blob: cd739a2c64e851cd702a410bb5becb6e8029836b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice_common.h"
/**
* ice_aq_read_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be read (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @read_shadow_ram: tell if this is a shadow RAM read
* @cd: pointer to command details structure or NULL
*
* Read the NVM using the admin queue commands (0x0701)
*/
static int
ice_aq_read_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset, u16 length,
void *data, bool last_command, bool read_shadow_ram,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
cmd = &desc.params.nvm;
if (offset > ICE_AQC_NVM_MAX_OFFSET)
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_read);
if (!read_shadow_ram && module_typeid == ICE_AQC_NVM_START_POINT)
cmd->cmd_flags |= ICE_AQC_NVM_FLASH_ONLY;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = cpu_to_le16(module_typeid);
cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = cpu_to_le16(length);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_read_flat_nvm - Read portion of NVM by flat offset
* @hw: pointer to the HW struct
* @offset: offset from beginning of NVM
* @length: (in) number of bytes to read; (out) number of bytes actually read
* @data: buffer to return data in (sized to fit the specified length)
* @read_shadow_ram: if true, read from shadow RAM instead of NVM
*
* Reads a portion of the NVM, as a flat memory space. This function correctly
* breaks read requests across Shadow RAM sectors and ensures that no single
* read request exceeds the maximum 4KB read for a single AdminQ command.
*
* Returns a status code on failure. Note that the data pointer may be
* partially updated if some reads succeed before a failure.
*/
int
ice_read_flat_nvm(struct ice_hw *hw, u32 offset, u32 *length, u8 *data,
bool read_shadow_ram)
{
u32 inlen = *length;
u32 bytes_read = 0;
bool last_cmd;
int status;
*length = 0;
/* Verify the length of the read if this is for the Shadow RAM */
if (read_shadow_ram && ((offset + inlen) > (hw->flash.sr_words * 2u))) {
ice_debug(hw, ICE_DBG_NVM, "NVM error: requested offset is beyond Shadow RAM limit\n");
return -EINVAL;
}
do {
u32 read_size, sector_offset;
/* ice_aq_read_nvm cannot read more than 4KB at a time.
* Additionally, a read from the Shadow RAM may not cross over
* a sector boundary. Conveniently, the sector size is also
* 4KB.
*/
sector_offset = offset % ICE_AQ_MAX_BUF_LEN;
read_size = min_t(u32, ICE_AQ_MAX_BUF_LEN - sector_offset,
inlen - bytes_read);
last_cmd = !(bytes_read + read_size < inlen);
status = ice_aq_read_nvm(hw, ICE_AQC_NVM_START_POINT,
offset, read_size,
data + bytes_read, last_cmd,
read_shadow_ram, NULL);
if (status)
break;
bytes_read += read_size;
offset += read_size;
} while (!last_cmd);
*length = bytes_read;
return status;
}
/**
* ice_aq_update_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @offset: byte offset from the module beginning
* @length: length of the section to be written (in bytes from the offset)
* @data: command buffer (size [bytes] = length)
* @last_command: tells if this is the last command in a series
* @command_flags: command parameters
* @cd: pointer to command details structure or NULL
*
* Update the NVM using the admin queue commands (0x0703)
*/
int
ice_aq_update_nvm(struct ice_hw *hw, u16 module_typeid, u32 offset,
u16 length, void *data, bool last_command, u8 command_flags,
struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
cmd = &desc.params.nvm;
/* In offset the highest byte must be zeroed. */
if (offset & 0xFF000000)
return -EINVAL;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write);
cmd->cmd_flags |= command_flags;
/* If this is the last command in a series, set the proper flag. */
if (last_command)
cmd->cmd_flags |= ICE_AQC_NVM_LAST_CMD;
cmd->module_typeid = cpu_to_le16(module_typeid);
cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
cmd->offset_high = (offset >> 16) & 0xFF;
cmd->length = cpu_to_le16(length);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/**
* ice_aq_erase_nvm
* @hw: pointer to the HW struct
* @module_typeid: module pointer location in words from the NVM beginning
* @cd: pointer to command details structure or NULL
*
* Erase the NVM sector using the admin queue commands (0x0702)
*/
int ice_aq_erase_nvm(struct ice_hw *hw, u16 module_typeid, struct ice_sq_cd *cd)
{
struct ice_aq_desc desc;
struct ice_aqc_nvm *cmd;
cmd = &desc.params.nvm;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_erase);
cmd->module_typeid = cpu_to_le16(module_typeid);
cmd->length = cpu_to_le16(ICE_AQC_NVM_ERASE_LEN);
cmd->offset_low = 0;
cmd->offset_high = 0;
return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
}
/**
* ice_read_sr_word_aq - Reads Shadow RAM via AQ
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using ice_read_flat_nvm.
*/
static int ice_read_sr_word_aq(struct ice_hw *hw, u16 offset, u16 *data)
{
u32 bytes = sizeof(u16);
__le16 data_local;
int status;
/* Note that ice_read_flat_nvm takes into account the 4Kb AdminQ and
* Shadow RAM sector restrictions necessary when reading from the NVM.
*/
status = ice_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
(__force u8 *)&data_local, true);
if (status)
return status;
*data = le16_to_cpu(data_local);
return 0;
}
/**
* ice_acquire_nvm - Generic request for acquiring the NVM ownership
* @hw: pointer to the HW structure
* @access: NVM access type (read or write)
*
* This function will request NVM ownership.
*/
int ice_acquire_nvm(struct ice_hw *hw, enum ice_aq_res_access_type access)
{
if (hw->flash.blank_nvm_mode)
return 0;
return ice_acquire_res(hw, ICE_NVM_RES_ID, access, ICE_NVM_TIMEOUT);
}
/**
* ice_release_nvm - Generic request for releasing the NVM ownership
* @hw: pointer to the HW structure
*
* This function will release NVM ownership.
*/
void ice_release_nvm(struct ice_hw *hw)
{
if (hw->flash.blank_nvm_mode)
return;
ice_release_res(hw, ICE_NVM_RES_ID);
}
/**
* ice_get_flash_bank_offset - Get offset into requested flash bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive flash bank
* @module: the module to read from
*
* Based on the module, lookup the module offset from the beginning of the
* flash.
*
* Returns the flash offset. Note that a value of zero is invalid and must be
* treated as an error.
*/
static u32 ice_get_flash_bank_offset(struct ice_hw *hw, enum ice_bank_select bank, u16 module)
{
struct ice_bank_info *banks = &hw->flash.banks;
enum ice_flash_bank active_bank;
bool second_bank_active;
u32 offset, size;
switch (module) {
case ICE_SR_1ST_NVM_BANK_PTR:
offset = banks->nvm_ptr;
size = banks->nvm_size;
active_bank = banks->nvm_bank;
break;
case ICE_SR_1ST_OROM_BANK_PTR:
offset = banks->orom_ptr;
size = banks->orom_size;
active_bank = banks->orom_bank;
break;
case ICE_SR_NETLIST_BANK_PTR:
offset = banks->netlist_ptr;
size = banks->netlist_size;
active_bank = banks->netlist_bank;
break;
default:
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash module: 0x%04x\n", module);
return 0;
}
switch (active_bank) {
case ICE_1ST_FLASH_BANK:
second_bank_active = false;
break;
case ICE_2ND_FLASH_BANK:
second_bank_active = true;
break;
default:
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for active flash bank: %u\n",
active_bank);
return 0;
}
/* The second flash bank is stored immediately following the first
* bank. Based on whether the 1st or 2nd bank is active, and whether
* we want the active or inactive bank, calculate the desired offset.
*/
switch (bank) {
case ICE_ACTIVE_FLASH_BANK:
return offset + (second_bank_active ? size : 0);
case ICE_INACTIVE_FLASH_BANK:
return offset + (second_bank_active ? 0 : size);
}
ice_debug(hw, ICE_DBG_NVM, "Unexpected value for flash bank selection: %u\n", bank);
return 0;
}
/**
* ice_read_flash_module - Read a word from one of the main NVM modules
* @hw: pointer to the HW structure
* @bank: which bank of the module to read
* @module: the module to read
* @offset: the offset into the module in bytes
* @data: storage for the word read from the flash
* @length: bytes of data to read
*
* Read data from the specified flash module. The bank parameter indicates
* whether or not to read from the active bank or the inactive bank of that
* module.
*
* The word will be read using flat NVM access, and relies on the
* hw->flash.banks data being setup by ice_determine_active_flash_banks()
* during initialization.
*/
static int
ice_read_flash_module(struct ice_hw *hw, enum ice_bank_select bank, u16 module,
u32 offset, u8 *data, u32 length)
{
int status;
u32 start;
start = ice_get_flash_bank_offset(hw, bank, module);
if (!start) {
ice_debug(hw, ICE_DBG_NVM, "Unable to calculate flash bank offset for module 0x%04x\n",
module);
return -EINVAL;
}
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
status = ice_read_flat_nvm(hw, start + offset, &length, data, false);
ice_release_nvm(hw);
return status;
}
/**
* ice_read_nvm_module - Read from the active main NVM module
* @hw: pointer to the HW structure
* @bank: whether to read from active or inactive NVM module
* @offset: offset into the NVM module to read, in words
* @data: storage for returned word value
*
* Read the specified word from the active NVM module. This includes the CSS
* header at the start of the NVM module.
*/
static int
ice_read_nvm_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
__le16 data_local;
int status;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_NVM_BANK_PTR, offset * sizeof(u16),
(__force u8 *)&data_local, sizeof(u16));
if (!status)
*data = le16_to_cpu(data_local);
return status;
}
/**
* ice_read_nvm_sr_copy - Read a word from the Shadow RAM copy in the NVM bank
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive NVM module
* @offset: offset into the Shadow RAM copy to read, in words
* @data: storage for returned word value
*
* Read the specified word from the copy of the Shadow RAM found in the
* specified NVM module.
*/
static int
ice_read_nvm_sr_copy(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
return ice_read_nvm_module(hw, bank, ICE_NVM_SR_COPY_WORD_OFFSET + offset, data);
}
/**
* ice_read_netlist_module - Read data from the netlist module area
* @hw: pointer to the HW structure
* @bank: whether to read from the active or inactive module
* @offset: offset into the netlist to read from
* @data: storage for returned word value
*
* Read a word from the specified netlist bank.
*/
static int
ice_read_netlist_module(struct ice_hw *hw, enum ice_bank_select bank, u32 offset, u16 *data)
{
__le16 data_local;
int status;
status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR, offset * sizeof(u16),
(__force u8 *)&data_local, sizeof(u16));
if (!status)
*data = le16_to_cpu(data_local);
return status;
}
/**
* ice_read_sr_word - Reads Shadow RAM word and acquire NVM if necessary
* @hw: pointer to the HW structure
* @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
* @data: word read from the Shadow RAM
*
* Reads one 16 bit word from the Shadow RAM using the ice_read_sr_word_aq.
*/
int ice_read_sr_word(struct ice_hw *hw, u16 offset, u16 *data)
{
int status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (!status) {
status = ice_read_sr_word_aq(hw, offset, data);
ice_release_nvm(hw);
}
return status;
}
/**
* ice_get_pfa_module_tlv - Reads sub module TLV from NVM PFA
* @hw: pointer to hardware structure
* @module_tlv: pointer to module TLV to return
* @module_tlv_len: pointer to module TLV length to return
* @module_type: module type requested
*
* Finds the requested sub module TLV type from the Preserved Field
* Area (PFA) and returns the TLV pointer and length. The caller can
* use these to read the variable length TLV value.
*/
int
ice_get_pfa_module_tlv(struct ice_hw *hw, u16 *module_tlv, u16 *module_tlv_len,
u16 module_type)
{
u16 pfa_len, pfa_ptr;
u16 next_tlv;
int status;
status = ice_read_sr_word(hw, ICE_SR_PFA_PTR, &pfa_ptr);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Preserved Field Array pointer.\n");
return status;
}
status = ice_read_sr_word(hw, pfa_ptr, &pfa_len);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PFA length.\n");
return status;
}
/* Starting with first TLV after PFA length, iterate through the list
* of TLVs to find the requested one.
*/
next_tlv = pfa_ptr + 1;
while (next_tlv < pfa_ptr + pfa_len) {
u16 tlv_sub_module_type;
u16 tlv_len;
/* Read TLV type */
status = ice_read_sr_word(hw, next_tlv, &tlv_sub_module_type);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV type.\n");
break;
}
/* Read TLV length */
status = ice_read_sr_word(hw, next_tlv + 1, &tlv_len);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read TLV length.\n");
break;
}
if (tlv_sub_module_type == module_type) {
if (tlv_len) {
*module_tlv = next_tlv;
*module_tlv_len = tlv_len;
return 0;
}
return -EINVAL;
}
/* Check next TLV, i.e. current TLV pointer + length + 2 words
* (for current TLV's type and length)
*/
next_tlv = next_tlv + tlv_len + 2;
}
/* Module does not exist */
return -ENOENT;
}
/**
* ice_read_pba_string - Reads part number string from NVM
* @hw: pointer to hardware structure
* @pba_num: stores the part number string from the NVM
* @pba_num_size: part number string buffer length
*
* Reads the part number string from the NVM.
*/
int ice_read_pba_string(struct ice_hw *hw, u8 *pba_num, u32 pba_num_size)
{
u16 pba_tlv, pba_tlv_len;
u16 pba_word, pba_size;
int status;
u16 i;
status = ice_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
ICE_SR_PBA_BLOCK_PTR);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block TLV.\n");
return status;
}
/* pba_size is the next word */
status = ice_read_sr_word(hw, (pba_tlv + 2), &pba_size);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Section size.\n");
return status;
}
if (pba_tlv_len < pba_size) {
ice_debug(hw, ICE_DBG_INIT, "Invalid PBA Block TLV size.\n");
return -EINVAL;
}
/* Subtract one to get PBA word count (PBA Size word is included in
* total size)
*/
pba_size--;
if (pba_num_size < (((u32)pba_size * 2) + 1)) {
ice_debug(hw, ICE_DBG_INIT, "Buffer too small for PBA data.\n");
return -EINVAL;
}
for (i = 0; i < pba_size; i++) {
status = ice_read_sr_word(hw, (pba_tlv + 2 + 1) + i, &pba_word);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read PBA Block word %d.\n", i);
return status;
}
pba_num[(i * 2)] = (pba_word >> 8) & 0xFF;
pba_num[(i * 2) + 1] = pba_word & 0xFF;
}
pba_num[(pba_size * 2)] = '\0';
return status;
}
/**
* ice_get_nvm_ver_info - Read NVM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @nvm: pointer to NVM info structure
*
* Read the NVM EETRACK ID and map version of the main NVM image bank, filling
* in the NVM info structure.
*/
static int
ice_get_nvm_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_nvm_info *nvm)
{
u16 eetrack_lo, eetrack_hi, ver;
int status;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_DEV_STARTER_VER, &ver);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read DEV starter version.\n");
return status;
}
nvm->major = (ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
nvm->minor = (ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_LO, &eetrack_lo);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK lo.\n");
return status;
}
status = ice_read_nvm_sr_copy(hw, bank, ICE_SR_NVM_EETRACK_HI, &eetrack_hi);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read EETRACK hi.\n");
return status;
}
nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
return 0;
}
/**
* ice_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
* @hw: pointer to the HW structure
* @nvm: storage for Option ROM version information
*
* Reads the NVM EETRACK ID, Map version, and security revision of the
* inactive NVM bank. Used to access version data for a pending update that
* has not yet been activated.
*/
int ice_get_inactive_nvm_ver(struct ice_hw *hw, struct ice_nvm_info *nvm)
{
return ice_get_nvm_ver_info(hw, ICE_INACTIVE_FLASH_BANK, nvm);
}
/**
* ice_get_orom_civd_data - Get the combo version information from Option ROM
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @civd: storage for the Option ROM CIVD data.
*
* Searches through the Option ROM flash contents to locate the CIVD data for
* the image.
*/
static int
ice_get_orom_civd_data(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_orom_civd_info *civd)
{
u8 *orom_data;
int status;
u32 offset;
/* The CIVD section is located in the Option ROM aligned to 512 bytes.
* The first 4 bytes must contain the ASCII characters "$CIV".
* A simple modulo 256 sum of all of the bytes of the structure must
* equal 0.
*
* The exact location is unknown and varies between images but is
* usually somewhere in the middle of the bank. We need to scan the
* Option ROM bank to locate it.
*
* It's significantly faster to read the entire Option ROM up front
* using the maximum page size, than to read each possible location
* with a separate firmware command.
*/
orom_data = vzalloc(hw->flash.banks.orom_size);
if (!orom_data)
return -ENOMEM;
status = ice_read_flash_module(hw, bank, ICE_SR_1ST_OROM_BANK_PTR, 0,
orom_data, hw->flash.banks.orom_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Unable to read Option ROM data\n");
return status;
}
/* Scan the memory buffer to locate the CIVD data section */
for (offset = 0; (offset + 512) <= hw->flash.banks.orom_size; offset += 512) {
struct ice_orom_civd_info *tmp;
u8 sum = 0, i;
tmp = (struct ice_orom_civd_info *)&orom_data[offset];
/* Skip forward until we find a matching signature */
if (memcmp("$CIV", tmp->signature, sizeof(tmp->signature)) != 0)
continue;
ice_debug(hw, ICE_DBG_NVM, "Found CIVD section at offset %u\n",
offset);
/* Verify that the simple checksum is zero */
for (i = 0; i < sizeof(*tmp); i++)
/* cppcheck-suppress objectIndex */
sum += ((u8 *)tmp)[i];
if (sum) {
ice_debug(hw, ICE_DBG_NVM, "Found CIVD data with invalid checksum of %u\n",
sum);
goto err_invalid_checksum;
}
*civd = *tmp;
vfree(orom_data);
return 0;
}
ice_debug(hw, ICE_DBG_NVM, "Unable to locate CIVD data within the Option ROM\n");
err_invalid_checksum:
vfree(orom_data);
return -EIO;
}
/**
* ice_get_orom_ver_info - Read Option ROM version information
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash module
* @orom: pointer to Option ROM info structure
*
* Read Option ROM version and security revision from the Option ROM flash
* section.
*/
static int
ice_get_orom_ver_info(struct ice_hw *hw, enum ice_bank_select bank, struct ice_orom_info *orom)
{
struct ice_orom_civd_info civd;
u32 combo_ver;
int status;
status = ice_get_orom_civd_data(hw, bank, &civd);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to locate valid Option ROM CIVD data\n");
return status;
}
combo_ver = le32_to_cpu(civd.combo_ver);
orom->major = (u8)((combo_ver & ICE_OROM_VER_MASK) >> ICE_OROM_VER_SHIFT);
orom->patch = (u8)(combo_ver & ICE_OROM_VER_PATCH_MASK);
orom->build = (u16)((combo_ver & ICE_OROM_VER_BUILD_MASK) >> ICE_OROM_VER_BUILD_SHIFT);
return 0;
}
/**
* ice_get_inactive_orom_ver - Read Option ROM version from the inactive bank
* @hw: pointer to the HW structure
* @orom: storage for Option ROM version information
*
* Reads the Option ROM version and security revision data for the inactive
* section of flash. Used to access version data for a pending update that has
* not yet been activated.
*/
int ice_get_inactive_orom_ver(struct ice_hw *hw, struct ice_orom_info *orom)
{
return ice_get_orom_ver_info(hw, ICE_INACTIVE_FLASH_BANK, orom);
}
/**
* ice_get_netlist_info
* @hw: pointer to the HW struct
* @bank: whether to read from the active or inactive flash bank
* @netlist: pointer to netlist version info structure
*
* Get the netlist version information from the requested bank. Reads the Link
* Topology section to find the Netlist ID block and extract the relevant
* information into the netlist version structure.
*/
static int
ice_get_netlist_info(struct ice_hw *hw, enum ice_bank_select bank,
struct ice_netlist_info *netlist)
{
u16 module_id, length, node_count, i;
u16 *id_blk;
int status;
status = ice_read_netlist_module(hw, bank, ICE_NETLIST_TYPE_OFFSET, &module_id);
if (status)
return status;
if (module_id != ICE_NETLIST_LINK_TOPO_MOD_ID) {
ice_debug(hw, ICE_DBG_NVM, "Expected netlist module_id ID of 0x%04x, but got 0x%04x\n",
ICE_NETLIST_LINK_TOPO_MOD_ID, module_id);
return -EIO;
}
status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_MODULE_LEN, &length);
if (status)
return status;
/* sanity check that we have at least enough words to store the netlist ID block */
if (length < ICE_NETLIST_ID_BLK_SIZE) {
ice_debug(hw, ICE_DBG_NVM, "Netlist Link Topology module too small. Expected at least %u words, but got %u words.\n",
ICE_NETLIST_ID_BLK_SIZE, length);
return -EIO;
}
status = ice_read_netlist_module(hw, bank, ICE_LINK_TOPO_NODE_COUNT, &node_count);
if (status)
return status;
node_count &= ICE_LINK_TOPO_NODE_COUNT_M;
id_blk = kcalloc(ICE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
if (!id_blk)
return -ENOMEM;
/* Read out the entire Netlist ID Block at once. */
status = ice_read_flash_module(hw, bank, ICE_SR_NETLIST_BANK_PTR,
ICE_NETLIST_ID_BLK_OFFSET(node_count) * sizeof(u16),
(u8 *)id_blk, ICE_NETLIST_ID_BLK_SIZE * sizeof(u16));
if (status)
goto exit_error;
for (i = 0; i < ICE_NETLIST_ID_BLK_SIZE; i++)
id_blk[i] = le16_to_cpu(((__force __le16 *)id_blk)[i]);
netlist->major = id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_MAJOR_VER_LOW];
netlist->minor = id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_MINOR_VER_LOW];
netlist->type = id_blk[ICE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_TYPE_LOW];
netlist->rev = id_blk[ICE_NETLIST_ID_BLK_REV_HIGH] << 16 |
id_blk[ICE_NETLIST_ID_BLK_REV_LOW];
netlist->cust_ver = id_blk[ICE_NETLIST_ID_BLK_CUST_VER];
/* Read the left most 4 bytes of SHA */
netlist->hash = id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
id_blk[ICE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
exit_error:
kfree(id_blk);
return status;
}
/**
* ice_get_inactive_netlist_ver
* @hw: pointer to the HW struct
* @netlist: pointer to netlist version info structure
*
* Read the netlist version data from the inactive netlist bank. Used to
* extract version data of a pending flash update in order to display the
* version data.
*/
int ice_get_inactive_netlist_ver(struct ice_hw *hw, struct ice_netlist_info *netlist)
{
return ice_get_netlist_info(hw, ICE_INACTIVE_FLASH_BANK, netlist);
}
/**
* ice_discover_flash_size - Discover the available flash size.
* @hw: pointer to the HW struct
*
* The device flash could be up to 16MB in size. However, it is possible that
* the actual size is smaller. Use bisection to determine the accessible size
* of flash memory.
*/
static int ice_discover_flash_size(struct ice_hw *hw)
{
u32 min_size = 0, max_size = ICE_AQC_NVM_MAX_OFFSET + 1;
int status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
while ((max_size - min_size) > 1) {
u32 offset = (max_size + min_size) / 2;
u32 len = 1;
u8 data;
status = ice_read_flat_nvm(hw, offset, &len, &data, false);
if (status == -EIO &&
hw->adminq.sq_last_status == ICE_AQ_RC_EINVAL) {
ice_debug(hw, ICE_DBG_NVM, "%s: New upper bound of %u bytes\n",
__func__, offset);
status = 0;
max_size = offset;
} else if (!status) {
ice_debug(hw, ICE_DBG_NVM, "%s: New lower bound of %u bytes\n",
__func__, offset);
min_size = offset;
} else {
/* an unexpected error occurred */
goto err_read_flat_nvm;
}
}
ice_debug(hw, ICE_DBG_NVM, "Predicted flash size is %u bytes\n", max_size);
hw->flash.flash_size = max_size;
err_read_flat_nvm:
ice_release_nvm(hw);
return status;
}
/**
* ice_read_sr_pointer - Read the value of a Shadow RAM pointer word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM word to read
* @pointer: pointer value read from Shadow RAM
*
* Read the given Shadow RAM word, and convert it to a pointer value specified
* in bytes. This function assumes the specified offset is a valid pointer
* word.
*
* Each pointer word specifies whether it is stored in word size or 4KB
* sector size by using the highest bit. The reported pointer value will be in
* bytes, intended for flat NVM reads.
*/
static int ice_read_sr_pointer(struct ice_hw *hw, u16 offset, u32 *pointer)
{
int status;
u16 value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Determine if the pointer is in 4KB or word units */
if (value & ICE_SR_NVM_PTR_4KB_UNITS)
*pointer = (value & ~ICE_SR_NVM_PTR_4KB_UNITS) * 4 * 1024;
else
*pointer = value * 2;
return 0;
}
/**
* ice_read_sr_area_size - Read an area size from a Shadow RAM word
* @hw: pointer to the HW structure
* @offset: the word offset of the Shadow RAM to read
* @size: size value read from the Shadow RAM
*
* Read the given Shadow RAM word, and convert it to an area size value
* specified in bytes. This function assumes the specified offset is a valid
* area size word.
*
* Each area size word is specified in 4KB sector units. This function reports
* the size in bytes, intended for flat NVM reads.
*/
static int ice_read_sr_area_size(struct ice_hw *hw, u16 offset, u32 *size)
{
int status;
u16 value;
status = ice_read_sr_word(hw, offset, &value);
if (status)
return status;
/* Area sizes are always specified in 4KB units */
*size = value * 4 * 1024;
return 0;
}
/**
* ice_determine_active_flash_banks - Discover active bank for each module
* @hw: pointer to the HW struct
*
* Read the Shadow RAM control word and determine which banks are active for
* the NVM, OROM, and Netlist modules. Also read and calculate the associated
* pointer and size. These values are then cached into the ice_flash_info
* structure for later use in order to calculate the correct offset to read
* from the active module.
*/
static int ice_determine_active_flash_banks(struct ice_hw *hw)
{
struct ice_bank_info *banks = &hw->flash.banks;
u16 ctrl_word;
int status;
status = ice_read_sr_word(hw, ICE_SR_NVM_CTRL_WORD, &ctrl_word);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read the Shadow RAM control word\n");
return status;
}
/* Check that the control word indicates validity */
if ((ctrl_word & ICE_SR_CTRL_WORD_1_M) >> ICE_SR_CTRL_WORD_1_S != ICE_SR_CTRL_WORD_VALID) {
ice_debug(hw, ICE_DBG_NVM, "Shadow RAM control word is invalid\n");
return -EIO;
}
if (!(ctrl_word & ICE_SR_CTRL_WORD_NVM_BANK))
banks->nvm_bank = ICE_1ST_FLASH_BANK;
else
banks->nvm_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_OROM_BANK))
banks->orom_bank = ICE_1ST_FLASH_BANK;
else
banks->orom_bank = ICE_2ND_FLASH_BANK;
if (!(ctrl_word & ICE_SR_CTRL_WORD_NETLIST_BANK))
banks->netlist_bank = ICE_1ST_FLASH_BANK;
else
banks->netlist_bank = ICE_2ND_FLASH_BANK;
status = ice_read_sr_pointer(hw, ICE_SR_1ST_NVM_BANK_PTR, &banks->nvm_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NVM_BANK_SIZE, &banks->nvm_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read NVM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_1ST_OROM_BANK_PTR, &banks->orom_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_OROM_BANK_SIZE, &banks->orom_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read OROM bank area size\n");
return status;
}
status = ice_read_sr_pointer(hw, ICE_SR_NETLIST_BANK_PTR, &banks->netlist_ptr);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank pointer\n");
return status;
}
status = ice_read_sr_area_size(hw, ICE_SR_NETLIST_BANK_SIZE, &banks->netlist_size);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to read Netlist bank area size\n");
return status;
}
return 0;
}
/**
* ice_init_nvm - initializes NVM setting
* @hw: pointer to the HW struct
*
* This function reads and populates NVM settings such as Shadow RAM size,
* max_timeout, and blank_nvm_mode
*/
int ice_init_nvm(struct ice_hw *hw)
{
struct ice_flash_info *flash = &hw->flash;
u32 fla, gens_stat;
u8 sr_size;
int status;
/* The SR size is stored regardless of the NVM programming mode
* as the blank mode may be used in the factory line.
*/
gens_stat = rd32(hw, GLNVM_GENS);
sr_size = (gens_stat & GLNVM_GENS_SR_SIZE_M) >> GLNVM_GENS_SR_SIZE_S;
/* Switching to words (sr_size contains power of 2) */
flash->sr_words = BIT(sr_size) * ICE_SR_WORDS_IN_1KB;
/* Check if we are in the normal or blank NVM programming mode */
fla = rd32(hw, GLNVM_FLA);
if (fla & GLNVM_FLA_LOCKED_M) { /* Normal programming mode */
flash->blank_nvm_mode = false;
} else {
/* Blank programming mode */
flash->blank_nvm_mode = true;
ice_debug(hw, ICE_DBG_NVM, "NVM init error: unsupported blank mode.\n");
return -EIO;
}
status = ice_discover_flash_size(hw);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "NVM init error: failed to discover flash size.\n");
return status;
}
status = ice_determine_active_flash_banks(hw);
if (status) {
ice_debug(hw, ICE_DBG_NVM, "Failed to determine active flash banks.\n");
return status;
}
status = ice_get_nvm_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->nvm);
if (status) {
ice_debug(hw, ICE_DBG_INIT, "Failed to read NVM info.\n");
return status;
}
status = ice_get_orom_ver_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->orom);
if (status)
ice_debug(hw, ICE_DBG_INIT, "Failed to read Option ROM info.\n");
/* read the netlist version information */
status = ice_get_netlist_info(hw, ICE_ACTIVE_FLASH_BANK, &flash->netlist);
if (status)
ice_debug(hw, ICE_DBG_INIT, "Failed to read netlist info.\n");
return 0;
}
/**
* ice_nvm_validate_checksum
* @hw: pointer to the HW struct
*
* Verify NVM PFA checksum validity (0x0706)
*/
int ice_nvm_validate_checksum(struct ice_hw *hw)
{
struct ice_aqc_nvm_checksum *cmd;
struct ice_aq_desc desc;
int status;
status = ice_acquire_nvm(hw, ICE_RES_READ);
if (status)
return status;
cmd = &desc.params.nvm_checksum;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_checksum);
cmd->flags = ICE_AQC_NVM_CHECKSUM_VERIFY;
status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
ice_release_nvm(hw);
if (!status)
if (le16_to_cpu(cmd->checksum) != ICE_AQC_NVM_CHECKSUM_CORRECT)
status = -EIO;
return status;
}
/**
* ice_nvm_write_activate
* @hw: pointer to the HW struct
* @cmd_flags: flags for write activate command
* @response_flags: response indicators from firmware
*
* Update the control word with the required banks' validity bits
* and dumps the Shadow RAM to flash (0x0707)
*
* cmd_flags controls which banks to activate, and the preservation level to
* use when activating the NVM bank.
*
* On successful return of the firmware command, the response_flags variable
* is updated with the flags reported by firmware indicating certain status,
* such as whether EMP reset is enabled.
*/
int ice_nvm_write_activate(struct ice_hw *hw, u8 cmd_flags, u8 *response_flags)
{
struct ice_aqc_nvm *cmd;
struct ice_aq_desc desc;
int err;
cmd = &desc.params.nvm;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_write_activate);
cmd->cmd_flags = cmd_flags;
err = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
if (!err && response_flags)
*response_flags = cmd->cmd_flags;
return err;
}
/**
* ice_aq_nvm_update_empr
* @hw: pointer to the HW struct
*
* Update empr (0x0709). This command allows SW to
* request an EMPR to activate new FW.
*/
int ice_aq_nvm_update_empr(struct ice_hw *hw)
{
struct ice_aq_desc desc;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_update_empr);
return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
}
/* ice_nvm_set_pkg_data
* @hw: pointer to the HW struct
* @del_pkg_data_flag: If is set then the current pkg_data store by FW
* is deleted.
* If bit is set to 1, then buffer should be size 0.
* @data: pointer to buffer
* @length: length of the buffer
* @cd: pointer to command details structure or NULL
*
* Set package data (0x070A). This command is equivalent to the reception
* of a PLDM FW Update GetPackageData cmd. This command should be sent
* as part of the NVM update as the first cmd in the flow.
*/
int
ice_nvm_set_pkg_data(struct ice_hw *hw, bool del_pkg_data_flag, u8 *data,
u16 length, struct ice_sq_cd *cd)
{
struct ice_aqc_nvm_pkg_data *cmd;
struct ice_aq_desc desc;
if (length != 0 && !data)
return -EINVAL;
cmd = &desc.params.pkg_data;
ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_nvm_pkg_data);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
if (del_pkg_data_flag)
cmd->cmd_flags |= ICE_AQC_NVM_PKG_DELETE;
return ice_aq_send_cmd(hw, &desc, data, length, cd);
}
/* ice_nvm_pass_component_tbl
* @hw: pointer to the HW struct
* @data: pointer to buffer
* @length: length of the buffer
* @transfer_flag: parameter for determining stage of the update
* @comp_response: a pointer to the response from the 0x070B AQC.
* @comp_response_code: a pointer to the response code from the 0x070B AQC.
* @cd: pointer to command details structure or NULL
*
* Pass component table (0x070B). This command is equivalent to the reception
* of a PLDM FW Update PassComponentTable cmd. This command should be sent once
* per component. It can be only sent after Set Package Data cmd and before
* actual update. FW will assume these commands are going to be sent until
* the TransferFlag is set to End or StartAndEnd.
*/
int
ice_nvm_pass_component_tbl(struct ice_hw *hw, u8 *data, u16 length,
u8 transfer_flag, u8 *comp_response,
u8 *comp_response_code, struct ice_sq_cd *cd)
{
struct ice_aqc_nvm_pass_comp_tbl *cmd;
struct ice_aq_desc desc;
int status;
if (!data || !comp_response || !comp_response_code)
return -EINVAL;
cmd = &desc.params.pass_comp_tbl;
ice_fill_dflt_direct_cmd_desc(&desc,
ice_aqc_opc_nvm_pass_component_tbl);
desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
cmd->transfer_flag = transfer_flag;
status = ice_aq_send_cmd(hw, &desc, data, length, cd);
if (!status) {
*comp_response = cmd->component_response;
*comp_response_code = cmd->component_response_code;
}
return status;
}