blob: b8b5525a389abf0926d94e9c20b5522b63ba06be [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dc_bios_types.h"
#include "dcn10_stream_encoder.h"
#include "reg_helper.h"
#include "hw_shared.h"
#define DC_LOGGER \
enc1->base.ctx->logger
#define REG(reg)\
(enc1->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
enc1->se_shift->field_name, enc1->se_mask->field_name
#define VBI_LINE_0 0
#define DP_BLANK_MAX_RETRY 20
#define HDMI_CLOCK_CHANNEL_RATE_MORE_340M 340000
enum {
DP_MST_UPDATE_MAX_RETRY = 50
};
#define CTX \
enc1->base.ctx
void enc1_update_generic_info_packet(
struct dcn10_stream_encoder *enc1,
uint32_t packet_index,
const struct dc_info_packet *info_packet)
{
uint32_t regval;
/* TODOFPGA Figure out a proper number for max_retries polling for lock
* use 50 for now.
*/
uint32_t max_retries = 50;
/*we need turn on clock before programming AFMT block*/
REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, 1);
if (packet_index >= 8)
ASSERT(0);
/* poll dig_update_lock is not locked -> asic internal signal
* assume otg master lock will unlock it
*/
/* REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_LOCK_STATUS,
0, 10, max_retries);*/
/* check if HW reading GSP memory */
REG_WAIT(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT,
0, 10, max_retries);
/* HW does is not reading GSP memory not reading too long ->
* something wrong. clear GPS memory access and notify?
* hw SW is writing to GSP memory
*/
REG_UPDATE(AFMT_VBI_PACKET_CONTROL, AFMT_GENERIC_CONFLICT_CLR, 1);
/* choose which generic packet to use */
regval = REG_READ(AFMT_VBI_PACKET_CONTROL);
REG_UPDATE(AFMT_VBI_PACKET_CONTROL,
AFMT_GENERIC_INDEX, packet_index);
/* write generic packet header
* (4th byte is for GENERIC0 only)
*/
REG_SET_4(AFMT_GENERIC_HDR, 0,
AFMT_GENERIC_HB0, info_packet->hb0,
AFMT_GENERIC_HB1, info_packet->hb1,
AFMT_GENERIC_HB2, info_packet->hb2,
AFMT_GENERIC_HB3, info_packet->hb3);
/* write generic packet contents
* (we never use last 4 bytes)
* there are 8 (0-7) mmDIG0_AFMT_GENERIC0_x registers
*/
{
const uint32_t *content =
(const uint32_t *) &info_packet->sb[0];
REG_WRITE(AFMT_GENERIC_0, *content++);
REG_WRITE(AFMT_GENERIC_1, *content++);
REG_WRITE(AFMT_GENERIC_2, *content++);
REG_WRITE(AFMT_GENERIC_3, *content++);
REG_WRITE(AFMT_GENERIC_4, *content++);
REG_WRITE(AFMT_GENERIC_5, *content++);
REG_WRITE(AFMT_GENERIC_6, *content++);
REG_WRITE(AFMT_GENERIC_7, *content);
}
switch (packet_index) {
case 0:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC0_FRAME_UPDATE, 1);
break;
case 1:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC1_FRAME_UPDATE, 1);
break;
case 2:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC2_FRAME_UPDATE, 1);
break;
case 3:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC3_FRAME_UPDATE, 1);
break;
case 4:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC4_FRAME_UPDATE, 1);
break;
case 5:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC5_FRAME_UPDATE, 1);
break;
case 6:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC6_FRAME_UPDATE, 1);
break;
case 7:
REG_UPDATE(AFMT_VBI_PACKET_CONTROL1,
AFMT_GENERIC7_FRAME_UPDATE, 1);
break;
default:
break;
}
}
static void enc1_update_hdmi_info_packet(
struct dcn10_stream_encoder *enc1,
uint32_t packet_index,
const struct dc_info_packet *info_packet)
{
uint32_t cont, send, line;
if (info_packet->valid) {
enc1_update_generic_info_packet(
enc1,
packet_index,
info_packet);
/* enable transmission of packet(s) -
* packet transmission begins on the next frame
*/
cont = 1;
/* send packet(s) every frame */
send = 1;
/* select line number to send packets on */
line = 2;
} else {
cont = 0;
send = 0;
line = 0;
}
/* choose which generic packet control to use */
switch (packet_index) {
case 0:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC0_CONT, cont,
HDMI_GENERIC0_SEND, send,
HDMI_GENERIC0_LINE, line);
break;
case 1:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL0,
HDMI_GENERIC1_CONT, cont,
HDMI_GENERIC1_SEND, send,
HDMI_GENERIC1_LINE, line);
break;
case 2:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL1,
HDMI_GENERIC0_CONT, cont,
HDMI_GENERIC0_SEND, send,
HDMI_GENERIC0_LINE, line);
break;
case 3:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL1,
HDMI_GENERIC1_CONT, cont,
HDMI_GENERIC1_SEND, send,
HDMI_GENERIC1_LINE, line);
break;
case 4:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL2,
HDMI_GENERIC0_CONT, cont,
HDMI_GENERIC0_SEND, send,
HDMI_GENERIC0_LINE, line);
break;
case 5:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL2,
HDMI_GENERIC1_CONT, cont,
HDMI_GENERIC1_SEND, send,
HDMI_GENERIC1_LINE, line);
break;
case 6:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL3,
HDMI_GENERIC0_CONT, cont,
HDMI_GENERIC0_SEND, send,
HDMI_GENERIC0_LINE, line);
break;
case 7:
REG_UPDATE_3(HDMI_GENERIC_PACKET_CONTROL3,
HDMI_GENERIC1_CONT, cont,
HDMI_GENERIC1_SEND, send,
HDMI_GENERIC1_LINE, line);
break;
default:
/* invalid HW packet index */
DC_LOG_WARNING(
"Invalid HW packet index: %s()\n",
__func__);
return;
}
}
/* setup stream encoder in dp mode */
void enc1_stream_encoder_dp_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
enum dc_color_space output_color_space)
{
uint32_t h_active_start;
uint32_t v_active_start;
uint32_t misc0 = 0;
uint32_t misc1 = 0;
uint32_t h_blank;
uint32_t h_back_porch;
uint8_t synchronous_clock = 0; /* asynchronous mode */
uint8_t colorimetry_bpc;
uint8_t dynamic_range_rgb = 0; /*full range*/
uint8_t dynamic_range_ycbcr = 1; /*bt709*/
uint8_t dp_pixel_encoding = 0;
uint8_t dp_component_depth = 0;
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* set pixel encoding */
switch (crtc_timing->pixel_encoding) {
case PIXEL_ENCODING_YCBCR422:
dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR422;
break;
case PIXEL_ENCODING_YCBCR444:
dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR444;
if (crtc_timing->flags.Y_ONLY)
if (crtc_timing->display_color_depth != COLOR_DEPTH_666)
/* HW testing only, no use case yet.
* Color depth of Y-only could be
* 8, 10, 12, 16 bits
*/
dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_Y_ONLY;
/* Note: DP_MSA_MISC1 bit 7 is the indicator
* of Y-only mode.
* This bit is set in HW if register
* DP_PIXEL_ENCODING is programmed to 0x4
*/
break;
case PIXEL_ENCODING_YCBCR420:
dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_YCBCR420;
REG_UPDATE(DP_VID_TIMING, DP_VID_N_MUL, 1);
break;
default:
dp_pixel_encoding = DP_PIXEL_ENCODING_TYPE_RGB444;
break;
}
misc1 = REG_READ(DP_MSA_MISC);
/* For YCbCr420 and BT2020 Colorimetry Formats, VSC SDP shall be used.
* When MISC1, bit 6, is Set to 1, a Source device uses a VSC SDP to indicate the
* Pixel Encoding/Colorimetry Format and that a Sink device shall ignore MISC1, bit 7,
* and MISC0, bits 7:1 (MISC1, bit 7, and MISC0, bits 7:1, become "don't care").
*/
if ((crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ||
(output_color_space == COLOR_SPACE_2020_YCBCR) ||
(output_color_space == COLOR_SPACE_2020_RGB_FULLRANGE) ||
(output_color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE))
misc1 = misc1 | 0x40;
else
misc1 = misc1 & ~0x40;
/* set color depth */
switch (crtc_timing->display_color_depth) {
case COLOR_DEPTH_666:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_6BPC;
break;
case COLOR_DEPTH_888:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_8BPC;
break;
case COLOR_DEPTH_101010:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_10BPC;
break;
case COLOR_DEPTH_121212:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_12BPC;
break;
case COLOR_DEPTH_161616:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_16BPC;
break;
default:
dp_component_depth = DP_COMPONENT_PIXEL_DEPTH_6BPC;
break;
}
/* Set DP pixel encoding and component depth */
REG_UPDATE_2(DP_PIXEL_FORMAT,
DP_PIXEL_ENCODING, dp_pixel_encoding,
DP_COMPONENT_DEPTH, dp_component_depth);
/* set dynamic range and YCbCr range */
switch (crtc_timing->display_color_depth) {
case COLOR_DEPTH_666:
colorimetry_bpc = 0;
break;
case COLOR_DEPTH_888:
colorimetry_bpc = 1;
break;
case COLOR_DEPTH_101010:
colorimetry_bpc = 2;
break;
case COLOR_DEPTH_121212:
colorimetry_bpc = 3;
break;
default:
colorimetry_bpc = 0;
break;
}
misc0 = misc0 | synchronous_clock;
misc0 = colorimetry_bpc << 5;
switch (output_color_space) {
case COLOR_SPACE_SRGB:
misc1 = misc1 & ~0x80; /* bit7 = 0*/
dynamic_range_rgb = 0; /*full range*/
break;
case COLOR_SPACE_SRGB_LIMITED:
misc0 = misc0 | 0x8; /* bit3=1 */
misc1 = misc1 & ~0x80; /* bit7 = 0*/
dynamic_range_rgb = 1; /*limited range*/
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
misc0 = misc0 | 0x8; /* bit3=1, bit4=0 */
misc1 = misc1 & ~0x80; /* bit7 = 0*/
dynamic_range_ycbcr = 0; /*bt601*/
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422)
misc0 = misc0 | 0x2; /* bit2=0, bit1=1 */
else if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR444)
misc0 = misc0 | 0x4; /* bit2=1, bit1=0 */
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
misc0 = misc0 | 0x18; /* bit3=1, bit4=1 */
misc1 = misc1 & ~0x80; /* bit7 = 0*/
dynamic_range_ycbcr = 1; /*bt709*/
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422)
misc0 = misc0 | 0x2; /* bit2=0, bit1=1 */
else if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR444)
misc0 = misc0 | 0x4; /* bit2=1, bit1=0 */
break;
case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
dynamic_range_rgb = 1; /*limited range*/
break;
case COLOR_SPACE_2020_RGB_FULLRANGE:
case COLOR_SPACE_2020_YCBCR:
case COLOR_SPACE_XR_RGB:
case COLOR_SPACE_MSREF_SCRGB:
case COLOR_SPACE_ADOBERGB:
case COLOR_SPACE_DCIP3:
case COLOR_SPACE_XV_YCC_709:
case COLOR_SPACE_XV_YCC_601:
case COLOR_SPACE_DISPLAYNATIVE:
case COLOR_SPACE_DOLBYVISION:
case COLOR_SPACE_APPCTRL:
case COLOR_SPACE_CUSTOMPOINTS:
case COLOR_SPACE_UNKNOWN:
/* do nothing */
break;
}
REG_SET(DP_MSA_COLORIMETRY, 0, DP_MSA_MISC0, misc0);
REG_WRITE(DP_MSA_MISC, misc1); /* MSA_MISC1 */
/* dcn new register
* dc_crtc_timing is vesa dmt struct. data from edid
*/
REG_SET_2(DP_MSA_TIMING_PARAM1, 0,
DP_MSA_HTOTAL, crtc_timing->h_total,
DP_MSA_VTOTAL, crtc_timing->v_total);
/* calculate from vesa timing parameters
* h_active_start related to leading edge of sync
*/
h_blank = crtc_timing->h_total - crtc_timing->h_border_left -
crtc_timing->h_addressable - crtc_timing->h_border_right;
h_back_porch = h_blank - crtc_timing->h_front_porch -
crtc_timing->h_sync_width;
/* start at beginning of left border */
h_active_start = crtc_timing->h_sync_width + h_back_porch;
v_active_start = crtc_timing->v_total - crtc_timing->v_border_top -
crtc_timing->v_addressable - crtc_timing->v_border_bottom -
crtc_timing->v_front_porch;
/* start at beginning of left border */
REG_SET_2(DP_MSA_TIMING_PARAM2, 0,
DP_MSA_HSTART, h_active_start,
DP_MSA_VSTART, v_active_start);
REG_SET_4(DP_MSA_TIMING_PARAM3, 0,
DP_MSA_HSYNCWIDTH,
crtc_timing->h_sync_width,
DP_MSA_HSYNCPOLARITY,
!crtc_timing->flags.HSYNC_POSITIVE_POLARITY,
DP_MSA_VSYNCWIDTH,
crtc_timing->v_sync_width,
DP_MSA_VSYNCPOLARITY,
!crtc_timing->flags.VSYNC_POSITIVE_POLARITY);
/* HWDITH include border or overscan */
REG_SET_2(DP_MSA_TIMING_PARAM4, 0,
DP_MSA_HWIDTH, crtc_timing->h_border_left +
crtc_timing->h_addressable + crtc_timing->h_border_right,
DP_MSA_VHEIGHT, crtc_timing->v_border_top +
crtc_timing->v_addressable + crtc_timing->v_border_bottom);
}
static void enc1_stream_encoder_set_stream_attribute_helper(
struct dcn10_stream_encoder *enc1,
struct dc_crtc_timing *crtc_timing)
{
switch (crtc_timing->pixel_encoding) {
case PIXEL_ENCODING_YCBCR422:
REG_UPDATE(DIG_FE_CNTL, TMDS_PIXEL_ENCODING, 1);
break;
default:
REG_UPDATE(DIG_FE_CNTL, TMDS_PIXEL_ENCODING, 0);
break;
}
REG_UPDATE(DIG_FE_CNTL, TMDS_COLOR_FORMAT, 0);
}
/* setup stream encoder in hdmi mode */
void enc1_stream_encoder_hdmi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
int actual_pix_clk_khz,
bool enable_audio)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
struct bp_encoder_control cntl = {0};
cntl.action = ENCODER_CONTROL_SETUP;
cntl.engine_id = enc1->base.id;
cntl.signal = SIGNAL_TYPE_HDMI_TYPE_A;
cntl.enable_dp_audio = enable_audio;
cntl.pixel_clock = actual_pix_clk_khz;
cntl.lanes_number = LANE_COUNT_FOUR;
if (enc1->base.bp->funcs->encoder_control(
enc1->base.bp, &cntl) != BP_RESULT_OK)
return;
enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing);
/* setup HDMI engine */
REG_UPDATE_5(HDMI_CONTROL,
HDMI_PACKET_GEN_VERSION, 1,
HDMI_KEEPOUT_MODE, 1,
HDMI_DEEP_COLOR_ENABLE, 0,
HDMI_DATA_SCRAMBLE_EN, 0,
HDMI_CLOCK_CHANNEL_RATE, 0);
switch (crtc_timing->display_color_depth) {
case COLOR_DEPTH_888:
REG_UPDATE(HDMI_CONTROL, HDMI_DEEP_COLOR_DEPTH, 0);
break;
case COLOR_DEPTH_101010:
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 1,
HDMI_DEEP_COLOR_ENABLE, 0);
} else {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 1,
HDMI_DEEP_COLOR_ENABLE, 1);
}
break;
case COLOR_DEPTH_121212:
if (crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR422) {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 2,
HDMI_DEEP_COLOR_ENABLE, 0);
} else {
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 2,
HDMI_DEEP_COLOR_ENABLE, 1);
}
break;
case COLOR_DEPTH_161616:
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DEEP_COLOR_DEPTH, 3,
HDMI_DEEP_COLOR_ENABLE, 1);
break;
default:
break;
}
if (actual_pix_clk_khz >= HDMI_CLOCK_CHANNEL_RATE_MORE_340M) {
/* enable HDMI data scrambler
* HDMI_CLOCK_CHANNEL_RATE_MORE_340M
* Clock channel frequency is 1/4 of character rate.
*/
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DATA_SCRAMBLE_EN, 1,
HDMI_CLOCK_CHANNEL_RATE, 1);
} else if (crtc_timing->flags.LTE_340MCSC_SCRAMBLE) {
/* TODO: New feature for DCE11, still need to implement */
/* enable HDMI data scrambler
* HDMI_CLOCK_CHANNEL_FREQ_EQUAL_TO_CHAR_RATE
* Clock channel frequency is the same
* as character rate
*/
REG_UPDATE_2(HDMI_CONTROL,
HDMI_DATA_SCRAMBLE_EN, 1,
HDMI_CLOCK_CHANNEL_RATE, 0);
}
REG_UPDATE_3(HDMI_VBI_PACKET_CONTROL,
HDMI_GC_CONT, 1,
HDMI_GC_SEND, 1,
HDMI_NULL_SEND, 1);
/* following belongs to audio */
REG_UPDATE(HDMI_INFOFRAME_CONTROL0, HDMI_AUDIO_INFO_SEND, 1);
REG_UPDATE(AFMT_INFOFRAME_CONTROL0, AFMT_AUDIO_INFO_UPDATE, 1);
REG_UPDATE(HDMI_INFOFRAME_CONTROL1, HDMI_AUDIO_INFO_LINE,
VBI_LINE_0 + 2);
REG_UPDATE(HDMI_GC, HDMI_GC_AVMUTE, 0);
}
/* setup stream encoder in dvi mode */
void enc1_stream_encoder_dvi_set_stream_attribute(
struct stream_encoder *enc,
struct dc_crtc_timing *crtc_timing,
bool is_dual_link)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
struct bp_encoder_control cntl = {0};
cntl.action = ENCODER_CONTROL_SETUP;
cntl.engine_id = enc1->base.id;
cntl.signal = is_dual_link ?
SIGNAL_TYPE_DVI_DUAL_LINK : SIGNAL_TYPE_DVI_SINGLE_LINK;
cntl.enable_dp_audio = false;
cntl.pixel_clock = crtc_timing->pix_clk_khz;
cntl.lanes_number = (is_dual_link) ? LANE_COUNT_EIGHT : LANE_COUNT_FOUR;
if (enc1->base.bp->funcs->encoder_control(
enc1->base.bp, &cntl) != BP_RESULT_OK)
return;
ASSERT(crtc_timing->pixel_encoding == PIXEL_ENCODING_RGB);
ASSERT(crtc_timing->display_color_depth == COLOR_DEPTH_888);
enc1_stream_encoder_set_stream_attribute_helper(enc1, crtc_timing);
}
void enc1_stream_encoder_set_mst_bandwidth(
struct stream_encoder *enc,
struct fixed31_32 avg_time_slots_per_mtp)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t x = dc_fixpt_floor(
avg_time_slots_per_mtp);
uint32_t y = dc_fixpt_ceil(
dc_fixpt_shl(
dc_fixpt_sub_int(
avg_time_slots_per_mtp,
x),
26));
REG_SET_2(DP_MSE_RATE_CNTL, 0,
DP_MSE_RATE_X, x,
DP_MSE_RATE_Y, y);
/* wait for update to be completed on the link */
/* i.e. DP_MSE_RATE_UPDATE_PENDING field (read only) */
/* is reset to 0 (not pending) */
REG_WAIT(DP_MSE_RATE_UPDATE, DP_MSE_RATE_UPDATE_PENDING,
0,
10, DP_MST_UPDATE_MAX_RETRY);
}
static void enc1_stream_encoder_update_hdmi_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* for bring up, disable dp double TODO */
REG_UPDATE(HDMI_DB_CONTROL, HDMI_DB_DISABLE, 1);
enc1_update_hdmi_info_packet(enc1, 0, &info_frame->avi);
enc1_update_hdmi_info_packet(enc1, 1, &info_frame->vendor);
enc1_update_hdmi_info_packet(enc1, 2, &info_frame->gamut);
enc1_update_hdmi_info_packet(enc1, 3, &info_frame->spd);
enc1_update_hdmi_info_packet(enc1, 4, &info_frame->hdrsmd);
}
static void enc1_stream_encoder_stop_hdmi_info_packets(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* stop generic packets 0 & 1 on HDMI */
REG_SET_6(HDMI_GENERIC_PACKET_CONTROL0, 0,
HDMI_GENERIC1_CONT, 0,
HDMI_GENERIC1_LINE, 0,
HDMI_GENERIC1_SEND, 0,
HDMI_GENERIC0_CONT, 0,
HDMI_GENERIC0_LINE, 0,
HDMI_GENERIC0_SEND, 0);
/* stop generic packets 2 & 3 on HDMI */
REG_SET_6(HDMI_GENERIC_PACKET_CONTROL1, 0,
HDMI_GENERIC0_CONT, 0,
HDMI_GENERIC0_LINE, 0,
HDMI_GENERIC0_SEND, 0,
HDMI_GENERIC1_CONT, 0,
HDMI_GENERIC1_LINE, 0,
HDMI_GENERIC1_SEND, 0);
/* stop generic packets 2 & 3 on HDMI */
REG_SET_6(HDMI_GENERIC_PACKET_CONTROL2, 0,
HDMI_GENERIC0_CONT, 0,
HDMI_GENERIC0_LINE, 0,
HDMI_GENERIC0_SEND, 0,
HDMI_GENERIC1_CONT, 0,
HDMI_GENERIC1_LINE, 0,
HDMI_GENERIC1_SEND, 0);
REG_SET_6(HDMI_GENERIC_PACKET_CONTROL3, 0,
HDMI_GENERIC0_CONT, 0,
HDMI_GENERIC0_LINE, 0,
HDMI_GENERIC0_SEND, 0,
HDMI_GENERIC1_CONT, 0,
HDMI_GENERIC1_LINE, 0,
HDMI_GENERIC1_SEND, 0);
}
void enc1_stream_encoder_update_dp_info_packets(
struct stream_encoder *enc,
const struct encoder_info_frame *info_frame)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t value = 0;
if (info_frame->vsc.valid)
enc1_update_generic_info_packet(
enc1,
0, /* packetIndex */
&info_frame->vsc);
if (info_frame->spd.valid)
enc1_update_generic_info_packet(
enc1,
2, /* packetIndex */
&info_frame->spd);
if (info_frame->hdrsmd.valid)
enc1_update_generic_info_packet(
enc1,
3, /* packetIndex */
&info_frame->hdrsmd);
/* enable/disable transmission of packet(s).
* If enabled, packet transmission begins on the next frame
*/
REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP0_ENABLE, info_frame->vsc.valid);
REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP2_ENABLE, info_frame->spd.valid);
REG_UPDATE(DP_SEC_CNTL, DP_SEC_GSP3_ENABLE, info_frame->hdrsmd.valid);
/* This bit is the master enable bit.
* When enabling secondary stream engine,
* this master bit must also be set.
* This register shared with audio info frame.
* Therefore we need to enable master bit
* if at least on of the fields is not 0
*/
value = REG_READ(DP_SEC_CNTL);
if (value)
REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1);
}
void enc1_stream_encoder_stop_dp_info_packets(
struct stream_encoder *enc)
{
/* stop generic packets on DP */
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t value = 0;
REG_SET_10(DP_SEC_CNTL, 0,
DP_SEC_GSP0_ENABLE, 0,
DP_SEC_GSP1_ENABLE, 0,
DP_SEC_GSP2_ENABLE, 0,
DP_SEC_GSP3_ENABLE, 0,
DP_SEC_GSP4_ENABLE, 0,
DP_SEC_GSP5_ENABLE, 0,
DP_SEC_GSP6_ENABLE, 0,
DP_SEC_GSP7_ENABLE, 0,
DP_SEC_MPG_ENABLE, 0,
DP_SEC_STREAM_ENABLE, 0);
/* this register shared with audio info frame.
* therefore we need to keep master enabled
* if at least one of the fields is not 0 */
value = REG_READ(DP_SEC_CNTL);
if (value)
REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1);
}
void enc1_stream_encoder_dp_blank(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t reg1 = 0;
uint32_t max_retries = DP_BLANK_MAX_RETRY * 10;
/* Note: For CZ, we are changing driver default to disable
* stream deferred to next VBLANK. If results are positive, we
* will make the same change to all DCE versions. There are a
* handful of panels that cannot handle disable stream at
* HBLANK and will result in a white line flash across the
* screen on stream disable.
*/
REG_GET(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, &reg1);
if ((reg1 & 0x1) == 0)
/*stream not enabled*/
return;
/* Specify the video stream disable point
* (2 = start of the next vertical blank)
*/
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_DIS_DEFER, 2);
/* Larger delay to wait until VBLANK - use max retry of
* 10us*3000=30ms. This covers 16.6ms of typical 60 Hz mode +
* a little more because we may not trust delay accuracy.
*/
max_retries = DP_BLANK_MAX_RETRY * 150;
/* disable DP stream */
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, 0);
/* the encoder stops sending the video stream
* at the start of the vertical blanking.
* Poll for DP_VID_STREAM_STATUS == 0
*/
REG_WAIT(DP_VID_STREAM_CNTL, DP_VID_STREAM_STATUS,
0,
10, max_retries);
/* Tell the DP encoder to ignore timing from CRTC, must be done after
* the polling. If we set DP_STEER_FIFO_RESET before DP stream blank is
* complete, stream status will be stuck in video stream enabled state,
* i.e. DP_VID_STREAM_STATUS stuck at 1.
*/
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, true);
}
/* output video stream to link encoder */
void enc1_stream_encoder_dp_unblank(
struct stream_encoder *enc,
const struct encoder_unblank_param *param)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (param->link_settings.link_rate != LINK_RATE_UNKNOWN) {
uint32_t n_vid = 0x8000;
uint32_t m_vid;
/* M / N = Fstream / Flink
* m_vid / n_vid = pixel rate / link rate
*/
uint64_t m_vid_l = n_vid;
m_vid_l *= param->pixel_clk_khz;
m_vid_l = div_u64(m_vid_l,
param->link_settings.link_rate
* LINK_RATE_REF_FREQ_IN_KHZ);
m_vid = (uint32_t) m_vid_l;
/* enable auto measurement */
REG_UPDATE(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 0);
/* auto measurement need 1 full 0x8000 symbol cycle to kick in,
* therefore program initial value for Mvid and Nvid
*/
REG_UPDATE(DP_VID_N, DP_VID_N, n_vid);
REG_UPDATE(DP_VID_M, DP_VID_M, m_vid);
REG_UPDATE(DP_VID_TIMING, DP_VID_M_N_GEN_EN, 1);
}
/* set DIG_START to 0x1 to resync FIFO */
REG_UPDATE(DIG_FE_CNTL, DIG_START, 1);
/* switch DP encoder to CRTC data */
REG_UPDATE(DP_STEER_FIFO, DP_STEER_FIFO_RESET, 0);
/* wait 100us for DIG/DP logic to prime
* (i.e. a few video lines)
*/
udelay(100);
/* the hardware would start sending video at the start of the next DP
* frame (i.e. rising edge of the vblank).
* NOTE: We used to program DP_VID_STREAM_DIS_DEFER = 2 here, but this
* register has no effect on enable transition! HW always guarantees
* VID_STREAM enable at start of next frame, and this is not
* programmable
*/
REG_UPDATE(DP_VID_STREAM_CNTL, DP_VID_STREAM_ENABLE, true);
}
void enc1_stream_encoder_set_avmute(
struct stream_encoder *enc,
bool enable)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
unsigned int value = enable ? 1 : 0;
REG_UPDATE(HDMI_GC, HDMI_GC_AVMUTE, value);
}
#define DP_SEC_AUD_N__DP_SEC_AUD_N__DEFAULT 0x8000
#define DP_SEC_TIMESTAMP__DP_SEC_TIMESTAMP_MODE__AUTO_CALC 1
#include "include/audio_types.h"
/**
* speakersToChannels
*
* @brief
* translate speakers to channels
*
* FL - Front Left
* FR - Front Right
* RL - Rear Left
* RR - Rear Right
* RC - Rear Center
* FC - Front Center
* FLC - Front Left Center
* FRC - Front Right Center
* RLC - Rear Left Center
* RRC - Rear Right Center
* LFE - Low Freq Effect
*
* FC
* FLC FRC
* FL FR
*
* LFE
* ()
*
*
* RL RR
* RLC RRC
* RC
*
* ch 8 7 6 5 4 3 2 1
* 0b00000011 - - - - - - FR FL
* 0b00000111 - - - - - LFE FR FL
* 0b00001011 - - - - FC - FR FL
* 0b00001111 - - - - FC LFE FR FL
* 0b00010011 - - - RC - - FR FL
* 0b00010111 - - - RC - LFE FR FL
* 0b00011011 - - - RC FC - FR FL
* 0b00011111 - - - RC FC LFE FR FL
* 0b00110011 - - RR RL - - FR FL
* 0b00110111 - - RR RL - LFE FR FL
* 0b00111011 - - RR RL FC - FR FL
* 0b00111111 - - RR RL FC LFE FR FL
* 0b01110011 - RC RR RL - - FR FL
* 0b01110111 - RC RR RL - LFE FR FL
* 0b01111011 - RC RR RL FC - FR FL
* 0b01111111 - RC RR RL FC LFE FR FL
* 0b11110011 RRC RLC RR RL - - FR FL
* 0b11110111 RRC RLC RR RL - LFE FR FL
* 0b11111011 RRC RLC RR RL FC - FR FL
* 0b11111111 RRC RLC RR RL FC LFE FR FL
* 0b11000011 FRC FLC - - - - FR FL
* 0b11000111 FRC FLC - - - LFE FR FL
* 0b11001011 FRC FLC - - FC - FR FL
* 0b11001111 FRC FLC - - FC LFE FR FL
* 0b11010011 FRC FLC - RC - - FR FL
* 0b11010111 FRC FLC - RC - LFE FR FL
* 0b11011011 FRC FLC - RC FC - FR FL
* 0b11011111 FRC FLC - RC FC LFE FR FL
* 0b11110011 FRC FLC RR RL - - FR FL
* 0b11110111 FRC FLC RR RL - LFE FR FL
* 0b11111011 FRC FLC RR RL FC - FR FL
* 0b11111111 FRC FLC RR RL FC LFE FR FL
*
* @param
* speakers - speaker information as it comes from CEA audio block
*/
/* translate speakers to channels */
union audio_cea_channels {
uint8_t all;
struct audio_cea_channels_bits {
uint32_t FL:1;
uint32_t FR:1;
uint32_t LFE:1;
uint32_t FC:1;
uint32_t RL_RC:1;
uint32_t RR:1;
uint32_t RC_RLC_FLC:1;
uint32_t RRC_FRC:1;
} channels;
};
struct audio_clock_info {
/* pixel clock frequency*/
uint32_t pixel_clock_in_10khz;
/* N - 32KHz audio */
uint32_t n_32khz;
/* CTS - 32KHz audio*/
uint32_t cts_32khz;
uint32_t n_44khz;
uint32_t cts_44khz;
uint32_t n_48khz;
uint32_t cts_48khz;
};
/* 25.2MHz/1.001*/
/* 25.2MHz/1.001*/
/* 25.2MHz*/
/* 27MHz */
/* 27MHz*1.001*/
/* 27MHz*1.001*/
/* 54MHz*/
/* 54MHz*1.001*/
/* 74.25MHz/1.001*/
/* 74.25MHz*/
/* 148.5MHz/1.001*/
/* 148.5MHz*/
static const struct audio_clock_info audio_clock_info_table[16] = {
{2517, 4576, 28125, 7007, 31250, 6864, 28125},
{2518, 4576, 28125, 7007, 31250, 6864, 28125},
{2520, 4096, 25200, 6272, 28000, 6144, 25200},
{2700, 4096, 27000, 6272, 30000, 6144, 27000},
{2702, 4096, 27027, 6272, 30030, 6144, 27027},
{2703, 4096, 27027, 6272, 30030, 6144, 27027},
{5400, 4096, 54000, 6272, 60000, 6144, 54000},
{5405, 4096, 54054, 6272, 60060, 6144, 54054},
{7417, 11648, 210937, 17836, 234375, 11648, 140625},
{7425, 4096, 74250, 6272, 82500, 6144, 74250},
{14835, 11648, 421875, 8918, 234375, 5824, 140625},
{14850, 4096, 148500, 6272, 165000, 6144, 148500},
{29670, 5824, 421875, 4459, 234375, 5824, 281250},
{29700, 3072, 222750, 4704, 247500, 5120, 247500},
{59340, 5824, 843750, 8918, 937500, 5824, 562500},
{59400, 3072, 445500, 9408, 990000, 6144, 594000}
};
static const struct audio_clock_info audio_clock_info_table_36bpc[14] = {
{2517, 9152, 84375, 7007, 48875, 9152, 56250},
{2518, 9152, 84375, 7007, 48875, 9152, 56250},
{2520, 4096, 37800, 6272, 42000, 6144, 37800},
{2700, 4096, 40500, 6272, 45000, 6144, 40500},
{2702, 8192, 81081, 6272, 45045, 8192, 54054},
{2703, 8192, 81081, 6272, 45045, 8192, 54054},
{5400, 4096, 81000, 6272, 90000, 6144, 81000},
{5405, 4096, 81081, 6272, 90090, 6144, 81081},
{7417, 11648, 316406, 17836, 351562, 11648, 210937},
{7425, 4096, 111375, 6272, 123750, 6144, 111375},
{14835, 11648, 632812, 17836, 703125, 11648, 421875},
{14850, 4096, 222750, 6272, 247500, 6144, 222750},
{29670, 5824, 632812, 8918, 703125, 5824, 421875},
{29700, 4096, 445500, 4704, 371250, 5120, 371250}
};
static const struct audio_clock_info audio_clock_info_table_48bpc[14] = {
{2517, 4576, 56250, 7007, 62500, 6864, 56250},
{2518, 4576, 56250, 7007, 62500, 6864, 56250},
{2520, 4096, 50400, 6272, 56000, 6144, 50400},
{2700, 4096, 54000, 6272, 60000, 6144, 54000},
{2702, 4096, 54054, 6267, 60060, 8192, 54054},
{2703, 4096, 54054, 6272, 60060, 8192, 54054},
{5400, 4096, 108000, 6272, 120000, 6144, 108000},
{5405, 4096, 108108, 6272, 120120, 6144, 108108},
{7417, 11648, 421875, 17836, 468750, 11648, 281250},
{7425, 4096, 148500, 6272, 165000, 6144, 148500},
{14835, 11648, 843750, 8918, 468750, 11648, 281250},
{14850, 4096, 297000, 6272, 330000, 6144, 297000},
{29670, 5824, 843750, 4459, 468750, 5824, 562500},
{29700, 3072, 445500, 4704, 495000, 5120, 495000}
};
static union audio_cea_channels speakers_to_channels(
struct audio_speaker_flags speaker_flags)
{
union audio_cea_channels cea_channels = {0};
/* these are one to one */
cea_channels.channels.FL = speaker_flags.FL_FR;
cea_channels.channels.FR = speaker_flags.FL_FR;
cea_channels.channels.LFE = speaker_flags.LFE;
cea_channels.channels.FC = speaker_flags.FC;
/* if Rear Left and Right exist move RC speaker to channel 7
* otherwise to channel 5
*/
if (speaker_flags.RL_RR) {
cea_channels.channels.RL_RC = speaker_flags.RL_RR;
cea_channels.channels.RR = speaker_flags.RL_RR;
cea_channels.channels.RC_RLC_FLC = speaker_flags.RC;
} else {
cea_channels.channels.RL_RC = speaker_flags.RC;
}
/* FRONT Left Right Center and REAR Left Right Center are exclusive */
if (speaker_flags.FLC_FRC) {
cea_channels.channels.RC_RLC_FLC = speaker_flags.FLC_FRC;
cea_channels.channels.RRC_FRC = speaker_flags.FLC_FRC;
} else {
cea_channels.channels.RC_RLC_FLC = speaker_flags.RLC_RRC;
cea_channels.channels.RRC_FRC = speaker_flags.RLC_RRC;
}
return cea_channels;
}
static void get_audio_clock_info(
enum dc_color_depth color_depth,
uint32_t crtc_pixel_clock_in_khz,
uint32_t actual_pixel_clock_in_khz,
struct audio_clock_info *audio_clock_info)
{
const struct audio_clock_info *clock_info;
uint32_t index;
uint32_t crtc_pixel_clock_in_10khz = crtc_pixel_clock_in_khz / 10;
uint32_t audio_array_size;
switch (color_depth) {
case COLOR_DEPTH_161616:
clock_info = audio_clock_info_table_48bpc;
audio_array_size = ARRAY_SIZE(
audio_clock_info_table_48bpc);
break;
case COLOR_DEPTH_121212:
clock_info = audio_clock_info_table_36bpc;
audio_array_size = ARRAY_SIZE(
audio_clock_info_table_36bpc);
break;
default:
clock_info = audio_clock_info_table;
audio_array_size = ARRAY_SIZE(
audio_clock_info_table);
break;
}
if (clock_info != NULL) {
/* search for exact pixel clock in table */
for (index = 0; index < audio_array_size; index++) {
if (clock_info[index].pixel_clock_in_10khz >
crtc_pixel_clock_in_10khz)
break; /* not match */
else if (clock_info[index].pixel_clock_in_10khz ==
crtc_pixel_clock_in_10khz) {
/* match found */
*audio_clock_info = clock_info[index];
return;
}
}
}
/* not found */
if (actual_pixel_clock_in_khz == 0)
actual_pixel_clock_in_khz = crtc_pixel_clock_in_khz;
/* See HDMI spec the table entry under
* pixel clock of "Other". */
audio_clock_info->pixel_clock_in_10khz =
actual_pixel_clock_in_khz / 10;
audio_clock_info->cts_32khz = actual_pixel_clock_in_khz;
audio_clock_info->cts_44khz = actual_pixel_clock_in_khz;
audio_clock_info->cts_48khz = actual_pixel_clock_in_khz;
audio_clock_info->n_32khz = 4096;
audio_clock_info->n_44khz = 6272;
audio_clock_info->n_48khz = 6144;
}
static void enc1_se_audio_setup(
struct stream_encoder *enc,
unsigned int az_inst,
struct audio_info *audio_info)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t speakers = 0;
uint32_t channels = 0;
ASSERT(audio_info);
if (audio_info == NULL)
/* This should not happen.it does so we don't get BSOD*/
return;
speakers = audio_info->flags.info.ALLSPEAKERS;
channels = speakers_to_channels(audio_info->flags.speaker_flags).all;
/* setup the audio stream source select (audio -> dig mapping) */
REG_SET(AFMT_AUDIO_SRC_CONTROL, 0, AFMT_AUDIO_SRC_SELECT, az_inst);
/* Channel allocation */
REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL2, AFMT_AUDIO_CHANNEL_ENABLE, channels);
}
static void enc1_se_setup_hdmi_audio(
struct stream_encoder *enc,
const struct audio_crtc_info *crtc_info)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
struct audio_clock_info audio_clock_info = {0};
/* HDMI_AUDIO_PACKET_CONTROL */
REG_UPDATE(HDMI_AUDIO_PACKET_CONTROL,
HDMI_AUDIO_DELAY_EN, 1);
/* AFMT_AUDIO_PACKET_CONTROL */
REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1);
/* AFMT_AUDIO_PACKET_CONTROL2 */
REG_UPDATE_2(AFMT_AUDIO_PACKET_CONTROL2,
AFMT_AUDIO_LAYOUT_OVRD, 0,
AFMT_60958_OSF_OVRD, 0);
/* HDMI_ACR_PACKET_CONTROL */
REG_UPDATE_3(HDMI_ACR_PACKET_CONTROL,
HDMI_ACR_AUTO_SEND, 1,
HDMI_ACR_SOURCE, 0,
HDMI_ACR_AUDIO_PRIORITY, 0);
/* Program audio clock sample/regeneration parameters */
get_audio_clock_info(crtc_info->color_depth,
crtc_info->requested_pixel_clock,
crtc_info->calculated_pixel_clock,
&audio_clock_info);
DC_LOG_HW_AUDIO(
"\n%s:Input::requested_pixel_clock = %d" \
"calculated_pixel_clock = %d \n", __func__, \
crtc_info->requested_pixel_clock, \
crtc_info->calculated_pixel_clock);
/* HDMI_ACR_32_0__HDMI_ACR_CTS_32_MASK */
REG_UPDATE(HDMI_ACR_32_0, HDMI_ACR_CTS_32, audio_clock_info.cts_32khz);
/* HDMI_ACR_32_1__HDMI_ACR_N_32_MASK */
REG_UPDATE(HDMI_ACR_32_1, HDMI_ACR_N_32, audio_clock_info.n_32khz);
/* HDMI_ACR_44_0__HDMI_ACR_CTS_44_MASK */
REG_UPDATE(HDMI_ACR_44_0, HDMI_ACR_CTS_44, audio_clock_info.cts_44khz);
/* HDMI_ACR_44_1__HDMI_ACR_N_44_MASK */
REG_UPDATE(HDMI_ACR_44_1, HDMI_ACR_N_44, audio_clock_info.n_44khz);
/* HDMI_ACR_48_0__HDMI_ACR_CTS_48_MASK */
REG_UPDATE(HDMI_ACR_48_0, HDMI_ACR_CTS_48, audio_clock_info.cts_48khz);
/* HDMI_ACR_48_1__HDMI_ACR_N_48_MASK */
REG_UPDATE(HDMI_ACR_48_1, HDMI_ACR_N_48, audio_clock_info.n_48khz);
/* Video driver cannot know in advance which sample rate will
* be used by HD Audio driver
* HDMI_ACR_PACKET_CONTROL__HDMI_ACR_N_MULTIPLE field is
* programmed below in interruppt callback
*/
/* AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L_MASK &
* AFMT_60958_0__AFMT_60958_CS_CLOCK_ACCURACY_MASK
*/
REG_UPDATE_2(AFMT_60958_0,
AFMT_60958_CS_CHANNEL_NUMBER_L, 1,
AFMT_60958_CS_CLOCK_ACCURACY, 0);
/* AFMT_60958_1 AFMT_60958_CS_CHALNNEL_NUMBER_R */
REG_UPDATE(AFMT_60958_1, AFMT_60958_CS_CHANNEL_NUMBER_R, 2);
/* AFMT_60958_2 now keep this settings until
* Programming guide comes out
*/
REG_UPDATE_6(AFMT_60958_2,
AFMT_60958_CS_CHANNEL_NUMBER_2, 3,
AFMT_60958_CS_CHANNEL_NUMBER_3, 4,
AFMT_60958_CS_CHANNEL_NUMBER_4, 5,
AFMT_60958_CS_CHANNEL_NUMBER_5, 6,
AFMT_60958_CS_CHANNEL_NUMBER_6, 7,
AFMT_60958_CS_CHANNEL_NUMBER_7, 8);
}
static void enc1_se_setup_dp_audio(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* --- DP Audio packet configurations --- */
/* ATP Configuration */
REG_SET(DP_SEC_AUD_N, 0,
DP_SEC_AUD_N, DP_SEC_AUD_N__DP_SEC_AUD_N__DEFAULT);
/* Async/auto-calc timestamp mode */
REG_SET(DP_SEC_TIMESTAMP, 0, DP_SEC_TIMESTAMP_MODE,
DP_SEC_TIMESTAMP__DP_SEC_TIMESTAMP_MODE__AUTO_CALC);
/* --- The following are the registers
* copied from the SetupHDMI ---
*/
/* AFMT_AUDIO_PACKET_CONTROL */
REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1);
/* AFMT_AUDIO_PACKET_CONTROL2 */
/* Program the ATP and AIP next */
REG_UPDATE_2(AFMT_AUDIO_PACKET_CONTROL2,
AFMT_AUDIO_LAYOUT_OVRD, 0,
AFMT_60958_OSF_OVRD, 0);
/* AFMT_INFOFRAME_CONTROL0 */
REG_UPDATE(AFMT_INFOFRAME_CONTROL0, AFMT_AUDIO_INFO_UPDATE, 1);
/* AFMT_60958_0__AFMT_60958_CS_CLOCK_ACCURACY_MASK */
REG_UPDATE(AFMT_60958_0, AFMT_60958_CS_CLOCK_ACCURACY, 0);
}
static void enc1_se_enable_audio_clock(
struct stream_encoder *enc,
bool enable)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
if (REG(AFMT_CNTL) == 0)
return; /* DCE8/10 does not have this register */
REG_UPDATE(AFMT_CNTL, AFMT_AUDIO_CLOCK_EN, !!enable);
/* wait for AFMT clock to turn on,
* expectation: this should complete in 1-2 reads
*
* REG_WAIT(AFMT_CNTL, AFMT_AUDIO_CLOCK_ON, !!enable, 1, 10);
*
* TODO: wait for clock_on does not work well. May need HW
* program sequence. But audio seems work normally even without wait
* for clock_on status change
*/
}
static void enc1_se_enable_dp_audio(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
/* Enable Audio packets */
REG_UPDATE(DP_SEC_CNTL, DP_SEC_ASP_ENABLE, 1);
/* Program the ATP and AIP next */
REG_UPDATE_2(DP_SEC_CNTL,
DP_SEC_ATP_ENABLE, 1,
DP_SEC_AIP_ENABLE, 1);
/* Program STREAM_ENABLE after all the other enables. */
REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1);
}
static void enc1_se_disable_dp_audio(
struct stream_encoder *enc)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
uint32_t value = 0;
/* Disable Audio packets */
REG_UPDATE_5(DP_SEC_CNTL,
DP_SEC_ASP_ENABLE, 0,
DP_SEC_ATP_ENABLE, 0,
DP_SEC_AIP_ENABLE, 0,
DP_SEC_ACM_ENABLE, 0,
DP_SEC_STREAM_ENABLE, 0);
/* This register shared with encoder info frame. Therefore we need to
* keep master enabled if at least on of the fields is not 0
*/
value = REG_READ(DP_SEC_CNTL);
if (value != 0)
REG_UPDATE(DP_SEC_CNTL, DP_SEC_STREAM_ENABLE, 1);
}
void enc1_se_audio_mute_control(
struct stream_encoder *enc,
bool mute)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_AUDIO_SAMPLE_SEND, !mute);
}
void enc1_se_dp_audio_setup(
struct stream_encoder *enc,
unsigned int az_inst,
struct audio_info *info)
{
enc1_se_audio_setup(enc, az_inst, info);
}
void enc1_se_dp_audio_enable(
struct stream_encoder *enc)
{
enc1_se_enable_audio_clock(enc, true);
enc1_se_setup_dp_audio(enc);
enc1_se_enable_dp_audio(enc);
}
void enc1_se_dp_audio_disable(
struct stream_encoder *enc)
{
enc1_se_disable_dp_audio(enc);
enc1_se_enable_audio_clock(enc, false);
}
void enc1_se_hdmi_audio_setup(
struct stream_encoder *enc,
unsigned int az_inst,
struct audio_info *info,
struct audio_crtc_info *audio_crtc_info)
{
enc1_se_enable_audio_clock(enc, true);
enc1_se_setup_hdmi_audio(enc, audio_crtc_info);
enc1_se_audio_setup(enc, az_inst, info);
}
void enc1_se_hdmi_audio_disable(
struct stream_encoder *enc)
{
enc1_se_enable_audio_clock(enc, false);
}
void enc1_setup_stereo_sync(
struct stream_encoder *enc,
int tg_inst, bool enable)
{
struct dcn10_stream_encoder *enc1 = DCN10STRENC_FROM_STRENC(enc);
REG_UPDATE(DIG_FE_CNTL, DIG_STEREOSYNC_SELECT, tg_inst);
REG_UPDATE(DIG_FE_CNTL, DIG_STEREOSYNC_GATE_EN, !enable);
}
static const struct stream_encoder_funcs dcn10_str_enc_funcs = {
.dp_set_stream_attribute =
enc1_stream_encoder_dp_set_stream_attribute,
.hdmi_set_stream_attribute =
enc1_stream_encoder_hdmi_set_stream_attribute,
.dvi_set_stream_attribute =
enc1_stream_encoder_dvi_set_stream_attribute,
.set_mst_bandwidth =
enc1_stream_encoder_set_mst_bandwidth,
.update_hdmi_info_packets =
enc1_stream_encoder_update_hdmi_info_packets,
.stop_hdmi_info_packets =
enc1_stream_encoder_stop_hdmi_info_packets,
.update_dp_info_packets =
enc1_stream_encoder_update_dp_info_packets,
.stop_dp_info_packets =
enc1_stream_encoder_stop_dp_info_packets,
.dp_blank =
enc1_stream_encoder_dp_blank,
.dp_unblank =
enc1_stream_encoder_dp_unblank,
.audio_mute_control = enc1_se_audio_mute_control,
.dp_audio_setup = enc1_se_dp_audio_setup,
.dp_audio_enable = enc1_se_dp_audio_enable,
.dp_audio_disable = enc1_se_dp_audio_disable,
.hdmi_audio_setup = enc1_se_hdmi_audio_setup,
.hdmi_audio_disable = enc1_se_hdmi_audio_disable,
.setup_stereo_sync = enc1_setup_stereo_sync,
.set_avmute = enc1_stream_encoder_set_avmute,
};
void dcn10_stream_encoder_construct(
struct dcn10_stream_encoder *enc1,
struct dc_context *ctx,
struct dc_bios *bp,
enum engine_id eng_id,
const struct dcn10_stream_enc_registers *regs,
const struct dcn10_stream_encoder_shift *se_shift,
const struct dcn10_stream_encoder_mask *se_mask)
{
enc1->base.funcs = &dcn10_str_enc_funcs;
enc1->base.ctx = ctx;
enc1->base.id = eng_id;
enc1->base.bp = bp;
enc1->regs = regs;
enc1->se_shift = se_shift;
enc1->se_mask = se_mask;
}