page_offset = 0; |
| page_info->page_address = page_address(page); |
| *slot_addr = cpu_to_be64(addr); |
| /* The page already has 1 ref */ |
| page_ref_add(page, INT_MAX - 1); |
| page_info->pagecnt_bias = INT_MAX; |
| } |
| |
| static int gve_rx_alloc_buffer(struct gve_priv *priv, struct device *dev, |
| struct gve_rx_slot_page_info *page_info, |
| union gve_rx_data_slot *data_slot) |
| { |
| struct page *page; |
| dma_addr_t dma; |
| int err; |
| |
| err = gve_alloc_page(priv, dev, &page, &dma, DMA_FROM_DEVICE); |
| if (err) |
| return err; |
| |
| gve_setup_rx_buffer(page_info, dma, page, &data_slot->addr); |
| return 0; |
| } |
| |
| static int gve_prefill_rx_pages(struct gve_rx_ring *rx) |
| { |
| struct gve_priv *priv = rx->gve; |
| u32 slots; |
| int err; |
| int i; |
| |
| /* Allocate one page per Rx queue slot. Each page is split into two |
| * packet buffers, when possible we "page flip" between the two. |
| */ |
| slots = rx->mask + 1; |
| |
| rx->data.page_info = kvzalloc(slots * |
| sizeof(*rx->data.page_info), GFP_KERNEL); |
| if (!rx->data.page_info) |
| return -ENOMEM; |
| |
| if (!rx->data.raw_addressing) { |
| rx->data.qpl = gve_assign_rx_qpl(priv); |
| if (!rx->data.qpl) { |
| kvfree(rx->data.page_info); |
| rx->data.page_info = NULL; |
| return -ENOMEM; |
| } |
| } |
| for (i = 0; i < slots; i++) { |
| if (!rx->data.raw_addressing) { |
| struct page *page = rx->data.qpl->pages[i]; |
| dma_addr_t addr = i * PAGE_SIZE; |
| |
| gve_setup_rx_buffer(&rx->data.page_info[i], addr, page, |
| &rx->data.data_ring[i].qpl_offset); |
| continue; |
| } |
| err = gve_rx_alloc_buffer(priv, &priv->pdev->dev, &rx->data.page_info[i], |
| &rx->data.data_ring[i]); |
| if (err) |
| goto alloc_err; |
| } |
| |
| return slots; |
| alloc_err: |
| while (i--) |
| gve_rx_free_buffer(&priv->pdev->dev, |
| &rx->data.page_info[i], |
| &rx->data.data_ring[i]); |
| return err; |
| } |
| |
| static void gve_rx_ctx_clear(struct gve_rx_ctx *ctx) |
| { |
| ctx->curr_frag_cnt = 0; |
| ctx->total_expected_size = 0; |
| ctx->expected_frag_cnt = 0; |
| ctx->skb_head = NULL; |
| ctx->skb_tail = NULL; |
| ctx->reuse_frags = false; |
| } |
| |
| static int gve_rx_alloc_ring(struct gve_priv *priv, int idx) |
| { |
| struct gve_rx_ring *rx = &priv->rx[idx]; |
| struct device *hdev = &priv->pdev->dev; |
| u32 slots, npages; |
| int filled_pages; |
| size_t bytes; |
| int err; |
| |
| netif_dbg(priv, drv, priv->dev, "allocating rx ring\n"); |
| /* Make sure everything is zeroed to start with */ |
| memset(rx, 0, sizeof(*rx)); |
| |
| rx->gve = priv; |
| rx->q_num = idx; |
| |
| slots = priv->rx_data_slot_cnt; |
| rx->mask = slots - 1; |
| rx->data.raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT; |
| |
| /* alloc rx data ring */ |
| bytes = sizeof(*rx->data.data_ring) * slots; |
| rx->data.data_ring = dma_alloc_coherent(hdev, bytes, |
| &rx->data.data_bus, |
| GFP_KERNEL); |
| if (!rx->data.data_ring) |
| return -ENOMEM; |
| filled_pages = gve_prefill_rx_pages(rx); |
| if (filled_pages < 0) { |
| err = -ENOMEM; |
| goto abort_with_slots; |
| } |
| rx->fill_cnt = filled_pages; |
| /* Ensure data ring slots (packet buffers) are visible. */ |
| dma_wmb(); |
| |
| /* Alloc gve_queue_resources */ |
| rx->q_resources = |
| dma_alloc_coherent(hdev, |
| sizeof(*rx->q_resources), |
| &rx->q_resources_bus, |
| GFP_KERNEL); |
| if (!rx->q_resources) { |
| err = -ENOMEM; |
| goto abort_filled; |
| } |
| netif_dbg(priv, drv, priv->dev, "rx[%d]->data.data_bus=%lx\n", idx, |
| (unsigned long)rx->data.data_bus); |
| |
| /* alloc rx desc ring */ |
| bytes = sizeof(struct gve_rx_desc) * priv->rx_desc_cnt; |
| npages = bytes / PAGE_SIZE; |
| if (npages * PAGE_SIZE != bytes) { |
| err = -EIO; |
| goto abort_with_q_resources; |
| } |
| |
| rx->desc.desc_ring = dma_alloc_coherent(hdev, bytes, &rx->desc.bus, |
| GFP_KERNEL); |
| if (!rx->desc.desc_ring) { |
| err = -ENOMEM; |
| goto abort_with_q_resources; |
| } |
| rx->cnt = 0; |
| rx->db_threshold = priv->rx_desc_cnt / 2; |
| rx->desc.seqno = 1; |
| |
| /* Allocating half-page buffers allows page-flipping which is faster |
| * than copying or allocating new pages. |
| */ |
| rx->packet_buffer_size = PAGE_SIZE / 2; |
| gve_rx_ctx_clear(&rx->ctx); |
| gve_rx_add_to_block(priv, idx); |
| |
| return 0; |
| |
| abort_with_q_resources: |
| dma_free_coherent(hdev, sizeof(*rx->q_resources), |
| rx->q_resources, rx->q_resources_bus); |
| rx->q_resources = NULL; |
| abort_filled: |
| gve_rx_unfill_pages(priv, rx); |
| abort_with_slots: |
| bytes = sizeof(*rx->data.data_ring) * slots; |
| dma_free_coherent(hdev, bytes, rx->data.data_ring, rx->data.data_bus); |
| rx->data.data_ring = NULL; |
| |
| return err; |
| } |
| |
| int gve_rx_alloc_rings(struct gve_priv *priv) |
| { |
| int err = 0; |
| int i; |
| |
| for (i = 0; i < priv->rx_cfg.num_queues; i++) { |
| err = gve_rx_alloc_ring(priv, i); |
| if (err) { |
| netif_err(priv, drv, priv->dev, |
| "Failed to alloc rx ring=%d: err=%d\n", |
| i, err); |
| break; |
| } |
| } |
| /* Unallocate if there was an error */ |
| if (err) { |
| int j; |
| |
| for (j = 0; j < i; j++) |
| gve_rx_free_ring(priv, j); |
| } |
| return err; |
| } |
| |
| void gve_rx_free_rings_gqi(struct gve_priv *priv) |
| { |
| int i; |
| |
| for (i = 0; i < priv->rx_cfg.num_queues; i++) |
| gve_rx_free_ring(priv, i); |
| } |
| |
| void gve_rx_write_doorbell(struct gve_priv *priv, struct gve_rx_ring *rx) |
| { |
| u32 db_idx = be32_to_cpu(rx->q_resources->db_index); |
| |
| iowrite32be(rx->fill_cnt, &priv->db_bar2[db_idx]); |
| } |
| |
| static enum pkt_hash_types gve_rss_type(__be16 pkt_flags) |
| { |
| if (likely(pkt_flags & (GVE_RXF_TCP | GVE_RXF_UDP))) |
| return PKT_HASH_TYPE_L4; |
| if (pkt_flags & (GVE_RXF_IPV4 | GVE_RXF_IPV6)) |
| return PKT_HASH_TYPE_L3; |
| return PKT_HASH_TYPE_L2; |
| } |
| |
| static u16 gve_rx_ctx_padding(struct gve_rx_ctx *ctx) |
| { |
| return (ctx->curr_frag_cnt == 0) ? GVE_RX_PAD : 0; |
| } |
| |
| static struct sk_buff *gve_rx_add_frags(struct napi_struct *napi, |
| struct gve_rx_slot_page_info *page_info, |
| u16 packet_buffer_size, u16 len, |
| struct gve_rx_ctx *ctx) |
| { |
| u32 offset = page_info->page_offset + gve_rx_ctx_padding(ctx); |
| struct sk_buff *skb; |
| |
| if (!ctx->skb_head) |
| ctx->skb_head = napi_get_frags(napi); |
| |
| if (unlikely(!ctx->skb_head)) |
| return NULL; |
| |
| skb = ctx->skb_head; |
| skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page_info->page, |
| offset, len, packet_buffer_size); |
| |
| return skb; |
| } |
| |
| static void gve_rx_flip_buff(struct gve_rx_slot_page_info *page_info, __be64 *slot_addr) |
| { |
| const __be64 offset = cpu_to_be64(PAGE_SIZE / 2); |
| |
| /* "flip" to other packet buffer on this page */ |
| page_info->page_offset ^= PAGE_SIZE / 2; |
| *(slot_addr) ^= offset; |
| } |
| |
| static int gve_rx_can_recycle_buffer(struct gve_rx_slot_page_info *page_info) |
| { |
| int pagecount = page_count(page_info->page); |
| |
| /* This page is not being used by any SKBs - reuse */ |
| if (pagecount == page_info->pagecnt_bias) |
| return 1; |
| /* This page is still being used by an SKB - we can't reuse */ |
| else if (pagecount > page_info->pagecnt_bias) |
| return 0; |
| WARN(pagecount < page_info->pagecnt_bias, |
| "Pagecount should never be less than the bias."); |
| return -1; |
| } |
| |
| static struct sk_buff * |
| gve_rx_raw_addressing(struct device *dev, struct net_device *netdev, |
| struct gve_rx_slot_page_info *page_info, u16 len, |
| struct napi_struct *napi, |
| union gve_rx_data_slot *data_slot, |
| u16 packet_buffer_size, struct gve_rx_ctx *ctx) |
| { |
| struct sk_buff *skb = gve_rx_add_frags(napi, page_info, packet_buffer_size, len, ctx); |
| |
| if (!skb) |
| return NULL; |
| |
| /* Optimistically stop the kernel from freeing the page. |
| * We will check again in refill to determine if we need to alloc a |
| * new page. |
| */ |
| gve_dec_pagecnt_bias(page_info); |
| |
| return skb; |
| } |
| |
| static struct sk_buff * |
| gve_rx_qpl(struct device *dev, struct net_device *netdev, |
| struct gve_rx_ring *rx, struct gve_rx_slot_page_info *page_info, |
| u16 len, struct napi_struct *napi, |
| union gve_rx_data_slot *data_slot) |
| { |
| struct gve_rx_ctx *ctx = &rx->ctx; |
| struct sk_buff *skb; |
| |
| /* if raw_addressing mode is not enabled gvnic can only receive into |
| * registered segments. If the buffer can't be recycled, our only |
| * choice is to copy the data out of it so that we can return it to the |
| * device. |
| */ |
| if (ctx->reuse_frags) { |
| skb = gve_rx_add_frags(napi, page_info, rx->packet_buffer_size, len, ctx); |
| /* No point in recycling if we didn't get the skb */ |
| if (skb) { |
| /* Make sure that the page isn't freed. */ |
| gve_dec_pagecnt_bias(page_info); |
| gve_rx_flip_buff(page_info, &data_slot->qpl_offset); |
| } |
| } else { |
| const u16 padding = gve_rx_ctx_padding(ctx); |
| |
| skb = gve_rx_copy(netdev, napi, page_info, len, padding, ctx); |
| if (skb) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_frag_copy_cnt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| } |
| return skb; |
| } |
| |
| #define GVE_PKTCONT_BIT_IS_SET(x) (GVE_RXF_PKT_CONT & (x)) |
| static u16 gve_rx_get_fragment_size(struct gve_rx_ctx *ctx, struct gve_rx_desc *desc) |
| { |
| return be16_to_cpu(desc->len) - gve_rx_ctx_padding(ctx); |
| } |
| |
| static bool gve_rx_ctx_init(struct gve_rx_ctx *ctx, struct gve_rx_ring *rx) |
| { |
| bool qpl_mode = !rx->data.raw_addressing, packet_size_error = false; |
| bool buffer_error = false, desc_error = false, seqno_error = false; |
| struct gve_rx_slot_page_info *page_info; |
| struct gve_priv *priv = rx->gve; |
| u32 idx = rx->cnt & rx->mask; |
| bool reuse_frags, can_flip; |
| struct gve_rx_desc *desc; |
| u16 packet_size = 0; |
| u16 n_frags = 0; |
| int recycle; |
| |
| /** In QPL mode, we only flip buffers when all buffers containing the packet |
| * can be flipped. RDA can_flip decisions will be made later, per frag. |
| */ |
| can_flip = qpl_mode; |
| reuse_frags = can_flip; |
| do { |
| u16 frag_size; |
| |
| n_frags++; |
| desc = &rx->desc.desc_ring[idx]; |
| desc_error = unlikely(desc->flags_seq & GVE_RXF_ERR) || desc_error; |
| if (GVE_SEQNO(desc->flags_seq) != rx->desc.seqno) { |
| seqno_error = true; |
| netdev_warn(priv->dev, |
| "RX seqno error: want=%d, got=%d, dropping packet and scheduling reset.", |
| rx->desc.seqno, GVE_SEQNO(desc->flags_seq)); |
| } |
| frag_size = be16_to_cpu(desc->len); |
| packet_size += frag_size; |
| if (frag_size > rx->packet_buffer_size) { |
| packet_size_error = true; |
| netdev_warn(priv->dev, |
| "RX fragment error: packet_buffer_size=%d, frag_size=%d, droping packet.", |
| rx->packet_buffer_size, be16_to_cpu(desc->len)); |
| } |
| page_info = &rx->data.page_info[idx]; |
| if (can_flip) { |
| recycle = gve_rx_can_recycle_buffer(page_info); |
| reuse_frags = reuse_frags && recycle > 0; |
| buffer_error = buffer_error || unlikely(recycle < 0); |
| } |
| idx = (idx + 1) & rx->mask; |
| rx->desc.seqno = gve_next_seqno(rx->desc.seqno); |
| } while (GVE_PKTCONT_BIT_IS_SET(desc->flags_seq)); |
| |
| prefetch(rx->desc.desc_ring + idx); |
| |
| ctx->curr_frag_cnt = 0; |
| ctx->total_expected_size = packet_size - GVE_RX_PAD; |
| ctx->expected_frag_cnt = n_frags; |
| ctx->skb_head = NULL; |
| ctx->reuse_frags = reuse_frags; |
| |
| if (ctx->expected_frag_cnt > 1) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_cont_packet_cnt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| if (ctx->total_expected_size > priv->rx_copybreak && !ctx->reuse_frags && qpl_mode) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_copied_pkt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| |
| if (unlikely(buffer_error || seqno_error || packet_size_error)) { |
| gve_schedule_reset(priv); |
| return false; |
| } |
| |
| if (unlikely(desc_error)) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_desc_err_dropped_pkt++; |
| u64_stats_update_end(&rx->statss); |
| return false; |
| } |
| return true; |
| } |
| |
| static struct sk_buff *gve_rx_skb(struct gve_priv *priv, struct gve_rx_ring *rx, |
| struct gve_rx_slot_page_info *page_info, struct napi_struct *napi, |
| u16 len, union gve_rx_data_slot *data_slot) |
| { |
| struct net_device *netdev = priv->dev; |
| struct gve_rx_ctx *ctx = &rx->ctx; |
| struct sk_buff *skb = NULL; |
| |
| if (len <= priv->rx_copybreak && ctx->expected_frag_cnt == 1) { |
| /* Just copy small packets */ |
| skb = gve_rx_copy(netdev, napi, page_info, len, GVE_RX_PAD, ctx); |
| if (skb) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_copied_pkt++; |
| rx->rx_frag_copy_cnt++; |
| rx->rx_copybreak_pkt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| } else { |
| if (rx->data.raw_addressing) { |
| int recycle = gve_rx_can_recycle_buffer(page_info); |
| |
| if (unlikely(recycle < 0)) { |
| gve_schedule_reset(priv); |
| return NULL; |
| } |
| page_info->can_flip = recycle; |
| if (page_info->can_flip) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_frag_flip_cnt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| skb = gve_rx_raw_addressing(&priv->pdev->dev, netdev, |
| page_info, len, napi, |
| data_slot, |
| rx->packet_buffer_size, ctx); |
| } else { |
| if (ctx->reuse_frags) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_frag_flip_cnt++; |
| u64_stats_update_end(&rx->statss); |
| } |
| skb = gve_rx_qpl(&priv->pdev->dev, netdev, rx, |
| page_info, len, napi, data_slot); |
| } |
| } |
| return skb; |
| } |
| |
| static bool gve_rx(struct gve_rx_ring *rx, netdev_features_t feat, |
| u64 *packet_size_bytes, u32 *work_done) |
| { |
| struct gve_rx_slot_page_info *page_info; |
| struct gve_rx_ctx *ctx = &rx->ctx; |
| union gve_rx_data_slot *data_slot; |
| struct gve_priv *priv = rx->gve; |
| struct gve_rx_desc *first_desc; |
| struct sk_buff *skb = NULL; |
| struct gve_rx_desc *desc; |
| struct napi_struct *napi; |
| dma_addr_t page_bus; |
| u32 work_cnt = 0; |
| void *va; |
| u32 idx; |
| u16 len; |
| |
| idx = rx->cnt & rx->mask; |
| first_desc = &rx->desc.desc_ring[idx]; |
| desc = first_desc; |
| napi = &priv->ntfy_blocks[rx->ntfy_id].napi; |
| |
| if (unlikely(!gve_rx_ctx_init(ctx, rx))) |
| goto skb_alloc_fail; |
| |
| while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) { |
| /* Prefetch two packet buffers ahead, we will need it soon. */ |
| page_info = &rx->data.page_info[(idx + 2) & rx->mask]; |
| va = page_info->page_address + page_info->page_offset; |
| |
| prefetch(page_info->page); /* Kernel page struct. */ |
| prefetch(va); /* Packet header. */ |
| prefetch(va + 64); /* Next cacheline too. */ |
| |
| len = gve_rx_get_fragment_size(ctx, desc); |
| |
| page_info = &rx->data.page_info[idx]; |
| data_slot = &rx->data.data_ring[idx]; |
| page_bus = rx->data.raw_addressing ? |
| be64_to_cpu(data_slot->addr) - page_info->page_offset : |
| rx->data.qpl->page_buses[idx]; |
| dma_sync_single_for_cpu(&priv->pdev->dev, page_bus, PAGE_SIZE, DMA_FROM_DEVICE); |
| |
| skb = gve_rx_skb(priv, rx, page_info, napi, len, data_slot); |
| if (!skb) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_skb_alloc_fail++; |
| u64_stats_update_end(&rx->statss); |
| goto skb_alloc_fail; |
| } |
| |
| ctx->curr_frag_cnt++; |
| rx->cnt++; |
| idx = rx->cnt & rx->mask; |
| work_cnt++; |
| desc = &rx->desc.desc_ring[idx]; |
| } |
| |
| if (likely(feat & NETIF_F_RXCSUM)) { |
| /* NIC passes up the partial sum */ |
| if (first_desc->csum) |
| skb->ip_summed = CHECKSUM_COMPLETE; |
| else |
| skb->ip_summed = CHECKSUM_NONE; |
| skb->csum = csum_unfold(first_desc->csum); |
| } |
| |
| /* parse flags & pass relevant info up */ |
| if (likely(feat & NETIF_F_RXHASH) && |
| gve_needs_rss(first_desc->flags_seq)) |
| skb_set_hash(skb, be32_to_cpu(first_desc->rss_hash), |
| gve_rss_type(first_desc->flags_seq)); |
| |
| *packet_size_bytes = skb->len + (skb->protocol ? ETH_HLEN : 0); |
| *work_done = work_cnt; |
| if (skb_is_nonlinear(skb)) |
| napi_gro_frags(napi); |
| else |
| napi_gro_receive(napi, skb); |
| |
| gve_rx_ctx_clear(ctx); |
| return true; |
| |
| skb_alloc_fail: |
| if (napi->skb) |
| napi_free_frags(napi); |
| *packet_size_bytes = 0; |
| *work_done = ctx->expected_frag_cnt; |
| while (ctx->curr_frag_cnt < ctx->expected_frag_cnt) { |
| rx->cnt++; |
| ctx->curr_frag_cnt++; |
| } |
| gve_rx_ctx_clear(ctx); |
| return false; |
| } |
| |
| bool gve_rx_work_pending(struct gve_rx_ring *rx) |
| { |
| struct gve_rx_desc *desc; |
| __be16 flags_seq; |
| u32 next_idx; |
| |
| next_idx = rx->cnt & rx->mask; |
| desc = rx->desc.desc_ring + next_idx; |
| |
| flags_seq = desc->flags_seq; |
| |
| return (GVE_SEQNO(flags_seq) == rx->desc.seqno); |
| } |
| |
| static bool gve_rx_refill_buffers(struct gve_priv *priv, struct gve_rx_ring *rx) |
| { |
| int refill_target = rx->mask + 1; |
| u32 fill_cnt = rx->fill_cnt; |
| |
| while (fill_cnt - rx->cnt < refill_target) { |
| struct gve_rx_slot_page_info *page_info; |
| u32 idx = fill_cnt & rx->mask; |
| |
| page_info = &rx->data.page_info[idx]; |
| if (page_info->can_flip) { |
| /* The other half of the page is free because it was |
| * free when we processed the descriptor. Flip to it. |
| */ |
| union gve_rx_data_slot *data_slot = |
| &rx->data.data_ring[idx]; |
| |
| gve_rx_flip_buff(page_info, &data_slot->addr); |
| page_info->can_flip = 0; |
| } else { |
| /* It is possible that the networking stack has already |
| * finished processing all outstanding packets in the buffer |
| * and it can be reused. |
| * Flipping is unnecessary here - if the networking stack still |
| * owns half the page it is impossible to tell which half. Either |
| * the whole page is free or it needs to be replaced. |
| */ |
| int recycle = gve_rx_can_recycle_buffer(page_info); |
| |
| if (recycle < 0) { |
| if (!rx->data.raw_addressing) |
| gve_schedule_reset(priv); |
| return false; |
| } |
| if (!recycle) { |
| /* We can't reuse the buffer - alloc a new one*/ |
| union gve_rx_data_slot *data_slot = |
| &rx->data.data_ring[idx]; |
| struct device *dev = &priv->pdev->dev; |
| gve_rx_free_buffer(dev, page_info, data_slot); |
| page_info->page = NULL; |
| if (gve_rx_alloc_buffer(priv, dev, page_info, |
| data_slot)) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rx_buf_alloc_fail++; |
| u64_stats_update_end(&rx->statss); |
| break; |
| } |
| } |
| } |
| fill_cnt++; |
| } |
| rx->fill_cnt = fill_cnt; |
| return true; |
| } |
| |
| static int gve_clean_rx_done(struct gve_rx_ring *rx, int budget, |
| netdev_features_t feat) |
| { |
| u32 work_done = 0, total_packet_cnt = 0, ok_packet_cnt = 0; |
| struct gve_priv *priv = rx->gve; |
| u32 idx = rx->cnt & rx->mask; |
| struct gve_rx_desc *desc; |
| u64 bytes = 0; |
| |
| desc = &rx->desc.desc_ring[idx]; |
| while ((GVE_SEQNO(desc->flags_seq) == rx->desc.seqno) && |
| work_done < budget) { |
| u64 packet_size_bytes = 0; |
| u32 work_cnt = 0; |
| bool dropped; |
| |
| netif_info(priv, rx_status, priv->dev, |
| "[%d] idx=%d desc=%p desc->flags_seq=0x%x\n", |
| rx->q_num, idx, desc, desc->flags_seq); |
| netif_info(priv, rx_status, priv->dev, |
| "[%d] seqno=%d rx->desc.seqno=%d\n", |
| rx->q_num, GVE_SEQNO(desc->flags_seq), |
| rx->desc.seqno); |
| |
| dropped = !gve_rx(rx, feat, &packet_size_bytes, &work_cnt); |
| if (!dropped) { |
| bytes += packet_size_bytes; |
| ok_packet_cnt++; |
| } |
| total_packet_cnt++; |
| idx = rx->cnt & rx->mask; |
| desc = &rx->desc.desc_ring[idx]; |
| work_done += work_cnt; |
| } |
| |
| if (!work_done && rx->fill_cnt - rx->cnt > rx->db_threshold) |
| return 0; |
| |
| if (work_done) { |
| u64_stats_update_begin(&rx->statss); |
| rx->rpackets += ok_packet_cnt; |
| rx->rbytes += bytes; |
| u64_stats_update_end(&rx->statss); |
| } |
| |
| /* restock ring slots */ |
| if (!rx->data.raw_addressing) { |
| /* In QPL mode buffs are refilled as the desc are processed */ |
| rx->fill_cnt += work_done; |
| } else if (rx->fill_cnt - rx->cnt <= rx->db_threshold) { |
| /* In raw addressing mode buffs are only refilled if the avail |
| * falls below a threshold. |
| */ |
| if (!gve_rx_refill_buffers(priv, rx)) |
| return 0; |
| |
| /* If we were not able to completely refill buffers, we'll want |
| * to schedule this queue for work again to refill buffers. |
| */ |
| if (rx->fill_cnt - rx->cnt <= rx->db_threshold) { |
| gve_rx_write_doorbell(priv, rx); |
| return budget; |
| } |
| } |
| |
| gve_rx_write_doorbell(priv, rx); |
| return total_packet_cnt; |
| } |
| |
| int gve_rx_poll(struct gve_notify_block *block, int budget) |
| { |
| struct gve_rx_ring *rx = block->rx; |
| netdev_features_t feat; |
| int work_done = 0; |
| |
| feat = block->napi.dev->features; |
| |
| /* If budget is 0, do all the work */ |
| if (budget == 0) |
| budget = INT_MAX; |
| |
| if (budget > 0) |
| work_done = gve_clean_rx_done(rx, budget, feat); |
| |
| return work_done; |
| } |